|
參考文獻 1. Gupta, P.C., J.J. Pindborg, and F.S. Mehta, Comparison of carcinogenicity of betel quid with and without tobacco: an epidemiological review. Ecol Dis, 1982. 1(4): p. 213-9. 2. Muir, C. and L. Weiland, Upper aerodigestive tract cancers. Cancer, 1995. 75(1 Suppl): p. 147-53. 3. Weinberg, R.A., Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res, 1989. 49(14): p. 3713-21. 4. Lasko, D., W. Cavenee, and M. Nordenskjold, Loss of constitutional heterozygosity in human cancer. Annu Rev Genet, 1991. 25: p. 281-314. 5. Parkin, D.M., P. Pisani, and J. Ferlay, Estimates of the worldwide incidence of eighteen major cancers in 1985. Int J Cancer, 1993. 54(4): p. 594-606. 6. Thomas, S.J. and R. MacLennan, Slaked lime and betel nut cancer in Papua New Guinea. Lancet, 1992. 340(8819): p. 577-8. 7. Ko, Y.C., et al., Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. Journal of Oral Pathology & Medicine, 1995. 24(10): p. 450-3. 8. Lengauer, C., K.W. Kinzler, and B. Vogelstein, Genetic instabilities in human cancers. Nature, 1998. 396(6712): p. 643-9. 9. Almoguera, C., et al., Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell, 1988. 53(4): p. 549-54. 10. Ibrahim, S.O., et al., Mutations of the p53 gene in oral squamous-cell carcinomas from Sudanese dippers of nitrosamine-rich toombak and non-snuff-dippers from the Sudan and Scandinavia. International Journal of Cancer, 1999. 81(4): p. 527-34. 11. Pegram, M.D., et al., Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. Journal of Clinical Oncology, 1998. 16(8): p. 2659-71. 12. Seeger, R.C., et al., Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. New England Journal of Medicine, 1985. 313(18): p. 1111-6. 13. Wang, S.I., et al., Somatic mutations of PTEN in glioblastoma multiforme. Cancer Research, 1997. 57(19): p. 4183-6. 14. Zhuang, Z., et al., Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nature Genetics, 1998. 20(1): p. 66-9. 15. Nowell, P.C., Genetic alterations in leukemias and lymphomas: impressive progress and continuing complexity. Cancer Genetics & Cytogenetics, 1997. 94(1): p. 13-9. 16. Girard, L., et al., Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res, 2000. 60(17): p. 4894-906. 17. Schar, P., Spontaneous DNA damage, genome instability, and cancer--when DNA replication escapes control. Cell, 2001. 104(3): p. 329-32. 18. Bayani, J., et al., Genomic mechanisms and measurement of structural and numerical instability in cancer cells. Semin Cancer Biol, 2007. 17(1): p. 5-18. 19. Draviam, V.M., S. Xie, and P.K. Sorger, Chromosome segregation and genomic stability. Curr Opin Genet Dev, 2004. 14(2): p. 120-5. 20. Aguilera, A. and B. Gomez-Gonzalez, Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet, 2008. 9(3): p. 204-17. 21. Durkin, S.G. and T.W. Glover, Chromosome fragile sites. Annu Rev Genet, 2007. 41: p. 169-92. 22. Knudson, A.G., Jr., Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A, 1971. 68(4): p. 820-3. 23. Cavenee, W.K., et al., Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature, 1983. 305(5937): p. 779-84. 24. Dunn, J.M., et al., Identification of germline and somatic mutations affecting the retinoblastoma gene. Science, 1988. 241(4874): p. 1797-800. 25. Murthy, S.K., et al., Loss of heterozygosity associated with uniparental disomy in breast carcinoma. Mod Pathol, 2002. 15(12): p. 1241-50. 26. Raghavan, M., et al., Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias. Cancer Res, 2005. 65(2): p. 375-8. 27. Teh, M.T., et al., Genomewide single nucleotide polymorphism microarray mapping in basal cell carcinomas unveils uniparental disomy as a key somatic event. Cancer Res, 2005. 65(19): p. 8597-603. 28. Maier, H., et al., Tobacco and alcohol and the risk of head and neck cancer. Clin Investig, 1992. 