(54.236.62.49) 您好!臺灣時間:2021/03/06 11:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王聖安
研究生(外文):Shang An Wang
論文名稱:奈米鉑/石墨烯觸媒以聚乙烯醇當陰離子傳導高分子應用於鹼性甲醇氧化反應之可靠度研究
論文名稱(外文):Reliability of size-selected Pt nanoparticles supported on graphene with PVA as ionomer for MeOH oxidation in alkaline solutions
指導教授:楊禎明
指導教授(外文):J. M. Yang
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
論文頁數:94
中文關鍵詞:鉑奈米粒子磺酸化石墨烯聚乙烯醇甲醇氧化
外文關鍵詞:Pt nanoparticleSulfonatedGraphenePolyvinyl alcohol(PVA)Methanol oxidation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用膠體粒子法合成平均粒徑1-2 nm的鉑奈米粒子,且選擇碳黑、石墨烯與經由硫酸銨改質的石墨烯作為載體,比較加入聚乙烯醇溶液與Nafion溶液當作傳導高分子於鹼性環境下效能的差別和探討所合成之複合材料加入聚乙烯醇溶液當作傳導高分子在於甲醇氧化反應過程中對於不同掃描圈數下之可靠度。
我們利用鉑奈米粒子/碳黑、鉑奈米粒子/石墨烯及鉑奈米粒子/磺酸石墨烯此三種物質修飾玻璃碳電極,不管於哪一種觸媒中加入聚乙烯醇溶液當作傳導高分子都呈現出較好的效能。然後,經循環伏安法掃描50圈後各觸媒都表現出最大之甲醇氧化活性666.67、1501.69與2371.31 mA / mgPt。此外,鉑奈米粒子/磺酸石墨烯除了甲醇氧化活性較其他兩種觸媒好之外,當掃描圈數增加至200圈時,甲醇氧化活性分別衰減至294.09、1162.03及2156.54 mA/ mgPt,這也表示鉑奈米粒子/磺酸石墨烯的可靠度較其他兩種觸媒優。

In this study, we have synthesized the Pt nanoparticles which average diameter was 1-2 nm by colloidal particles, and chose carbon black, graphene and via ammonium sulfate modification of graphene as a carbon support. In alkaline solution, when we added polyvinyl alcohol (PVA) solution and Nafion solution acted as ionomer, we compared them. Consequently, we evaluated the performance of polyvinyl alcohol (PVA) solution as ionomer in methanol oxidation reaction and reliability for number of cycles under different scanning.
We have used Pt / carbon black, Pt / graphene and Pt / sulfonated graphene to modify glass carbon electrode. No matter in which kind of catalysts added polyvinyl alcohol (PVA) solution as ionomer, all the kind of catalysts could present excellent performance. By cyclic voltammetry, after all the kind of catalysts scaned 50 cycles, they shown the largest methanol oxidation activity 666.67, 1501.69 and 2371.31 mA / mgPt, respectively. In addition, the methanol oxidation activity of Pt / sulfonated graphene were better than other two kind of catalysts. When the scan cycle was the 200th, the methanol oxidation activity decreased to 294.09, 1162.03, and 2156.54 mA / mgPt, respectively, and also meant that the reliability of Pt / sulfonated graphene better than the other two kind of catalysts.

