(3.235.108.188) 您好!臺灣時間:2021/03/03 20:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳玥縈
研究生(外文):Yuhn Ying Chen
論文名稱:探討轉糖鏈球菌TnrA在GlnR regulon調控所扮演的角色
論文名稱(外文):Molecular characterization of the TnrA homolog in the regulation of Streptococcus mutans GS5 GlnR regulon
指導教授:陳怡原
指導教授(外文):Y. Y. M. Chen
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
論文頁數:79
中文關鍵詞:轉糖鏈球菌 GS5TnrA蛋白質GlnR調節組
外文關鍵詞:Streptococcus mutans GS5TnrAGlnR regulon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
轉糖鏈球菌(Streptococcus mutans)不但是人類口腔中造成齲齒的主要致病菌,也可進入血液循環附著於心臟瓣膜上進而引起感染性心內膜炎。先前研究證實轉糖鏈球菌可利用GlnR調控數個參與氮源代謝的基因組,且此經GlnR啟動的調控可增加轉糖鏈球菌抗酸的能力。近期經序列分析及比對,我們在轉糖鏈球菌發現一TnrA的同源體,並發現 TnrA也參與GlnR regulon調控。由基因表現結果發現,GlnR在氮源多的環境下會抑制 GlnR regulon (glnRA, citBZC, glnP及gdhA) 的表現。TnrA在氮源多時會抑制citBZC並活化glnRA的表現;而在氮源缺乏時則活化Smu.807的表現。此外,無論在哪個氮源環境下,gdhA的表現皆受到GlnR及TnrA的抑制。藉由電詠移動率分析證實GlnR及TnrA蛋白質皆可直接與GlnR box序列結合。此外,GlnR及TnrA突變株的抗酸能力比野生株差,但其生物膜的形成則皆較野生株好。由此可知,GlnR及TnrA皆參與GlnR regulon代謝活化的調控,且此調控與抗酸能力及生物膜形成相關,至於 TnrA 是否在轉糖鏈球菌中還有參與其他的調控機制,仍有待進一步的分析。
Streptococcus mutans is the etiologic agent for dental caries, and an opportunistic cause of bacteremia and infective endocarditis. A GlnR regulon that is essential for the acid tolerance response (ATR) was recently identified in S. mutans GS5. The same study also identified a tnrA homolog in S. mutans. This study aims to determine the function of the TnrA homolog in the regulation of GlnR regulon and possibly the ATR. Expression analysis revealed that GlnR negatively regulated the expression of the GlnR regulon (glnRA, citBZC, glnP, and gdhA) under nitrogen excess condition, whereas the TnrA homolog repressed the expression of citBZC and activated glnRA under nitrogen excess condition, and activated Smu.807 expression under nitrogen limiting condition. The expression of gdhA was repressed by both TnrA and GlnR regardless the nitrogen conditions. The results of gel mobility shift assays confirmed the regulation by GlnR and TnrA was via a direct binding to the GlnR box located 5’ to the GlnR regulon genes. Deletion of glnR resulted in a reduced survival rate at lethal acidic pH (pH 3) comparing to the wild-type strain throughout 60 minutes, whereas the tnrA deletion only influenced the survival rate in the initial stage (30 minutes), suggesting that the GlnR and TnrA modulates the ATR differently. Furthermore, both the GlnR and TnrA mutant strains form thicker biofilms than the wild-type strain under the same growth condition. Taken together, the GlnR/TnrA regulon regulates the metabolic activity, the stress responses and the biofilm formation of S. mutans.