70(3-4): p. 320-7. 29. Vokes, E.E., et al., Head and neck cancer. N Engl J Med, 1993. 328(3): p. 184-94. 30. WHO, IARC Monographs on the evaluation of carcinogenic risk of chemicals in human. Vol. 37. 1985, Lyon: IARC. 31. 行政院農業委員會, 九十一年農業統計年報, 行政院農業委員會: 台北市. 32. Hoffmann, D. and S.S. Hecht, Nicotine-derived N-nitrosamines and tobacco-related cancer: current status and future directions. Cancer Res, 1985. 45(3): p. 935-44. 33. Canniff, J.P., W. Harvey, and M. Harris, Oral submucous fibrosis: its pathogenesis and management. Br Dent J, 1986. 160(12): p. 429-34. 34. Meghji, S., M.F. Haque, and M. Harris, Oral submucous fibrosis and copper. Lancet, 1997. 350(9072): p. 220. 35. Pillai, R., P. Balaram, and K.S. Reddiar, Pathogenesis of oral submucous fibrosis. Relationship to risk factors associated with oral cancer. Cancer, 1992. 69(8): p. 2011-20. 36. Sen, S., G. Talukder, and A. Sharma, Betel cytotoxicity. J Ethnopharmacol, 1989. 26(3): p. 217-47. 37. Chen, C.C., J.F. Huang, and C.C. Tsai, In vitro production of interleukin-6 by human gingival, normal buccal mucosa, and oral submucous fibrosis fibroblasts treated with betel-nut alkaloids. Gaoxiong Yi Xue Ke Xue Za Zhi, 1995. 11(11): p. 604-14. 38. Chang, J.T., et al., Identification of differentially expressed genes in oral squamous cell carcinoma (OSCC): overexpression of NPM, CDK1 and NDRG1 and underexpression of CHES1. Int J Cancer, 2005. 114(6): p. 942-9. 39. Tang, D.W., et al., Elevated expression of cyclooxygenase (COX)-2 in oral squamous cell carcinoma--evidence for COX-2 induction by areca quid ingredients in oral keratinocytes. J Oral Pathol Med, 2003. 32(9): p. 522-9. 40. Chan, G., et al., Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Res, 1999. 59(5): p. 991-4. 41. Dave, B.J., A.H. Trivedi, and S.G. Adhvaryu, In vitro genotoxic effects of areca nut extract and arecoline. J Cancer Res Clin Oncol, 1992. 118(4): p. 283-8. 42. Jeng, J.H., et al., Effects of areca nut, inflorescence piper betle extracts and arecoline on cytotoxicity, total and unscheduled DNA synthesis in cultured gingival keratinocytes. J Oral Pathol Med, 1999. 28(2): p. 64-71. 43. Jeng, J.H., et al., Genotoxic and non-genotoxic effects of betel quid ingredients on oral mucosal fibroblasts in vitro. J Dent Res, 1994. 73(5): p. 1043-9. 44. Sundqvist, K., et al., Cytotoxic and genotoxic effects of areca nut-related compounds in cultured human buccal epithelial cells. Cancer Res, 1989. 49(19): p. 5294-8. 45. Stich, H.F. and F. Anders, The involvement of reactive oxygen species in oral cancers of betel quid/tobacco chewers. Mutat Res, 1989. 214(1): p. 47-61. 46. Nair, U.J., et al., Effect of lime composition on the formation of reactive oxygen species from areca nut extract in vitro. Carcinogenesis, 1990. 11(12): p. 2145-8. 47. Hwang L.S., W.C.K., Sheu M.J., Kao L.S., Phenoliccompounds of piper betel flower as flavoring and nuronal activity modulating agents, in Food Phytochemicals for Cancer Prevention I, O.T. Ho C.T., Huang M.T., Rossen R.T., Editor. 1994, American Chemical Society: Washington, DC. p. 186-191. 48. Miller, J.A. and E.C. Miller, The metabolic activation and nucleic acid adducts of naturally-occurring carcinogens: recent results with ethyl carbamate and the spice flavors safrole and estragole. Br J Cancer, 1983. 48(1): p. 1-15. 49. Abou-Elhamd, K.E., et al., The role of genetic susceptibility in head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol, 2008. 265(2): p. 217-22. 50. Shen, C.Y., et al., Genome-wide search for loss of heterozygosity using laser capture microdissected tissue of breast carcinoma: an implication for mutator phenotype and breast cancer pathogenesis. Cancer Research, 2000. 