目錄
指導教授推薦書 i
口試委員審定書 ii
長庚 iii
致謝 iv
中文摘要 v
英文摘要 vi
目錄 vii
圖目錄 ix
表目錄 xiv
第一章 緒論 - 1 -
1.1前言 - 1 -
1.2研究動機 - 2 -
第二章 文獻回顧 - 4 -
2.1 燃料電池 - 4 -
2.2 直接甲醇燃料電池 - 8 -
2.3 鹼性直接甲醇燃料電池 - 11 -
2.4 載材與陽極觸媒 - 13 -
2.5 聚乙烯醇(Poly(vinyl alcohol), PVA) - 23 -
第三章 實驗材料與方法 - 28 -
3.1藥品與材料 - 28 -
3.2儀器設備與器材 - 29 -
3.3實驗流程圖 - 30 -
3.4實驗步驟 - 31 -
3.4.1膠體法製備奈米鉑粒子觸媒 - 31 -
3.4.2 石墨烯磺酸化 - 31 -
3.4.3 奈米膠體鉑粒子沉積於載材之製備 - 32 -
3.4.4 觸媒墨水製備 - 33 -
3.4.5 電極製備與修飾 - 33 -
3.5材料鑑定分析 - 34 -
3.5.1 穿透式電子顯微鏡(TEM) - 34 -
3.6電化學量測 - 35 -
3.6.1 循環伏安法 - 35 -
第四章 結果與討論 - 40 -
4.1穿透式電子顯微鏡分析 - 40 -
4. 2電化學量測 - 44 -
第五章 結論 - 68 -
參考文獻 - 69 -

圖目錄
圖2.1、DMFC工作原理 10
圖2.2、鹼性直接甲醇燃料電池的反應物、產物與離子傳輸示意圖 12
圖2.3、巴克球、奈米碳管和石墨(由左至右)為石墨烯衍生物 18
圖2.4、合成Pt-Ru/C觸媒之流程:(1)含浸法;(2)膠體法;(3)微乳化法 19
圖2.5、鉑膠體粒子TEM分析圖 20
圖2.6、鉑膠體粒子粒徑分佈圖 20
圖2.7、奈米鉑粒子/石墨烯(Nafion) TEM分析圖 21
圖2.8、奈米鉑粒子/磺酸石墨烯(Nafion) TEM分析圖 21
圖3.1、製備觸媒之流程與測試項目圖 30
圖3.2、墨水震盪30分鐘(a)Pt/C(PVA) ,(b)Pt/G(PVA) ,(c)Pt/sG(PVA) 38
圖3.3、墨水靜置兩週(a)Pt/C(PVA) ,(b)Pt/G(PVA) ,(c)Pt/sG(PVA) 38
圖3.4、墨水靜置四週(a)Pt/C(PVA) ,(b)Pt/G(PVA) ,(c)Pt/sG(PVA) 39
圖4.1、奈米鉑粒子/碳黑(PVA) TEM圖(scale bar:200 nm) 41
圖4.2、奈米鉑粒子/石墨烯(PVA) TEM圖(scale bar:200 nm) 41
圖4.3、奈米鉑粒子/磺酸石墨烯(PVA) TEM圖(scale bar:200 nm) 42
圖4.4、奈米鉑粒子/碳黑(PVA) TEM圖(scale bar:50 nm) 42
圖4.5、奈米鉑粒子/石墨烯(PVA) TEM圖(scale bar:50 nm) 43
圖4.6、奈米鉑粒子/磺酸石墨烯(PVA) TEM圖(scale bar:50 nm) 43
圖4.7、PVA結構式 49
圖4.8、Nafion結構式 49
圖4.9、比較在墨水中加入PVA與Nafion對於Pt/C觸媒CV的影響(電解液:1 M KOH;掃描速率:50 m V/s ) 50
圖4.10、比較在墨水中加入PVA與Nafion對於Pt/G觸媒CV的影
響(電解液:1 M KOH;掃描速率:50 m V/s ) 50
圖4.11、比較在墨水中加入PVA與Nafion對於Pt/sG觸媒CV的影響(電解液:1 M KOH;掃描速率:50 m V/s ) 51
圖4.12、比較在墨水中加入PVA對於Pt/C、Pt/G、Pt/sG觸媒CV疊圖(電解液:1 M KOH;掃描速率:50 m V/s ) 51
圖4.13、比較在墨水中加入PVA與Nafion對於Pt/C觸媒MOR的影響(電解液:1 M KOH + 0.5 M MeOH;掃描速率:50 m V/s ) 52
圖4.14、比較在墨水中加入PVA與Nafion對於Pt/G觸媒MOR的影響(電解液:1 M KOH + 0.5 M MeOH;掃描速率:50 m V/s ) 52
圖4.15、比較在墨水中加入PVA與Nafion對於Pt/sG觸媒MOR的影響(電解液:1 M KOH + 0.5 M MeOH;掃描速率:50 m V/s ) 53
圖4.16、比較在墨水中加入PVA對於Pt/C、Pt/G、Pt/sG觸媒MOR疊圖(電解液:1 M KOH + 0.5 M MeOH;掃描速率:50 m V/s ) 53
圖4.17、Pt/C觸媒墨水中加入PVA掃描不同圈數之CV圖(電解液:1 M KOH;掃描速率:50 m V/s ) 54