指導教授推薦書
口試委員會審定書
授授權書 iii
誌謝 iv
中文摘要 vi
Abstract vii
Table of Contents viii
List of Figures xi
List of Tables xii
Introduction 1
1. Viridans streptococci 1
2. Streptococcus mutans 2
3. The pathogenic capacity of S. mutans 2
4. The nitrogen metabolic circuit in bacteria 4
5. GlnR/TnrA regulon in Gram positive bacteria 4
6. The GlnR regulon in S. mutans 7
7. Motive 8
Materials and Methods 9
Bacterial strains and growth media 9
General DNA manipulations 10
Construction of the glnR, tnrA and tnrA-glnR
double knockout mutants 10
Growth kinetics 11
RNA isolation and Reverse Transcription (RT)-PCR 11
Construction of promoter-cat integration construct for
S. mutans GS5 13
CAT assay 13
Construction of pMAL-GlnR and pMAL-TnrA fusions and
protein purification 14
Electrophoretic Mobility Shift Assay (EMSA) 15
Acid killing assay 16
Biofilm assay 17
Results 18
1. Construction of the glnR-deficient, the tnrA-deficient
and the tnrA-glnR double knockout mutants 18
2. Growth kinetic of S. mutans GS5 and the mutants 18
3. To determine the impact of above mutations and the
nutrient conditions in the GlnR regulon expression 19
i. glnA expression 19
ii. citZ expression 20
iii. glnP expression 21
iv. Smu.807 expression 22
v. gdhA expression 22
4. The protein purification of pMAL-GlnR and pMAL-TnrA
fusion 23
5. In vitro EMSA 24
6. Both GlnR and TnrA are essential for S. mutans GS5 to
survive at pH 3 25
7. Biofilm formation of S. mutans GS5 and the mutants 26
Discussion 27
Figures 32
Tables 53
References 61

List of Figures
Fig. 1. Construction of the glnR and tnrA deletion derivatives………32
Fig. 2. Growth kinetic…………………………………………………34
Fig. 3. Expression of glnA in wild-type S. mutans GS5 and its deletion derivatives under various nutirent conditions..………………..35
Fig. 4. Expression of citZ in S. mutans GS5 and its deletion derivatives in various media……………………………………..…………38
Fig. 5. Expression of glnP in S. mutans GS5 and its deletion derivatives in various media……………………………………..…………40
Fig.6. Expression of Smu807 in S. mutans GS5 and its deletion derivatives in various media………………………………..…42
Fig. 7. Expression of gdhA in S. mutans GS5 and its deletion derivatives in various media………………………………..………………44
Fig. 8. SDS-PAGE analysis of the Mal-GlnR fusion……………….....46
Fig. 9. SDS-PAGE analysis of the Mal-TnrA fusion………………...47
Fig. 10. In vitro EMSA demonstrating the interaction between GlnR and the promoters of GlnR regulon genes……………….………....48
Fig. 11. In vitro EMSA demonstrating the interaction between TnrA and the promoters of GlnR regulon genes..………………………...49
Fig. 12. Acid killing assay………………………………………………50
Fig. 13. The biofilm formation of S. mutans GS5 and the mutants……51

List of Tables
Table 1. Bacteria strains and plasmids used in this study.……………....53
Table 2. Chemical defined medium (FMC) used in this study…….……55
Table 3. Biofilm medium (BM) used in this study…………………57
Table 4. Primer used in this study………………………………………58

Ajdic, D., et al. (2002), Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen, Proc Natl Acad Sci U S A, 99(22), 14434-14439.
Belitsky, B. R., L. V. Wray, Jr., S. H. Fisher, D. E. Bohannon, and A. L. Sonenshein (2000), Role of TnrA in nitrogen source-dependent repression of Bacillus subtilis glutamate synthase gene expression, J Bacteriol, 182(21), 5939-5947.
Boyar, R. M., and G. H. Bowden (1985), The microflora associated with the progression of incipient carious lesions of children living in a water-fluoridated area, Caries Res, 19(4), 298-306.
Bradford, M. M. (1976), A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem, 72, 248-254.
Brandenburg, J. L., L. V. Wray, Jr., L. Beier, H. Jarmer, H. H. Saxild, and S. H. Fisher (2002), Roles of PucR, GlnR, and TnrA in regulating expression of the Bacillus subtilis ure P3 promoter, J Bacteriol, 184(21), 6060-6064.
Brown, S. W., and A. L. Sonenshein (1996), Autogenous regulation of the Bacillus subtilis glnRA operon, J Bacteriol, 178(8), 2450-2454.
Carlsson, J., and I. R. Hamilton (1996), Differential toxic effects of lactate and acetate on the metabolism of Streptococcus mutans and Streptococcus sanguis, Oral Microbiol Immunol, 11(6), 412-419.
Chen, P. M., Y. Y. Chen, S. L. Yu, S. Sher, C. H. Lai, and J. S. Chia (2010), Role of GlnR in acid-mediated repression of genes encoding proteins involved in glutamine and glutamate metabolism in Streptococcus mutans, Appl Environ Microbiol, 76(8), 2478-2486.
Chen, Y. Y., C. A. Weaver, D. R. Mendelsohn, and R. A. Burne (1998), Transcriptional regulation of the Streptococcus salivarius 57.I urease operon, J Bacteriol, 180(21), 5769-5775.
Clark, J. K. (1924), On the bacterial factor in the etiology of dental caries. , Br. J. Exp. Pathol., 5, 141–147.