60(14): p. 3884-92. 51. Iacobuzio-Donahue, C.A., et al., Large-scale allelotype of pancreaticobiliary carcinoma provides quantitative estimates of genome-wide allelic loss. Cancer Res, 2004. 64(3): p. 871-5. 52. Tseng, R.C., et al., Genomewide loss of heterozygosity and its clinical associations in non small cell lung cancer. Int J Cancer, 2005. 117(2): p. 241-7. 53. Ah-See, K.W., et al., An allelotype of squamous carcinoma of the head and neck using microsatellite markers. Cancer Research, 1994. 54(7): p. 1617-21. 54. Beder, L.B., et al., Genome-wide analyses on loss of heterozygosity in head and neck squamous cell carcinomas. Laboratory Investigation, 2003. 83(1): p. 99-105. 55. Field, J.K., et al., Allelotype of squamous cell carcinoma of the head and neck: fractional allele loss correlates with survival. British Journal of Cancer, 1995. 72(5): p. 1180-8. 56. Nawroz, H., et al., Allelotype of head and neck squamous cell carcinoma. Cancer Research, 1994. 54(5): p. 1152-5. 57. Huebner, K. and C.M. Croce, Cancer and the FRA3B/FHIT fragile locus: it's a HIT. Br J Cancer, 2003. 88(10): p. 1501-6. 58. Pavelic, K., et al., Aberration of FHIT gene is associated with increased tumor proliferation and decreased apoptosis-clinical evidence in lung and head and neck carcinomas. Mol Med, 2001. 7(7): p. 442-53. 59. Hogg, R.P., et al., Frequent 3p allele loss and epigenetic inactivation of the RASSF1A tumour suppressor gene from region 3p21.3 in head and neck squamous cell carcinoma. Eur J Cancer, 2002. 38(12): p. 1585-92. 60. Jiang, W.W., et al., Accumulative increase of loss of heterozygosity from leukoplakia to foci of early cancerization in leukoplakia of the oral cavity. Cancer, 2001. 92(9): p. 2349-56. 61. Gonzalez, M.V., et al., Deletion and methylation of the tumour suppressor gene p16/CDKN2 in primary head and neck squamous cell carcinoma. Journal of Clinical Pathology, 1997. 50(6): p. 509-12. 62. Califano, J., et al., Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Research, 1996. 56(11): p. 2488-92. 63. Jin, Y., et al., FISH characterization of head and neck carcinomas reveals that amplification of band 11q13 is associated with deletion of distal 11q. Genes Chromosomes Cancer, 1998. 22(4): p. 312-20. 64. Jin, C., et al., Molecular cytogenetic characterization of the 11q13 amplicon in head and neck squamous cell carcinoma. Cytogenet Genome Res, 2006. 115(2): p. 99-106. 65. Maestro, R., et al., Chromosome 13q deletion mapping in head and neck squamous cell carcinomas: identification of two distinct regions of preferential loss. Cancer Res, 1996. 56(5): p. 1146-50. 66. Andl, T., et al., Etiological involvement of oncogenic human papillomavirus in tonsillar squamous cell carcinomas lacking retinoblastoma cell cycle control. Cancer Res, 1998. 58(1): p. 5-13. 67. Gunduz, M., et al., Genomic structure of the human ING1 gene and tumor-specific mutations detected in head and neck squamous cell carcinomas. Cancer Res, 2000. 60(12): p. 3143-6. 68. Sanchez-Cespedes, M., et al., Molecular analysis of the candidate tumor suppressor gene ING1 in human head and neck tumors with 13q deletions. Genes Chromosomes Cancer, 2000. 27(3): p. 319-22. 69. Li, X., K. Kikuchi, and Y. Takano, ING Genes Work as Tumor Suppressor Genes in the Carcinogenesis of Head and Neck Squamous Cell Carcinoma. J Oncol, 2011. 2011: p. 963614. 70. Carlos de Vicente, J., et al., Prognostic significance of p53 expression in oral squamous cell carcinoma without neck node metastases. Head Neck, 2004. 26(1): p. 22-30. 71. Scully, C., J.K. Field, and H. Tanzawa, Genetic aberrations in oral or head and neck squamous cell carcinoma 2: chromosomal aberrations. Oral Oncol, 2000. 36(4): p. 311-27. 