圖4.18、Pt/G觸媒墨水中加入PVA掃描不同圈數之CV圖(電解液:1 M KOH;掃描速率:50 m V/s ) 54
圖4.19、Pt/sG觸媒墨水中加入PVA掃描不同圈數之CV圖 (電解液:1 M KOH;掃描速率:50 m V/s ) 55
圖4.20、Pt/C、Pt/G、Pt/sG觸媒墨水中加入PVA掃描第五十圈CV疊圖 (電解液:1 M KOH;掃描速率:50 m V/s ) 55
圖4.21、Pt/C觸媒墨水中加入PVA掃描不同圈數之MOR圖(電解液:1 M KOH + 0.5 M MeOH;掃描速率:50 m V/s ) 56
圖4.22、Pt/G觸媒墨水中加入PVA掃描不同圈數之MOR圖(電解液:1 M KOH + 0.5 M MeOH;掃描速率:50 m V/s ) 56
圖4.23、Pt/sG觸媒墨水中加入PVA掃描不同圈數之MOR圖 (電解液:1 M KOH + 0.5 M MeOH;掃描速率:50 m V/s ) 57
圖4.24、Pt/C、Pt/G、Pt/sG觸媒墨水中加入PVA掃描第五十圈MOR疊圖 (電解液:1 M KOH + 0.5 M MeOH;掃描速率:50 m V/s ) 57
圖4.25、Pt/C、Pt/G、Pt/sG觸媒墨水中加入PVA掃描不同圈數之ECSA比較 58
圖4.26、Pt/C、Pt/G、Pt/sG觸媒墨水中加入PVA掃描不同圈數之ESA比較 58
圖4.27、Pt/C、Pt/G、Pt/sG觸媒墨水中加入PVA掃描不同圈數之Mass activity比較 59
圖4.28、Pt/C、Pt/G、Pt/sG觸媒墨水中加入PVA掃描不同圈數之Geometric activity比較 59
圖4.29、Pt/sG觸媒墨水加入PVA(13000 – 23000 M.W)掃描不同圈數CV圖 (電解液:1 M KOH;掃描速率:50 m V/s ) 60
圖4.30、Pt/sG觸媒墨水加入PVA(23000 – 50000 M.W)掃描不同圈數CV圖 (電解液:1 M KOH;掃描速率:50 m V/s ) 60
圖4.31、Pt/sG觸媒墨水加入PVA(70000 – 100000 M.W)掃描不同圈數CV圖 (電解液:1 M KOH;掃描速率:50 m V/s ) 61
圖4.32、Pt/sG觸媒墨水加入PVA(85000 – 124000 M.W)掃描不同圈數CV圖 (電解液:1 M KOH;掃描速率:50 m V/s ) 61
圖4.33、Pt/sG觸媒墨水加入PVA(146000 – 184000 M.W)掃描不同圈數CV圖 (電解液:1 M KOH;掃描速率:50 m V/s ) 62
圖4.34、Pt/sG觸媒墨水加入不同PVA分子量掃描第五十圈數CV圖 (電解液:1 M KOH;掃描速率:50 m V/s ) 62
圖4.35、Pt/sG觸媒墨水加入PVA(13000 – 23000 M.W)掃描不同圈數MOR圖 (電解液:1 M KOH + 0.5 M MeOH;掃描速率:50 m V/s ) 63
圖4.36、Pt/sG觸媒墨水加入PVA(23000 – 50000 M.W)掃描不同圈數MOR圖 (電解液:1 M KOH + 0.5 M MeOH;掃描速率:50 m V/s ) 63
圖4.37、Pt/sG觸媒墨水加入PVA(70000 – 100000 M.W)掃描不同圈數MOR圖 (電解液:1 M KOH + 0.5 M MeOH;掃描速率:50 m V/s ) 64
圖4.38、Pt/sG觸媒墨水加入PVA(85000 –124000 M.W)掃描不同圈數MOR圖 (電解液:1 M KOH + 0.5 M MeOH;掃描速率:50 m V/s ) 64
圖4.39、Pt/sG觸媒墨水加入PVA(146000 – 184000 M.W)掃描不同圈數MOR圖 (電解液:1 M KOH + 0.5 M MeOH;掃描速率:50 m V/s ) 65
圖4.40、Pt/sG觸媒墨水加入PVA(13000 – 23000 M.W)掃描第五十圈MOR圖 (電解液:1 M KOH + 0.5 M MeOH;掃描速率:50 m V/s ) 65
表目錄
表 2.1、各種燃料電池基本特性的比較 7
表 2.2、各種碳材特性的比較 22
表 2.3、比較不同方式製備20% Pt50Ru50之性質 22
表 4.1、Pt/C觸媒於不同掃描圈數下之數據比較 66
表 4.2、Pt/G觸媒於不同掃描圈數下之數據比較 66
表 4.3、Pt/sG觸媒於不同掃描圈數下之數據比較 67
[1] 丁仁東,”能源危機:50年以後,石油沒了,我們食衣住行的生活方式也將消失 = Energy Crisis”, 五南圖書出版有限公司,2009年9月,p187.
