(3.238.186.43) 您好!臺灣時間:2021/03/05 22:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張雅婷
研究生(外文):Ya Ting Chang
論文名稱:分析癌細胞分泌蛋白體以找尋新穎胰臟癌血液腫瘤標誌
論文名稱(外文):Secretome-based identification of serum biomarkers for pancreatic cancer detection
指導教授:余兆松
指導教授(外文):J. S. Yu
學位類別:博士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
論文頁數:134
中文關鍵詞:癌細胞分泌蛋白體胰臟癌血液腫瘤標誌
外文關鍵詞:secretomepancreatic cancerserum biomarker
相關次數:
  • 被引用被引用:0
  • 點閱點閱:568
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:1
胰臟癌是一種高死亡率的癌症,在美國占癌症死因第四位,在台灣則是國人癌症死因第十位。由於胰臟癌在早期幾乎沒有顯著的病徵且對於現行醫療處置反應不佳,整體五年存活率小於5%。目前診斷胰臟癌主要是藉由影像檢查並輔以血液生物標誌CA19-9為參考,然而仍有靈敏性及專一性不足的問題,且對於早期胰臟癌的偵測並無特別顯著的效力。因此尋找並鑑定有效的胰臟癌血液生物標誌,是現今胰臟癌症預防醫學研究重視的課題之一。在本論文中,首先利用先前實驗室所建立的胰臟癌腫瘤細胞(PANC-1與MIA PaCa-2)分泌蛋白體與公開資料庫中胰臟癌組織轉錄體學研究資料進行整合性分析,找到30種蛋白質可以在此兩胰臟癌細胞株的分泌蛋白體中被偵測鑑定到,且在胰臟癌病人的組織轉錄體中有過量表現的情形。透過文獻資料參考及初步驗證,挑選其中4種蛋白質進一步驗證其做為有效的胰臟癌生物標誌之可能性。利用免疫組織染色分析,發現此4種蛋白質在胰臟癌病人組織中都有過量表現的情形,此結果與胰臟癌組織轉錄體學資料相符。而其中2種蛋白質在胰臟癌病人血液檢體中之含量相較於在健康對照組的血液檢體中有顯著的差異,顯示此2種蛋白質具有做為診斷胰臟癌之血清生物標誌的潛力。同時測量胰臟癌病人血清中的CA19-9含量,結果顯示此2種蛋白質在胰臟癌病人血清中的含量差異性,可以提高使用CA19-9做為胰臟癌臨床診斷的偵測效力。另一方面,針對其中之一個蛋白質-- endoplasmic reticulum oxidoreductin 1-like (ERO1L)在胰臟癌中所扮演的角色,本論文也建立了ERO1L 持續被抑制之胰臟癌腫瘤細胞株進行研究。利用以iTRAQ技術為基礎的蛋白質體定量方法系統性分析蛋白質在細胞培養液中與細胞體中含量的改變,進一步評估ERO1L在胰臟癌可能扮演的角色。經由整體性的分析,我發現當ERO1L持續被抑制時,相較於細胞體中所鑑定到的蛋白質,在細胞培養液中所鑑定到的蛋白質含量變化較顯著。此結果顯示ERO1L在胰臟癌中可能具有調控蛋白質分泌的功能。
Pancreatic cancer is the tenth leading cause of cancer death in Taiwan and the fourth in the United States. The five-year survival rate is less than 5% because of its late diagnosis and resistance to various treatments. Current diagnosis based on imaging or endoscope methods is very limited in early diagnosis. Even the usage serological tumor marker, CA19-9, also presents limited specificity and sensitivity. We propose to use an established cancer cell secretome database combined with efficiently analysis strategy to find out candidate proteins to be a potential pancreatic cancer marker for early detection or diagnosis. Two pancreatic cancer cell lines, PANC-1 and MIA PaCa-2 were used in pancreatic cancer cell secretome profiling. Integrated analysis strategy was performed to concentrate candidate proteins. With preliminary verification, four proteins presented highly potential as the detection markers for pancreatic cancer. Immunohistochemical analyses revealed elevated expressions of all four proteins in pancreatic cancer tissues compared with paired adjacent non-cancerous tissues (n = 31-67). The serum levels of two proteins among all pancreatic cancer patients (n = 154) and in early-stage cancer patients (n = 35-108) were significantly different with those in healthy controls (p < 0.0001). The combination of the two proteins and CA 19-9 outperformed each marker alone in distinguishing pancreatic cancer patients from healthy persons. These data revealed high potential of the two proteins as serological biomarkers for pancreatic cancer detection. Furthermore, an iTRAQ-based quantitative analysis was performed on one of the four proteins, endoplasmic reticulum oxidoreductin 1-like (ERO1L) knock-down cells to evaluate the role of ERO1L in pancreatic cancer. A comprehensive analysis showed that the amount of proteins identified in conditioned media was dramatically changed when ERO1L was knocked down in pancreatic cancer cells. This finding supports the role of ERO1L functions in regulation of protein secretion in pancreatic cancer cells.