72. Tong, B.C., et al., Use of single nucleotide polymorphism arrays to identify a novel region of loss on chromosome 6q in squamous cell carcinomas of the oral cavity. Head Neck, 2004. 26(4): p. 345-52. 73. Zhou, X., et al., Whole genome loss of heterozygosity profiling on oral squamous cell carcinoma by high-density single nucleotide polymorphic allele (SNP) array. Cancer Genet Cytogenet, 2004. 151(1): p. 82-4. 74. Zhou, X., et al., Concurrent analysis of loss of heterozygosity (LOH) and copy number abnormality (CNA) for oral premalignancy progression using the Affymetrix 10K SNP mapping array. Hum Genet, 2004. 115(4): p. 327-30. 75. Zhou, X., et al., Progress in concurrent analysis of loss of heterozygosity and comparative genomic hybridization utilizing high density single nucleotide polymorphism arrays. Cancer Genet Cytogenet, 2005. 159(1): p. 53-7. 76. Beroukhim, R., et al., Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A, 2007. 104(50): p. 20007-12. 77. Teh, M.T., et al., Fingerprinting genomic instability in oral submucous fibrosis. J Oral Pathol Med, 2008. 37(7): p. 430-6. 78. Xu, C., et al., Integrative analysis of DNA copy number and gene expression in metastatic oral squamous cell carcinoma identifies genes associated with poor survival. Mol Cancer, 2010. 9: p. 143. 79. Peng, C.H., et al., A novel molecular signature identified by systems genetics approach predicts prognosis in oral squamous cell carcinoma. PLoS One, 2011. 6(8): p. e23452. 80. Emmert-Buck, M.R., et al., Laser capture microdissection. Science, 1996. 274(5289): p. 998-1001. 81. Bonner, R.F., et al., Laser capture microdissection: molecular analysis of tissue. Science, 1997. 278(5342): p. 1481,1483. 82. Thiagalingam, S., et al., Loss of heterozygosity as a predictor to map tumor suppressor genes in cancer: molecular basis of its occurrence. Curr Opin Oncol, 2002. 14(1): p. 65-72. 83. Jou, Y.S., et al., Clustering of minimal deleted regions reveals distinct genetic pathways of human hepatocellular carcinoma. Cancer Res, 2004. 64(9): p. 3030-6. 84. Gorringe, K.L., et al., Mutation and methylation analysis of the chromodomain-helicase-DNA binding 5 gene in ovarian cancer. Neoplasia, 2008. 10(11): p. 1253-8. 85. Hsieh, L.L., et al., p53 polymorphisms associated with mutations in and loss of heterozygosity of the p53 gene in male oral squamous cell carcinomas in Taiwan. Br J Cancer, 2005. 92(1): p. 30-5. 86. Hirsch, F.R., et al., Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group Study. J Clin Oncol, 2005. 23(28): p. 6838-45. 87. Cappuzzo, F., et al., Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst, 2005. 97(9): p. 643-55. 88. Weber, F., et al., Microenvironmental genomic alterations and clinicopathological behavior in head and neck squamous cell carcinoma. JAMA, 2007. 297(2): p. 187-95. 89. Tsantoulis, P.K., et al., Advances in the biology of oral cancer. Oral Oncol, 2007. 43(6): p. 523-34. 90. Glavac, D., et al., Low microsatellite instability and high loss of heterozygosity rates indicate dominant role of the suppressor pathway in squamous cell carcinoma of head and neck and loss of heterozygosity of 11q14.3 correlates with tumor grade. Cancer Genet Cytogenet, 2003. 146(1): p. 27-32. 91. Rutherford, S., et al., Chromosome 6 deletion and candidate tumor suppressor genes in adenoid cystic carcinoma. Cancer Lett, 2006. 236(2): p. 309-17. 92. Chen, Y. and C. Chen, DNA copy number variation and loss of heterozygosity in relation to recurrence of and survival from head and neck squamous cell carcinoma: a review. Head Neck, 2008. 30(10): p. 1361-83. 93. De Schutter, H., et al., The clinical relevance of microsatellite alterations in head and neck squamous cell carcinoma: a critical review. Eur J Hum Genet, 2007. 