跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 18:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳東澄
研究生(外文):Wu,Dongcheng
論文名稱:非均勻大規模無線感測網路定位策略
論文名稱(外文):Localization Strategy For Non-Uniform Large Scale Wireless Sensor Networks
指導教授:侯廷昭
指導教授(外文):Hou, TingChao
口試委員:侯廷昭李皇辰蘇暉凱張慶龍
口試委員(外文):Hou, TingChaoLee, HuangChenSu, HuiKaiChang, ChingLung
口試日期:2012-07-23
學位類別:碩士
校院名稱:國立中正大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:58
中文關鍵詞:非均勻大規模無線感測網路三角定位最短路徑估測接收訊號強度
外文關鍵詞:Non-uniform Large Scale Wireless Sensor networksTriangulation LocalizationShortest Path EstimateRSSI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:1
建立大規模無線感測網路需要大量感測裝置,實務上往往希望感測裝置體積小、構造簡單及低成本,基於以上考量,在大規模無線感測網路通常不會讓所有感測裝置裝備GPS直接獲得經緯度資訊,而是讓一小部分感測裝置裝備GPS,稱為參考點或錨點,其餘感測裝置稱為待測點,待測點必須蒐集錨點的座標資訊及估測與錨點的直線距離後才能使用三角定位獲得座標,因此,直線距離估測的準確度將影響定位的結果。
我們可以預期在規模龐大的無線感測網路容易有地理上的障礙造成感測點分佈的非均勻性,若錨點與待測點間有障礙物存在時,封包傳遞的最短路徑會繞過障礙物產生曲折,導致直線距離的估測失真產生定位誤差。
本論文研究議題為如何降低非均勻無線感網路環境的定位誤差,在本論文所提出的定位策略中,鄰近障礙物的感測點利用接收訊號強度 (RSSI) 測量與鄰點的距離且計算錨點與待測點間最短路徑所偏差的角度並修正成直線距離。
模擬結果顯示,本論文所提出的定位策略可修正非均勻環境所造成的定位誤差,且隨著節點分支度或錨點比例提高,定位將越準確。

Large scale wireless sensor networks need much more sensors to build, so sensors are usually small, simple and low cost. Based on these reasons, only a few sensors called reference nodes or anchor nodes are equipped with the GPS device. Other sensors are blind nodes, which need to collect anchors’ coordinate information and estimate the straight-line distances between itself and anchor nodes to calculate its coordinate by using triangulation localization. Therefore, the straight-line distance estimation affects estimation localization accuracy.
In large scale wireless sensor networks, we can expect that many obstacles make sensors non-uniformly distributed. If obstacles are located in between the anchor node and the blind node, the shortest path between them will traverse around obstacles, and make the straight-line distance estimate distorted, causing localization error.
The issue addressed in this thesis is how to reduce the localization error for non-uniform wireless sensor networks. In the proposed localization strategy, sensors which are near obstacles estimate distances to neighbor sensors using received signal strength indication, and calculate deviation angles for the part of the shortest path between the blind node and the anchor node. With these information, the straight-line distance can be more accurately estimated.
Extensive simulations show that the proposed strategy reduces localization error for non-uniform wireless sensor networks. When the node degree or anchor node number increases, the accuracy will increase too.

誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 研究動機 1
1.2 論文架構 3
第二章 背景與相關研究 4
2.1 無線網路定位技術 4
2.1.1 Range -based 定位機制 5
2.1.1.1 TOA (Time Of Arrival) 5
2.1.1.2 TDOA (Time Difference Of Arrival) 6
2.1.1.3 RSSI (Received Signal Strength Indication) 7
2.1.2 Range-free 定位機制 10
2.1.2.1 Centroid Localization 10
2.1.2.2 DV-HOP 11
2.1.2.3 REP 12
2.2 無線網路邊界偵測技術 13
2.3 最小平方法 (Least-squares Approach) 15
2.3.1 最小平方法概述 15
2.3.2 最小平方法在定位技術的應用 16
第三章 非均勻大規模無線感測網路定位策略 (LS-NUWSN) 18
3.1 定位策略概述 18
3.2 非均勻環境特性 18
3.3 平均誤差收集階段 (Mean Error Collection Phase) 20
3.3.1 平均誤差收集階段的封包傳遞過程 20
3.3.2 平均誤差估測 23
3.4 定位階段 (Localization Phase) 24
3.4.1 定位階段封包的傳遞過程 24
3.4.2 最短路徑上的網路邊界點與鄰點的夾角估測 27
3.4.3 錨點與待測點的直線距離估測 29
3.4.4 遮蔽效應對角度估測的影響及解決方法 32
第四章 模擬結果與數據分析 33
4.1 模擬環境 33
4.2 模擬結果與數據分析 35
4.2.1 非均勻環境感測點誤差分佈狀況 35
4.2.2 錨點數量對定位誤差的影響 38
4.2.3 遮蔽效應對定位誤差的影響 39
4.2.4 最大角度誤差限制 (MAEL) 對定位誤差的影響 40
4.2.5 節點分支度 (Node Degree) 對定位誤差的影響 42
4.2.6 環境複雜度對定位誤差的影響 44
4.2.7 均勻感測環境下LS-NUWSN定位效能分析 49
4.2.8 網路邊界點的「部分資訊角度估測法」使用率 51
第五章 結論與未來展望 54
5.1 結論 54
5.2 未來展望 55
參考文獻 57

[1] V. C. Gungor and G. P. Hancke, “Industrial Wireless Sensor Networks
Challenges Design Principles and Technical Approaches,” IEEE Transactions on Industrial Electronics, vol. 56, pp. 4258 – 4265, October 2009.

[2]N. Swangmuang and P. Krishnamurthy, “Location Fingerprint Analyses Toward Efficient Indoor Positioning, ” in Proc. IEEE PerCom, Hong Kong, March 2008.

[3]I. Constandache, X. Bao, M. Azizyan and R. R. Choudhury, “Did you see Bob?: human localization using mobile phones,” in Proc. ACM MobiCom, Chicago, Illinois, USA, September 2010.

[4]B. Xu, R. Yu, G. Sun and Z. Yang, “Whistle: Synchronization -Free TDOA for Localization,” in Proc. IEEE ICDC, Minneapolis, MN, USA, June 2011.

[5]D. Moore, J. Leonard, D. Rus, S. Teller,“Robust distributed network localization with noisy range measurements,” in Proc. ACM Sensys, Baltimore, Maryland, USA, November 2004

[6]國立中正大學電機工程學系,溫志宏,無線通道模型概論,網址:http://web.ee.ccu.edu.tw/~wl/ofdm/class/class%20pdf/Channel%20model.pdf

[7]G. Zhou, T. He, S. Krishnamurthy and J. A. Stankovic, “Impact of Radio Irregularity on Wireless Sensor Networks,” in Proc. ACM MobiSYS, Boston, Massachusetts, USA, June 2004.

[8]J. Xu, W. Liu, F. Lang, Y. Zhang, and C. Wang, “Distance Measurement Model Based on RSSI in WSN,” Scientific Research Journal of Wireless Sensor network, vol. 2, No. 8, pp. 606-611, 2010.

[9]X. Ji and H. Zha, “Sensor Positioning in Wireless Ad-hoc Sensor Networks Using Multidimensional Scaling,” in Proc. IEEE Infocom, Hong Kong, March 2004.

[10]N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low cost outdoor localization for very small devices,” IEEE Personal Communications Magazine, vol. 7, no. 5, pp. 28–34, October 2000.

[11]D. Niculescu and B. Nath, “DV based positioning in ad hoc networks,” Kluwer J. Telecommun. Syst., vol. 22, No. 1, pp. 267 – 280, January 2003.

[12]M. Li and Y. Liu, “Rendered Path: Range-Free Localization in Anisotropic Sensor Networks with Holes,” in Proc. ACM MobiCom, Montreal, Quebec, Canada, September 2007.

[13]Y. Wang, J. Gao and J. S. B. Mitchell, “Boundary Recognition in Sensor Networks by Topological Methods,” in Proc. ACM MobiCom, Los Angele, California, September 2006.

[14]S. Funke and C. Klein, “Hole Detection or:.How Much Geometry Hides in Connectivity? ,” in Proc. ACM SCG, Sedona, Arizona, USA, June 2006.

[15]G. Strang, “The Fundamental Theorem of Linear Algebra,” American Mathematical Monthly (AMS), vol.100, No. 9, pp. 848-855, November 1993.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top