跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 01:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪玉娟
研究生(外文):Hong, Yujuan
論文名稱:金屬奈米粒子製作緩衝層應用於有機薄膜電晶體元件特性探討
論文名稱(外文):Effects Of Metallic-Nanoparticle Buffer Layer On Characteristics Of Organic Thin Film Transistors
指導教授:何正榮許佳振
指導教授(外文):Ho, JengrongHsu, Chiachen
口試委員:周禮君許佳振王祥辰何正榮
口試委員(外文):Chau, LaikwanHsu, ChiachenWang, HsiangchenHo, Jengrong
口試日期:2012-06-12
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:92
中文關鍵詞:P3HT、金屬奈米粒子、有機薄膜電晶體
外文關鍵詞:P3HT、Metallic-Nanoparticle、Organic Thin Film Transistor
相關次數:
  • 被引用被引用:2
  • 點閱點閱:542
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本文旨在探討金屬奈米粒子(Metallic nanoparticles)對有機薄膜電晶體(Organic thin-film transistors, OTFTs)元件性能之影響。本研究所使用的金屬奈米粒子為表面帶負電之金屬奈米粒子,有金與銀兩種,其中,金奈米粒子之粒徑有11奈米與33奈米兩種,而銀奈米粒子之粒徑為11奈米。此金屬奈米粒子層放置於SiO2介電層與P3HT半導體層之間作為緩衝層(Buffer layer)。結果顯示,由於表面負電特性可在介電層上形成負電荷的金屬奈米粒子緩衝層,增強介電層電場效應,吸引更多載子,提升元件飽和電流。因此塗佈適量的金屬奈米粒子作為緩衝層是可明顯提升元件之載子遷移率(Mobility)、輸出飽和電流、開關電流比(on/off ratio)等特性,而且起始電壓(VT) 也可以降低。 比較兩種粒徑相近的金奈米粒子與銀奈米粒子之緩衝層差異,顯示銀奈米粒子所降低之起始電壓量其實比起金奈米粒子相對低些,這是因為銀奈米粒子表面負電強度低使整體元件電場增加較低,因此,起始電壓降低相對來的少。但銀奈米粒子仍可以有效地提升介電層之介電常數,因介電常數與電容值成正比,所以有銀奈米粒子緩衝層之元件其電容值提升有助於輸出飽和電流提升進而提升元件之開關電流比與載子遷移率。
This study aims to investigate the effects of surface, negatively charged metallic nanoparticles (NPs), as a buffer layer and residing between the SiO2 dielectric layer and the P3HT semiconducting layer, on the performance of organic thin-film trnasistors (OTFTs). The two studied nanoparticles were gold nanoparticles (Au-NPs) and silver nanoparticles (Ag-NPs) and the sizes for Au-NPs were 33 nm and 11 nm in diamerter, respectively, while the diameter of Ag-NPs were around 11 nm. Both the influence of the particle size and the particle type were investigated. Resutls show that, due to the negative surface charge, the existence of the metallic NPs buffer layer was able to enhance the strength of the electric field which led to attract more hole carriers at the dielectric-semiconduting layer interface and ehanance the saturation source-drain current. Consquently, the device’s characteristics, including the mobility, on/off raito, and threshold volotage, were effecitvely improved. Comparing with the Au-NPs buffer-layered OTFTs, the threshold voltage of the Ag-NPs buffer-layered device was higher. This was due to the intensity of the negative charge of the Ag-NPs was smaller than that of the Au-NPs, the induced electric field strength by the Ag-NPs was thus poorer than that by the Au-NPs. However, the Ag-NPs buffuer layer can still effectively enhance the dielectric constant of the dielectric layer that caused an increase of capacitance and gave rise to better device characteristics.
誌謝 I
摘要 III
Abstract IV
目錄 V
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
第二章 OTFT簡介與文獻回顧 3
2.1 OTFT結構和操作原理 3
2.2 介電層改質 5
2.2-1奈米複合材料介電層 5
2.2-2介電層表面改質 11
2.3 半導體層改質 12
2.3-1 P3HT材料製作OTFT 15
2.3-2 P3HT摻混材料製作OTFT 14
2.4 金屬奈米粒子製作源極/汲極 18
2.5 傳承與創新 20
第三章 製程方法 21
3.1實驗設計與目標 21
3.2實驗架構 21
3.3實驗用品及相關器材 22
3.4實驗流程 22
3.4-1 製備圓球型金屬奈米粒子 22
3.4-2金屬奈米粒子製作MIM(Metal-Insulator-Metal)電容 23
3.4-3金屬奈米粒子製作MIS(Metal-Insulator-Semiconductor)電容 26
3.4-4金屬奈米粒子製作有機薄膜電晶體緩衝層 27
第四章 實驗結果與討論 30
4.1金屬奈米粒子材料特性 30
4.2金奈米粒子MIM電容量測結果 37
4.3金奈米粒子MIS電容量測結果 38
4.4銀奈米粒子MIS電容量測結果 44
4.5金奈米粒子之OTFT元件特性 46
4.5-1 SEM觀測金奈米粒子表面塗佈形貌 46
4.5-2金奈米粒子之OTFT元件電性 51
4.6銀奈米粒子之OTFT元件特性 65
4.6-1 SEM觀測銀奈米粒子塗表面塗佈形貌 65
4.6-2銀奈米粒子之OTFT元件電性 67
4.7小結 72
第五章結論與建議 73
5.1結論 73
5.2建議 73
參考文獻 74

[1] 朱治偉,“ 有機薄膜電晶體 ”, 工業材料雜誌285期, p140-p145 (2010)。
[2] 胡堂祥,“ 有機薄膜電晶體整合技術 ”, 工業材料雜誌272期, p86-p145 (2010)。
[3] 陳彥亨,“ 奈米金粒子製作緩衝層及新高分子半導體材料(P3HT-Au)應用在有機薄膜電晶體之元件特性探討 ”, 國立中正大學光機電整合工程研究所碩士班,碩士論文。
[4] F.C. Chen, C.W. Chu, J. He, Y. Yang,“ Organic thin-film transistors with nanocomposite dielectric gate insulator ” Appl. Phys. Lett., Vol. 85, No. 15, 3295-3297 ( 2004).