15(7): p. 734-41. 94. Takebayashi, S., et al., Loss of chromosome arm 18q with tumor progression in head and neck squamous cancer. Genes Chromosomes Cancer, 2004. 41(2): p. 145-54. 95. Qiu, W., et al., A novel mutation of STK11/LKB1 gene leads to the loss of cell growth inhibition in head and neck squamous cell carcinoma. Oncogene, 2006. 25(20): p. 2937-42. 96. Poli-Frederico, R.C., et al., Chromosome 22q a frequent site of allele loss in head and neck carcinoma. Head Neck, 2000. 22(6): p. 585-90. 97. Xu, S.F., et al., Refinement of heterozygosity loss on chromosome 5p15 in sporadic colorectal cancer. World J Gastroenterol, 2003. 9(8): p. 1713-8. 98. Bisgaard, M.L., et al., Allelic loss of chromosome 2p21-16.3 is associated with reduced survival in sporadic colorectal cancer. Scand J Gastroenterol, 2001. 36(4): p. 405-9. 99. Kozlowski, L., et al., Loss of heterozygosity on chromosomes 2p, 3p, 18q21.3 and 11p15.5 as a poor prognostic factor in stage II and III (FIGO) cervical cancer treated by radiotherapy. Neoplasma, 2006. 53(5): p. 440-3. 100. Li, S.P., et al., Genome-wide analyses on loss of heterozygosity in hepatocellular carcinoma in Southern China. J Hepatol, 2001. 34(6): p. 840-9. 101. Bohm, M., R. Kleine-Besten, and I. Wieland, Loss of heterozygosity analysis on chromosome 5p defines 5p13-12 as the critical region involved in tumor progression of bladder carcinomas. Int J Cancer, 2000. 89(2): p. 194-7. 102. Shin, J.H., et al., Identification of tumor suppressor loci on the long arm of chromosome 5 in pulmonary large cell neuroendocrine carcinoma. Chest, 2005. 128(4): p. 2999-3003. 103. Bicher, A., et al., Loss of heterozygosity in human ovarian cancer on chromosome 19q. Gynecol Oncol, 1997. 66(1): p. 36-40. 104. Ulivieri, A., et al., Frizzled-1 is down-regulated in follicular thyroid tumours and modulates growth and invasiveness. J Pathol, 2008. 215(1): p. 87-96. 105. Haddad, R.I. and D.M. Shin, Recent advances in head and neck cancer. N Engl J Med, 2008. 359(11): p. 1143-54. 106. Feng, W., et al., Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. Cancer, 2008. 112(7): p. 1489-502. 107. Relaix, F., et al., Pw1/Peg3 is a potential cell death mediator and cooperates with Siah1a in p53-mediated apoptosis. Proc Natl Acad Sci U S A, 2000. 97(5): p. 2105-10. 108. Lu, R., H. Niida, and M. Nakanishi, Human SAD1 kinase is involved in UV-induced DNA damage checkpoint function. J Biol Chem, 2004. 279(30): p. 31164-70. 109. Graner, M.W., et al., Heat shock protein 70-binding protein 1 is highly expressed in high-grade gliomas, interacts with multiple heat shock protein 70 family members, and specifically binds brain tumor cell surfaces. Cancer Sci, 2009. 100(10): p. 1870-9. 110. Souza, A.P., et al., HspBP1 levels are elevated in breast tumor tissue and inversely related to tumor aggressiveness. Cell Stress Chaperones, 2009. 14(3): p. 301-10. 111. Tryndyak, V.P., O. Kovalchuk, and I.P. Pogribny, Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20h2 histone methyltransferase and methyl-binding proteins. Cancer Biol Ther, 2006. 5(1): p. 65-70. 112. Van Den Broeck, A., et al., Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res, 2008. 14(22): p. 7237-45. 113. Tan, G., et al., Microsatellite analyses of loci at 7q31.3-q36 reveal a minimum of two common regions of deletion in nasopharyngeal carcinoma. Otolaryngol Head Neck Surg, 2002. 126(3): p. 296-300. 114. Grati, F.R., et al., Losses of heterozygosity in oral and oropharyngeal epithelial carcinomas. Cancer Genet Cytogenet, 2000. 118(1): p. 57-61. 115. Wang, G., W. Mao, and S. Zheng, MicroRNA-183 regulates Ezrin expression in lung cancer cells. FEBS Lett, 2008. 582(25-26): p. 3663-8. 