[2] M.H.Lee , P.S.Wang and J.S.Do,” Effect of acid treatment of Corich core–Ptrich shell/C electrocatalyst on oxygen reduction reaction”, Journal of Solid State Electrochemistry 12 (2008) 879-884.
[3] Y.Li, L.Tang and J.Li, “Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites”, Electrochemistry Communications 11 (2009) 846–849.
[4] C.V. Rao, A.L.M. Reddy, Y. Ishikawa, P.M. Ajayan,"Synthesis and electrocatalytic oxygen reduction activity of graphene-supported Pt3Co and Pt3Cr alloy nanoparticles”, Carbon 49 (2011) 931-936.
[5] S. Wang, F. Yang, S.P. Jiang, S. Chen, X. Wang," Tuning the electrocatalytic activity of Pt nanoparticles on carbon nanotubes via surface functionalization”, Electrochemistry Communications 12 (2010) 1646-1649.
[6] H.J. Wang, H. Yu, F. Peng, P. Lv,” Methanol electrocatalytic oxidation on highly dispersed Pt/sulfonated-carbon nanotubes catalysts”,Electrochemistry Communications 8 (2006) 499-504.
[7] 衣寶廉,”燃料電池-原理與應用”,五南圖書出版有限公司,2005年3月,p2.
[8] 鄭耀宗, 徐耀昇, 燃料電池技術進展的現況分析, 節約能源論文發表會論文專輯, p.409 (1999).
[9] R. Dillon , S. Srinivasan , A.S. Aricò and V. Antonucci ,” International activities in DMFC R&D: status of technologies and potential applications”, Journal of Power Sources 127 (2004) 112–126.
[10] A.S. Arico, V. Baglio, E. Modica, A. Di Blasi and V. Antonucci,” Performance of DMFC anodes with ultra-low Pt loading” , Electrochemistry Communications 6 (2004) 164–169.
[11] Y.H.Cho, H.S.Park, Y.H.Cho, I.S.Park and Y.E.Sung,” The improved methanol tolerance using Pt/C in cathode of direct methanol fuel cell”, Electrochimica Acta 53 (2008) 5909-5912.
[12] J.Zhang, G.P. Yin , Z.B.Wang, Q.Z.Lai and K.D.Cai,” Effects of hot pressing conditions on the performances of MEAs for direct methanol fuel cells”, Journal of Power Sources 165 (2007) 73–81.
[13] M. Baldauf and W. Preidel,” Status of the development of a direct methanol fuel cell”, Journal of Power Sources 84 (1999) 161–166.
[14] A.K. Shukla,M.K. Ravikumar and K.S. Gandhi,” Direct methanol fuel cells for vehicular applications”, Journal of Solid State Electrochemistry 2 (1998) 117-122.
[15] K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel and E.D. Gilles,” Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis”, Chemical Engineering Science 56 (2001) 333-341.
[16] A. Gamez, D. Richard, P. Gallezot, F. Gloaguen, R. Faure, R. Durand,” Oxygen reduction on well-defined platinum nanoparticles inside recast ionomer”, Electrochimica Acta 41 (1996) 307-314.