[5] F.C. Chen , C.S. Chuang , Y.S. Lin, L.J. Kung, T.H. Chen, H.P. D. Shieh, “ Low-voltage organic thin-film transistors with polymericnanocomposite dielectrics ” Organic Electronics 7 ,435–439 (2006).
[6] W.H. Lee, C.C. Wang, J.C. Ho,“ Influence of nano-composite gate dielectrics on OTFT characteristics ” Thin Solid Films 517 , 5305–5310 (2009).
[7] F.Y. Yang, M.Y. Hsu, G.W. Hwang, K.J. Chang, “ High-performance poly(3-hexylthiophene) top-gate transistors incorporating TiO2 nanocomposite dielectrics ” Organic Electronics 11, 81–88 (2010).
[8] L. Fumagalli, D. Natali, M. Sampietro, E. Peron, F. Perissinotti, G. Tallarida, S. Ferrari,“ Al2O3 as gate dielectric for organic transistors: Charge transport phenomena in poly-(3-hexylthiophene) based devices ” Organic Electronics 9, 198–208 (2008).
[9] R.J. Kline, M.D. McGehee, E.N. Kadnikova, J. Liu, J.M.J. Frechet,“ Controlling the Field-Effect Mobility of Regioregular Polythiophene by Changing the Molecular Weight ”Adv. Mater. 15, NO.18,1519-1522 (2003).
[10] J.F. Chang, B. Sun, D.W. Breiby, M.M. Nielsen, “ Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents ”, Chem. Mater. 16, 4772-4776 (2004).
[11] S. Cho, K. Lee, J. Yuen, G. Wang, D. Moses,“ Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films ” , J. Appl. Phys. 100, 114503-1 (2006).
[12] X.Z. Bo, C.Y. Lee, M.S. Strano, M. Goldfinger, G. Blanchet, “ Carbon nanotubes-semiconductor networks for organic electronics: The pickup stick transistor ”, Appl. Phys. Lett. 86, 182102-1 (2005).
[13] Y.D. Park, J.A. Lim, Y. Jang, M. Hwang, H.S. Lee, D.H. Lee, H.J. Lee, J.B. Baek, K. Cho ,“ Enhancement of the field-effect mobility of P3HT/functionalized carbon nanotube hybrid transistors ”, Organic Electronics 9, 317–322 (2008).
[14] C.T. Lin, C.H. Hsu, I.R.Chen, C.H. Lee, W.J. Wu, “ Enhancement of carrier mobility in all-inkjet-printed organic thin-film transistors using a blend of poly(3-hexylthiophene) and carbon nanoparticles ”, Thin Solid Films 519, 8008–8012 (2011).
[15] S.H. Ko, I. Park, H. Pan, C.P. Grigoropoulos, A.P. Pisano, C.K. Luscombe, J. M.J. Frechet, “ Direct Nanoimprinting of Metal Nanoparticles for Nanoscale Electronics Fabrication ”, Nano Lett., Vol. 7, No. 7, 1869-1877 (2007).
[16] D.K. Kim, S. Jeong, S. Lee, B. K. Park, J. Moon, “ Organic thin film transistor using silver electrodes by the ink-jet printing technology ”, Thin Solid Films 515, 7692-7696 (2007).
[17] 侯均治,“ 圓球形金奈米粒子對定域化表面電漿共振感測系統相關性研究 ”, 國立中正大學化學暨生物化學學系碩士班,碩士論文。
[18] V.V. Pinto, M.J. Ferreira, R. Silva, H.A. Santos, F. Silva, C.M. Pereira, “Long time effect on the stability of silver nanoparticles in aqueous medium: Effect of the synthesis and storage conditions ”, Colloids and Surfaces A: Physicochem. Eng. Aspects 364, 19–25 (2010).
[19] J. Lu, K.S. Moon, J. Xu, C.P. Wong, “ Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications ”, J. Mater. Chem. 16, 1543–1548 (2006).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top