116. Tavazoie, S.F., et al., Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 2008. 451(7175): p. 147-52. 117. Yu, J., et al., The EPHB6 receptor tyrosine kinase is a metastasis suppressor that is frequently silenced by promoter DNA hypermethylation in non-small cell lung cancer. Clin Cancer Res, 2010. 16(8): p. 2275-83. 118. Fox, B.P. and R.P. Kandpal, EphB6 receptor significantly alters invasiveness and other phenotypic characteristics of human breast carcinoma cells. Oncogene, 2009. 28(14): p. 1706-13. 119. Pehlivan, D., et al., Loss of heterozygosity at chromosome 14q is associated with poor prognosis in head and neck squamous cell carcinomas. J Cancer Res Clin Oncol, 2008. 134(12): p. 1267-76. 120. Alimov, A., et al., Loss of 14q31-q32.2 in renal cell carcinoma is associated with high malignancy grade and poor survival. Int J Oncol, 2004. 25(1): p. 179-85. 121. Singh, L.S., et al., Ovarian cancer G protein-coupled receptor 1, a new metastasis suppressor gene in prostate cancer. J Natl Cancer Inst, 2007. 99(17): p. 1313-27. 122. Markowski, J., et al., Metal-proteinase ADAM12, kinesin 14 and checkpoint suppressor 1 as new molecular markers of laryngeal carcinoma. Eur Arch Otorhinolaryngol, 2009. 266(10): p. 1501-7. 123. Staub, E., et al., A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer. Mol Cancer, 2006. 5: p. 37. 124. Parikh, R.A., et al., Loss of distal 11q is associated with DNA repair deficiency and reduced sensitivity to ionizing radiation in head and neck squamous cell carcinoma. Genes Chromosomes Cancer, 2007. 46(8): p. 761-75. 125. Cui, Y., et al., OPCML is a broad tumor suppressor for multiple carcinomas and lymphomas with frequently epigenetic inactivation. PLoS One, 2008. 3(8): p. e2990. 126. Viloria, C.G., et al., Genetic inactivation of ADAMTS15 metalloprotease in human colorectal cancer. Cancer Res, 2009. 69(11): p. 4926-34. 127. Allinen, M., et al., Analysis of 11q21-24 loss of heterozygosity candidate target genes in breast cancer: indications of TSLC1 promoter hypermethylation. Genes Chromosomes Cancer, 2002. 34(4): p. 384-9. 128. Ando, K., et al., Expression of TSLC1, a candidate tumor suppressor gene mapped to chromosome 11q23, is downregulated in unfavorable neuroblastoma without promoter hypermethylation. Int J Cancer, 2008. 123(9): p. 2087-94. 129. Yeo, M., et al., Loss of SM22 is a characteristic signature of colon carcinogenesis and its restoration suppresses colon tumorigenicity in vivo and in vitro. Cancer, 2010. 116(11): p. 2581-9. 130. Gorringe, K.L., et al., High-resolution single nucleotide polymorphism array analysis of epithelial ovarian cancer reveals numerous microdeletions and amplifications. Clin Cancer Res, 2007. 13(16): p. 4731-9. 131. Chiang, D.Y., et al., Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Research, 2008. 68(16): p. 6779-6788. 132. Haverty, P.M., et al., High-resolution analysis of copy number alterations and associated expression changes in ovarian tumors. BMC Med Genomics, 2009. 2: p. 21. 133. Shuib, S., et al., Copy number profiling in von hippel-lindau disease renal cell carcinoma. Genes Chromosomes and Cancer, 2011. 50(7): p. 479-488. 134. Sun, M., et al., AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. Am J Pathol, 2001. 159(2): p. 431-7. 135. Regala, R.P., et al., Atypical protein kinase C iota is an oncogene in human non-small cell lung cancer. Cancer Res, 2005. 65(19): p. 8905-11. 136. Imoto, I., et al., Identification of ZASC1 encoding a Kruppel-like zinc finger protein as a novel target for 3q26 amplification in esophageal squamous cell carcinomas. Cancer Res, 2003. 63(18): p. 5691-6. 137. Yokoi, S., et al., TERC identified as a probable target within the 3q26 amplicon that is detected frequently in non-small cell lung cancers. Clin Cancer Res, 2003. 