[17] M.-W. Xu, G.-Y. Gao, W.-J. Zhou, K.-F. Zhang, H.-L. Li,” Novel Pd-β-MnO2 nanotubes composites as catalysts for methanol oxidation in alkaline solution”, Journal of Power Sources 175 (2008) 217-220.
[18] E.H.Yu and K.Scott, “Development of direct methanol alkaline fuel cells using anion exchange membranes ”, Journal of Power Sources 137 (2004) 248–256.
[19] Z. Liu, X. Zhang, L. Hong,"Physical and electrochemical characterizations of nanostructured Pd-C and PdNi-C catalysts for methanol oxidation", Electrochemistry Communications 11 (2009) 925-928.
[20] C. Susut, T.D. Nguyen, G.B. Chapman, Y. Tong,"Electrochemical properties of Pd nanostructures in alkaline solution", Electrochimica Acta 53 (2008) 6135-6142.
[21] Y.-W. Lee, S.-B. Han, K.-W. Park,"Shape and size stability of Pt nanoparticles for MeOH electro-oxidation ", Electrochemistry Communications 11 (2009) 1968-1971.
[22] J.Fang and P.K.Shen, “Quaternized poly(phthalazinon ether sulfone ketone) membrane for anion exchange membrane fuel cells ”, Journal of Membrane Science 285 (2006) 317–322.
[23] D.Pantea,H.Darmstadt,S.Kaliaguine,L. Su¨mmchenb and C.Roy, “Electrical conductivity of thermal carbon blacks Influence of surface chemistry”, Carbon 39 (2001) 1147–1158.
[24] L. Calvillo, M.J. L´azaro, E. Garc´ıa-Bordej´e , R. Moliner, P.L. Cabot, I. Esparb´e , E. Pastor and J.J. Quintana ,“Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells”, Journal of Power Sources 169 (2007) 59–64.
[25] C. Moreno-Castilla and F.J. Maldonado-Ho´dar,“Carbon aerogels for catalysis applications: An overview”, Carbon 43 (2005) 455–465.
[26] T. Maiyalagan, B. Viswanathan and U.V. Varadaraju,“Nitrogen containing carbon nanotubes as supports for Pt – Alternate anodes for fuel cell applications”, Electrochemistry Communications 7 (2005) 905–912.
[27] N. Sano and S.I.Ukita,“One-step synthesis of Pt-supported carbon nanohorns for fuel cell electrode by arc plasma in liquid nitrogen”, Materials Chemistry and Physics 99 (2006) 447–450.
[28] E.Yoo , T. Okadab, T. Kizuka and J. Nakamura,“Effect of carbon substrate materials as a Pt–Ru catalyst support on the performance of direct methanol fuel cells”, Journal of Power Sources 180 (2008) 221–226.
[29] C.A. Bessel, K. Laubernds, N. M. Rodriguez, and R.T. K. Baker,“Graphite Nanofibers as an Electrode for Fuel Cell Applications”, The Journal of Physical Chemistry B 105(2001) 1115-1118.
[30] A.E. Fischer and G.M. Swain,“Preparation and Characterization of Boron-Doped Diamond Powder,” Journal of The Electrochemical Society 152 (9) B369-B375 (2005).
[31] A. K. Gein, K. S. Novoselov, “The rise of graphene”, Nature Materials 6 (2007) 183-191.
[32] Y.Li, W.Gao, L.Ci, C.Wang and P.M. Ajayan, “Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation”, CARBON 48(2010)1124-1130.
[33] B.Seger and P.V.Kamat, “Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in PEM Fuel Cells”, Journal of Physical Chemistry C 113 (2009) 7990-7995.
[34] G. Girishkumar, T.D. Hall, K. Vinodgopal, and P.V. Kamat ,“Single Wall Carbon Nanotube Supports for Portable Direct Methanol Fuel Cells”, Journal of Physical Chemistry B 110 (2006) 107-114.
[35] V.Georgakilas, D.Gournis, V.Tzitzios, L. Pasquato, D. M.Guldi and M.Prato,“Decorating carbon nanotubes with metal or semiconductor nanoparticles”, Journal of Materials Chemistry 17 (2007) 2679-2694.