Dixon, R., and D. Kahn (2004), Genetic regulation of biological nitrogen fixation, Nature Reviews Microbiology, 2(8), 621-631.
Doroshchuk, N. A., M. S. Gel'fand, and D. A. Rodionov (2006), Regulation of nitrogen metabolism in gram-positive bacteria, Mol Biol (Mosk), 40(5), 919-926.
Douglas, C. W., J. Heath, K. K. Hampton, and F. E. Preston (1993), Identity of viridans streptococci isolated from cases of infective endocarditis, J Med Microbiol, 39(3), 179-182.
Facklam, R. (2002), What happened to the streptococci: overview of taxonomic and nomenclature changes, Clin Microbiol Rev, 15(4), 613-630.
Ferson, A. E., L. V. Wray, Jr., and S. H. Fisher (1996), Expression of the Bacillus subtilis gabP gene is regulated independently in response to nitrogen and amino acid availability, Mol Microbiol, 22(4), 693-701.
Fisher, S. H. (1999), Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference!, Mol Microbiol, 32(2), 223-232.
Fisher, S. H., and L. V. Wray, Jr. (2008), Bacillus subtilis glutamine synthetase regulates its own synthesis by acting as a chaperone to stabilize GlnR-DNA complexes, Proc Natl Acad Sci U S A, 105(3), 1014-1019.
Freedman, M. L., A. L. Coykendall, and E. M. O'Neill (1982), Physiology of "mutans-like" Streptococcus ferus from wild rats, Infect Immun, 35(2), 476-482.
Gutowski, J. C., and H. J. Schreier (1992), Interaction of the Bacillus subtilis glnRA repressor with operator and promoter sequences in vivo, J Bacteriol, 174(3), 671-681.
Hamada, S., and H. D. Slade (1980), Biology, immunology, and cariogenicity of Streptococcus mutans, Microbiol Rev, 44(2), 331-384.
Herzberg, M. C., and M. W. Meyer (1996), Effects of oral flora on platelets: possible consequences in cardiovascular disease, J Periodontol, 67(10 Suppl), 1138-1142.
Jung, C. J., Q. H. Zheng, Y. H. Shieh, C. S. Lin, and J. S. Chia (2009), Streptococcus mutans autolysin AtlA is a fibronectin-binding protein and contributes to bacterial survival in the bloodstream and virulence for infective endocarditis, Mol Microbiol, 74(4), 888-902.
Kenney, T. J., and C. P. Moran, Jr. (1987), Organization and regulation of an operon that encodes a sporulation-essential sigma factor in Bacillus subtilis, J Bacteriol, 169(7), 3329-3339.
Kloosterman, T. G., W. T. Hendriksen, J. J. Bijlsma, H. J. Bootsma, S. A. van Hijum, J. Kok, P. W. Hermans, and O. P. Kuipers (2006), Regulation of glutamine and glutamate metabolism by GlnR and GlnA in Streptococcus pneumoniae, J Biol Chem, 281(35), 25097-25109.
Lau, P. C., C. K. Sung, J. H. Lee, D. A. Morrison, and D. G. Cvitkovitch (2002), PCR ligation mutagenesis in transformable streptococci: application and efficiency, J Microbiol Methods, 49(2), 193-205.
Lee, R. W., J. J. Robinson, and C. M. Cavanaugh (1999), Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: expression of host and symbiont glutamine synthetase, J Exp Biol, 202 (Pt 3), 289-300.
Lemos, J. A., J. Abranches, and R. A. Burne (2005), Responses of cariogenic streptococci to environmental stresses, Curr Issues Mol Biol, 7(1), 95-107.
Li, Y. H., M. N. Hanna, G. Svensater, R. P. Ellen, and D. G. Cvitkovitch (2001), Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms, J Bacteriol, 183(23), 6875-6884.
Loesche, W. J. (1986), Role of Streptococcus mutans in human dental decay, Microbiol Rev, 50(4), 353-380.
Loo, C. Y., D. A. Corliss, and N. Ganeshkumar (2000), Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes, Journal of bacteriology, 182(5), 1374-1382.
Nakano, M. M., F. Yang, P. Hardin, and P. Zuber (1995), Nitrogen regulation of nasA and the nasB operon, which encode genes required for nitrate assimilation in Bacillus subtilis, J Bacteriol, 177(3), 573-579.