9(13): p. 4705-13. 138. Nanjundan, M., et al., Amplification of MDS1/EVI1 and EVI1, located in the 3q26.2 amplicon, is associated with favorable patient prognosis in ovarian cancer. Cancer Res, 2007. 67(7): p. 3074-84. 139. Yang, Y.L., et al., Amplification of PRKCI, located in 3q26, is associated with lymph node metastasis in esophageal squamous cell carcinoma. Genes Chromosomes Cancer, 2008. 47(2): p. 127-36. 140. Yen, C.C., et al., Copy number changes of target genes in chromosome 3q25.3-qter of esophageal squamous cell carcinoma: TP63 is amplified in early carcinogenesis but down-regulated as disease progressed. World J Gastroenterol, 2005. 11(9): p. 1267-72. 141. Iyoda, M., et al., Epithelial cell transforming sequence 2 in human oral cancer. PLoS One, 2010. 5(11): p. e14082. 142. Hermsen, M., et al., New chromosomal regions with high-level amplifications in squamous cell carcinomas of the larynx and pharynx, identified by comparative genomic hybridization. J Pathol, 2001. 194(2): p. 177-82. 143. Sonoda, G., et al., Comparative genomic hybridization detects frequent overrepresentation of chromosomal material from 3q26, 8q24, and 20q13 in human ovarian carcinomas. Genes Chromosomes Cancer, 1997. 20(4): p. 320-8. 144. Petersen, I., et al., Patterns of chromosomal imbalances in adenocarcinoma and squamous cell carcinoma of the lung. Cancer Res, 1997. 57(12): p. 2331-5. 145. Nakakuki, K., et al., Novel targets for the 18p11.3 amplification frequently observed in esophageal squamous cell carcinomas. Carcinogenesis, 2002. 23(1): p. 19-24. 146. Silva, J.M., et al., Cyfip1 is a putative invasion suppressor in epithelial cancers. Cell, 2009. 137(6): p. 1047-61. 147. Takenawa, T. and S. Suetsugu, The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol, 2007. 8(1): p. 37-48. 148. Furuta, H., et al., NDRG2 is a candidate tumor-suppressor for oral squamous-cell carcinoma. Biochem Biophys Res Commun, 2010. 391(4): p. 1785-91. 149. Melotte, V., et al., The N-myc downstream regulated gene (NDRG) family: diverse functions, multiple applications. FASEB J, 2010. 24(11): p. 4153-66. 150. Deng, Y., et al., N-Myc downstream-regulated gene 2 (NDRG2) inhibits glioblastoma cell proliferation. Int J Cancer, 2003. 106(3): p. 342-7. 151. Tepel, M., et al., Frequent promoter hypermethylation and transcriptional downregulation of the NDRG2 gene at 14q11.2 in primary glioblastoma. Int J Cancer, 2008. 123(9): p. 2080-6. 152. Lusis, E.A., et al., Integrative genomic analysis identifies NDRG2 as a candidate tumor suppressor gene frequently inactivated in clinically aggressive meningioma. Cancer Res, 2005. 65(16): p. 7121-6. 153. Lorentzen, A., et al., Expression of NDRG2 is down-regulated in high-risk adenomas and colorectal carcinoma. BMC Cancer, 2007. 7: p. 192. 154. Assamaki, R., et al., Array comparative genomic hybridization analysis of chromosomal imbalances and their target genes in gastrointestinal stromal tumors. Genes Chromosomes Cancer, 2007. 46(6): p. 564-76. 155. Choi, S.C., et al., Expression of NDRG2 is related to tumor progression and survival of gastric cancer patients through Fas-mediated cell death. Exp Mol Med, 2007. 39(6): p. 705-14. 156. Wang, L., et al., NDRG2 is a new HIF-1 target gene necessary for hypoxia-induced apoptosis in A549 cells. Cell Physiol Biochem, 2008. 21(1-3): p. 239-50. 157. Liu, J., et al., HIF-1 and NDRG2 contribute to hypoxia-induced radioresistance of cervical cancer Hela cells. Exp Cell Res, 2010. 316(12): p. 1985-93. 158. Cheng, Y., et al., Monochromosome transfer provides functional evidence for growth-suppressive genes on chromosome 14 in nasopharyngeal carcinoma. Genes Chromosomes Cancer, 2003. 37(4): p. 359-68. 