[36] S.Bong , Y.R.Kim, I.Kim , S.Woo, S.Uhm, J.Lee and H. Kim , “Graphene supported electrocatalysts for methanol oxidation”, Electrochemistry Communications 12 (2010) 129–131.
[37] S.Niyogi, E.Bekyarova, M.E.Itkis, J.L.McWilliams, M.A. Hamon, and R.C. Haddon, “Solution Properties of Graphite and Graphene” , Journal of the American Chemical Society 128 (2006) 7720-7721.
[38] D.A. Dikin, S.Stankovich, E.J. Zimney, R.D. Piner, G.H. B. Dommett,G.Evmenenko, S.T. Nguyen and R.S. Ruoff, “Preparation and characterization of grapheme oxide paper”, Nature 448 (2007) 457-460.
[39] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science 306 (2004) 666-669.
[40] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M.I.Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene”, Nature 438 (2005) 197-200.
[41] H. Liu,C.Song, L.Zhang,J.Zhang,H.Wang and D.P. Wilkinson,“A review of anode catalysis in the direct methanol fuel cell”, Journal of Power Sources 155 (2006) 95–110.
[42] T.C. Deivaraj and J.Y.Lee,“Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications – a comparative study”, Journal of Power Sources 142 (2005) 43–49.
[43] T.J. Schmidt,H.A. Gasteiger and R.J. Behm,“Methanol electrooxidation on a colloidal PtRu-alloy fuel-cell catalyst”, Electrochemistry Communications 1 (1999) 1–4.
[44] Y.Liu , X. Qiu, Z.Chen and W.Zhu,“A new supported catalyst for methanol oxidation prepared by a reverse micelles method,” Electrochemistry Communications 4 (2002) 550–553.

[45] 林孟錡,“具有狹窄尺寸分佈的奈米鉑擔載於石墨烯之製程探討並應用於甲醇氧化反應之研究”,碩士論文(2010).
[46] Y.Li, L.Tang and J.Li, “Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites”, Electrochemistry Communications 11 (2009) 846–849.
[47] S.Bong, Y.R.Kim, I.Kim , S.Woo, S.Uhm, J.Lee and H.Kim, “Graphene supported electrocatalysts for methanol oxidation” , Electrochemistry Communications 12 (2010) 129–131.
[48] X.Wang, W.Wang, Z.Qi, C.Zhao, H.Ji and Z. Zhang“Electrochemical catalytic activities of nanoporous palladium rods for methanol electro-oxidation”, Journal of Power Sources 195 (2010) 6740–6747.
[49] Y. Zhao, L. Zhan, J. Tian, S. Nie, Z. Ning, "Enhanced electrocatalytic oxidation of methanol on Pd-polypyrrole-graphene in alkaline medium”, Electrochimica Acta 56 (2011) 1967-1972.
[50] J. Hu, C. Zhang, J. Cong, H. Toyoda, M. Nagatsu, Y. Meng,” Plasma-grafted alkaline anion-exchange membranes based on polyvinyl chloride for potential application in direct alcohol fuel cell “, Journal of Power Sources 196 (2011) 4483-4490.
[51] T.Y. Guo, Q.H. Zeng, C.H. Zhao, Q.L. Liu, A.M. Zhu, I. Broadwell,” Quaternized polyepichlorohydrin/PTFE composite anion exchange membranes for direct methanol alkaline fuel cells”, Journal of Membrane Science 371 (2011) 268-275.


[52] G. Wang, Y. Weng, D. Chu, D. Xie, R. Chen,” Preparation of alkaline anion exchange membranes based on functional poly(ether-imide) polymers for potential fuel cell applications”, Journal of Membrane Science 326 (2009) 4-8.
[53] H. Hou, G. Sun, R. He, B. Sun, W. Jin, H. Liu, Q. Xin,” Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell”, International Journal of hydrogen energy 33 (2008) 7172-7176.
[54] C.C. Yang, Y.J. Lee, J.M. Yang,” Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes”, Journal of Power Sources 188 (2009) 30-37.
[55] C.C. Yang, J.M. Yang, C.Y. Wu,” Poly(vinyl alcohol)/poly(vinyl chloride) composite polymer membranes for secondary zinc electrodes “, Journal of Power Sources 191 (2009) 669-677.