Nakano, M. M., T. Hoffmann, Y. Zhu, and D. Jahn (1998), Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by TnrA and ResDE, J Bacteriol, 180(20), 5344-5350.
Noji, S., Y. Sato, R. Suzuki, and S. Taniguchi (1988), Effect of intracellular pH and potassium ions on a primary transport system for glutamate/aspartate in Streptococcus mutans, Eur J Biochem, 175(3), 491-495.
O'Toole, G. A., and R. Kolter (1998), Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Molecular microbiology, 28(3), 449-461.
Perez-Casal, J., M. G. Caparon, and J. R. Scott (1991), Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems, J Bacteriol, 173(8), 2617-2624.
Perry, D., L. M. Wondrack, and H. K. Kuramitsu (1983), Genetic transformation of putative cariogenic properties in Streptococcus mutans, Infect Immun, 41(2), 722-727.
Reitzer, L. J. (1996a), Sources of nitrogen and their utilization., In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and J. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, second ed. ASM Press, Washington, D.C., p. 380-390.
Reitzer, L. J. (1996b), Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, L-alanine and D-alanine., In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and J. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, second ed. ASM Press, Washington, D.C., p. 391-407.
Robichon, D., M. Arnaud, R. Gardan, Z. Pragai, M. O'Reilly, G. Rapoport, and M. Debarbouille (2000), Expression of a new operon from Bacillus subtilis, ykzB-ykoL, under the control of the TnrA and PhoP-phoR global regulators, J Bacteriol, 182(5), 1226-1231.
Schreier, H. J. (1993), Biosynthesis of glutamine and glutamate and the assimilation of ammonia, In A. L. Sonenshein, J. A. Hoch, and R. Losick (ed.), Bacillus subtilis and other gram-positive bacteria. American Society for Microbiology, Washington, D.C. , p. 281-298.
Schreier, H. J., S. W. Brown, K. D. Hirschi, J. F. Nomellini, and A. L. Sonenshein (1989), Regulation of Bacillus subtilis glutamine synthetase gene expression by the product of the glnR gene, J Mol Biol, 210(1), 51-63.
Shaw, W. V. (1975), Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria, Methods Enzymol, 43, 737-755.
Svensater, G., U. B. Larsson, E. C. Greif, D. G. Cvitkovitch, and I. R. Hamilton (1997), Acid tolerance response and survival by oral bacteria, Oral Microbiol Immunol, 12(5), 266-273.
Terleckyj, B., N. P. Willett, and G. D. Shockman (1975), Growth of several cariogenic strains of oral streptococci in a chemically defined medium, Infect Immun, 11(4), 649-655.
Tiffert, Y., P. Supra, R. Wurm, W. Wohlleben, R. Wagner, and J. Reuther (2008), The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes, Mol Microbiol, 67(4), 861-880.
Wang, L., R. Grau, M. Perego, and J. A. Hoch (1997), A novel histidine kinase inhibitor regulating development in Bacillus subtilis, Genes Dev, 11(19), 2569-2579.
Wen, Z. T., and R. A. Burne (2004), LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation, J Bacteriol, 186(9), 2682-2691.
Wray, L. V., Jr., M. R. Atkinson, and S. H. Fisher (1994), The nitrogen-regulated Bacillus subtilis nrgAB operon encodes a membrane protein and a protein highly similar to the Escherichia coli glnB-encoded PII protein, J Bacteriol, 176(1), 108-114.
Wray, L. V., Jr., A. E. Ferson, and S. H. Fisher (1997), Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H, J Bacteriol, 179(17), 5494-5501.
Wray, L. V., Jr., J. M. Zalieckas, and S. H. Fisher (2001), Bacillus subtilis glutamine synthetase controls gene expression through a protein-protein interaction with transcription factor TnrA, Cell, 107(4), 427-435.
Wray, L. V., Jr., A. E. Ferson, K. Rohrer, and S. H. Fisher (1996), TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis, Proc Natl Acad Sci U S A, 93(17), 8841-8845.
Yoshida, K., H. Yamaguchi, M. Kinehara, Y. H. Ohki, Y. Nakaura, and Y. Fujita (2003), Identification of additional TnrA-regulated genes of Bacillus subtilis associated with a TnrA box, Mol Microbiol, 49(1), 157-165.
Zalieckas, J. M., L. V. Wray, Jr., and S. H. Fisher (2006), Cross-regulation of the Bacillus subtilis glnRA and tnrA genes provides evidence for DNA binding site discrimination by GlnR and TnrA, J Bacteriol, 188(7), 2578-2585.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