159. Ambatipudi, S., et al., Genomic profiling of advanced-stage oral cancers reveals chromosome 11q alterations as markers of poor clinical outcome. PLoS One, 2011. 6(2): p. e17250. 160. Vekony, H., et al., DNA copy number gains at loci of growth factors and their receptors in salivary gland adenoid cystic carcinoma. Clin Cancer Res, 2007. 13(11): p. 3133-9. 161. Warner, G.C., et al., Molecular classification of oral cancer by cDNA microarrays identifies overexpressed genes correlated with nodal metastasis. Int J Cancer, 2004. 110(6): p. 857-68. 162. Miwa, N., et al., Involvement of claudin-1 in the beta-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol Res, 2001. 12(11-12): p. 469-76. 163. Chang, S.S. and J. Califano, Current status of biomarkers in head and neck cancer. J Surg Oncol, 2008. 97(8): p. 640-3. 164. Huang, S.F., et al., Relationship between epidermal growth factor receptor gene copy number and protein expression in oral cavity squamous cell carcinoma. Oral Oncol, 2011. 165. Matta, A., et al., Over-expression of 14-3-3zeta is an early event in oral cancer. BMC Cancer, 2007. 7: p. 169. 166. Chen, Y.J., et al., Genome-wide profiling of oral squamous cell carcinoma. J Pathol, 2004. 204(3): p. 326-32. 167. Liu, H.S., et al., Detection of copy number amplification of cyclin D1 (CCND1) and cortactin (CTTN) in oral carcinoma and oral brushed samples from areca chewers. Oral Oncol, 2009. 45(12): p. 1032-6. 168. Sugahara, K., et al., Combination effects of distinct cores in 11q13 amplification region on cervical lymph node metastasis of oral squamous cell carcinoma. Int J Oncol, 2011. 39(4): p. 761-9. 169. Xia, J., et al., Amplifications of TAOS1 and EMS1 genes in oral carcinogenesis: association with clinicopathological features. Oral Oncol, 2007. 43(5): p. 508-14. 170. Snijders, A.M., et al., Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene, 2005. 24(26): p. 4232-42. 171. Freier, K., et al., Recurrent coamplification of cytoskeleton-associated genes EMS1 and SHANK2 with CCND1 in oral squamous cell carcinoma. Genes Chromosomes Cancer, 2006. 45(2): p. 118-25. 172. Jarvinen, A.K., et al., High-resolution copy number and gene expression microarray analyses of head and neck squamous cell carcinoma cell lines of tongue and larynx. Genes Chromosomes Cancer, 2008. 47(6): p. 500-9. 173. Lerdrup, M., et al., Depletion of the AP-1 repressor JDP2 induces cell death similar to apoptosis. Biochim Biophys Acta, 2005. 1745(1): p. 29-37. 174. Yuanhong, X., et al., Downregulation of AP-1 repressor JDP2 is associated with tumor metastasis and poor prognosis in patients with pancreatic carcinoma. Int J Biol Markers, 2010. 25(3): p. 136-40. 175. Nakaya, K., et al., Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array. Oncogene, 2007. 26(36): p. 5300-8. 176. Nakamura, E., et al., Frequent silencing of a putative tumor suppressor gene melatonin receptor 1 A (MTNR1A) in oral squamous-cell carcinoma. Cancer Sci, 2008. 99(7): p. 1390-400. 177. Toomes, C., et al., The presence of multiple regions of homozygous deletion at the CSMD1 locus in oral squamous cell carcinoma question the role of CSMD1 in head and neck carcinogenesis. Genes Chromosomes Cancer, 2003. 37(2): p. 132-40. 178. Chiba, T., et al., Epigenetic loss of mucosa-associated lymphoid tissue 1 expression in patients with oral carcinomas. Cancer Res, 2009. 69(18): p. 7216-23. 179. Loro, L.L., A.C. Johannessen, and O.K. Vintermyr, Loss of BCL-2 in the progression of oral cancer is not attributable to mutations. J Clin Pathol, 2005. 58(11): p. 1157-62. 180. Yoshizawa, K., et al., Loss of maspin is a negative prognostic factor for invasion and metastasis in oral squamous cell carcinoma. J Oral Pathol Med, 2009. 38(6): p. 535-9.
|