[56] J.M. Yang, C.Y. Chiang, H.Z. Wang, C.C. Yang,” Two step modification of poly(vinyl alcohol) by UV radiation with 2-hydroxy ethyl methacrylate and sol–gel process for the application of polymer electrolyte membrane”, Journal of Membrane Science 341 (2009) 186-194.
[57] J.M. Yang, W.Y. Su, T.L. Leu, M.C. Yang, “Evaluation of chitosan/PVA blended hydrogel membranes”, Journal of Membrane Science 236 (2004) 39-51.
[58] H.J. Salavagione, M.A. Gómez, G. Martínez,” Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcoho)”, Macromolecules 42 (2009) 6331-6334.

[59] X. Zhao, Q. Zhang, D. Chen, P. Lu, “Enhanced mechanical properties of graphene-based polyvinyl alcohol composites”, Macromolecules 43 (2010) 2357-2363.
[60] J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Cuo, Y. Chen, “Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites”, Advanced Functional Materials 19 (2009) 2297-2302.
[61] L. Jiang, X.-P. Shen, J.-L. Wu, K.-C. Shen,” Preparation and characterization of graphene poly(vinyl alcohol) nanocomposites”, Journal of Applied Polymer Science 118 (2010) 275-279.
[62] J. Wang, X. Wang, C. Xu, M. Zhang, X. Shang,” Preparation of graphene poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance” Polymer International 60 (2011) 816-822.
[63] D. Han, L. Yan, W. Chen, W. Li,” Preparation of chitosan graphene oxide composite film with enhanced mechanical strength in the wet state” Carbohydrate Polymers 83 (2011) 653-658.
[64] S.S. Mahapatra, A. Dutta, J. Datta,” Temperature dependence on methanol oxidation and product formation on Pt and Pd modified Pt electrodes in alkaline medium”, International Journal of hydrogen energy 36 (2011) I4873-I4883.
[65] T.D. Tran and S. H. Langer,” Electrochemical Measurement of Platinum Surface Areas on Particulate Conductive supports”, Analytical Chemistry 65 (1993) 1805-1810.

[66] T.J. Schmidt, P.N. Ross Jr, N.M. Markovic, “Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolytes Part 2. The hydrogen evolution/oxidation reaction”, Journal of Electroanalytical Chemistry 524-525 (2002) 252-260.
[67] A.V. Tripković, K.D. Popović, B.N. Grgur, B. Blizanac, P.N. Ross, N.M. Marković,” Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions”, Electrochimica Acta 47 (2002) 3707-3714.
[68] T.J. Schmidt, P.N. Ross, N.M. Markovic,” Temperature-Dependent Surface Electrochemistry on Pt Single Crystals in Alkaline Electrolyte:  Part 1:  CO Oxidation”, Journal of Physical Chemistry B 105 (2001) 12082-12086.
[69] C.C. DeMerlis and D.R. Schoneker,” Review of the oral toxicity of polyvinyl alcohol (PVA)”, FoodandChemical Toxicology 41 (2003) 319–326.
[70] H.L. Lin, T. L. Yu, K.S. Shen and L.N. Huang,” Effect of Triton-X on the preparation of Nafion/PTFE composite membranes”, Journal of Membrane Science 237 (2004) 1–7.
[71] A.V. Tripković, S. Štrbac, K.D. Popović,” Effect of temperature on the methanol oxidation at supported Pt and PtRu catalysts in alkaline solution”, Electrochemistry Communications 5 (2003) 484-490.




[72] R. Kou, Y. Shao, D. Mei, Z. Nie, D. Wang, C. Wang, V.V. Viswanathan, S. Park, I.A. Aksay, Y. Lin, Y. Wang, J. Liu,"Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points ”,Journal of the American Chemical Society 133 (2011) 2541-2547.
[73] X. Wang, W. Li, Z. Chen, M. Waje, Y. Yan,"Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell ”, Journal of Power Sources 158 (2006) 154-159.
[74] X. Wang, C. Hu, Y. Xiong, H. Liu, G. Du, X. He,” Carbon-nanosphere-supported Pt nanoparticles for methanol and ethanol electro-oxidation in alkaline media”, Journal of Power Sources 196 (2011) 1904-1908.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