Table of Contents
指導教授推薦書 ……………………………………………………………………
論文口試委員會審定書 ……………………………………………………………
授權書 ……………………………………………………………………………iii
誌謝 ………………………………………………………………………………vi
中文摘要 …………………………………………………………………………vii
英文摘要 …………………………………………………………………………ix
目錄 ………………………………………………………………………………xi
Chapter I Introduction
1.1 Incidence and classification of pancreatic cancer…1
1.2 Genetic and epigenetic alterations in pancreatic cancer ……………………………………………………………………………2
1.3 Risk factors associated with pancreatic cancer……3
1.4 Diagnosis of pancreatic cancer………………………………4
1.5 Serum biomarkers for pancreatic cancer detection…5
1.6 Approaches to discover cancer biomarkers………………8
1.7 ERO1L, a candidate pancreatic cancer biomarker identified in this thesis………………………………………………10
1.8 ERO1L-mediated protein secretion in human……………11
1.9 The role of ERO1L in cancer…………………………………13
1.10 Specific aims of this thesis………………………………14
Chapter II Materials and Methods
2.1 Patient population and clinical specimens……………15
2.2 Cell culture………………………………………………………15
2.3 Harvest of conditioned media (CM) and cell extracts (CE) from cell lines………………………………………………………16
2.4 Generation of secretome dataset of cancer cell lines………………………………………………………………………………17
2.5 Public domain database search for expression profiles of proteins identified in secretome dataset………18
2.6 Western blot analysis…………………………………………18
2.7 Immunohistochemistry (IHC)…………………………………19
2.8 Analysis of KLK7 and ULBP2 serum levels………………20
2.9 Analysis of BIGH3 and CA19-9 serum levels……………21
2.10 Establishment of ERO1L knock-down cell clones……22
2.11 iTRAQ-LC-MS/MS analysis………………………………………22
2.12 Prediction of protein secretion pathways……………26
2.13 Statistical analyses……………………………………………26
Chapter III Results
3.1 Analysis of the established pancreatic cancer cell secretome…………………………………………………………………………27
3.2 Integrated analyses of pancreatic cancer cell secretome…………………………………………………………………………27
3.3 Generation of candidate list (A) by integrating pancreatic cancer cell secretome with pancreatic cancer serum proteome…………………………………………………………………29
3.4 Generation of candidate list (B) by integrating pancreatic cancer cell secretome with cancer cell secretome database…………………………………………………………………………30
3.5 Generation of candidate list (C) by integrating pancreatic cancer cell secretome with pancreatic cancer tissue transcriptome………………………………………………………30
3.6 Verification of biomarker candidates in pancreatic cancer cell lines and tissue sections………………………………32
3.7 Overexpression of BIGH3, ERO1L, KLK7 and ULBP2 in pancreatic cancer tissues………………………………………………33
3.8 Serum levels of BIGH3, KLK7, and ULBP2 in pancreatic cancer patients………………………………………………34
3.9 The efficacy of KLK7, ULBP2 and CA 19-9 for screening pancreatic cancer……………………………………………35
3.10 The suitability of KLK7, ULBP2 and CA 19-9 for early detection of pancreatic cancers………………………………36
3.11 Blood ULBP2 levels in patients with other cancer types………………………………………………………………………………37
3.12 Establishment of the ERO1L knock-down cell clones from pancreatic cell line PANC-1……………………………………38
3.13 iTRAQ-LC-MS/MS analysis of protein expression in ERO1L knock-down and vector control cells………………………39
3.14 Data analysis of quantified proteins with iTRAQ ratio………………………………………………………………………………41
3.15 Identification of proteins differentially expressed in ERO1L knock-down cells………………………………………………42
Chapter IV Discussion
4.1 The secretome-based approach for biomarkers identification…………………………………………………………………45
4.2 Novel biomarkers for pancreatic cancer detection…46
4.3 A novel biomarker panel for pancreatic cancer detection…………………………………………………………………………47
4.4 BIGH3, one of novel biomarkers for pancreatic cancer detection………………………………………………………………48
4.5 KLK7, one of novel biomarkers for pancreatic cancer detection…………………………………………………………………………49
4.6 ULBP2, one of novel biomarkers for pancreatic cancer detection………………………………………………………………50
4.7 ERO1L, one of novel biomarkers for pancreatic cancer detection………………………………………………………………53
4.8 Conclusion…………………………………………………………55
References………………………………………………………………………56


List of Tables and Figures
Table
Table 1 Potential serological markers reported for pancreatic cancer……………………………………………………………72
Table 2 List of pancreatic cancer cell-secreted proteins that are presented in two candidate lists………………………75
Table 3 Proteins that are identified in pancreatic cancer cell secretome and upregulated in serum of pancreatic cancer patients………………………………………………………………76
Table 4 Proteins that are identified in pancreatic cancer cell secretome but not in other types of cancer secretome…………………………………………………………………………77
Table 5 Proteins that are identified in pancreatic cancer cell secretome and their genes are upregulated in pancreatic cancer tissues………………………………………………78
Table 6 Expression patterns of candidate proteins in cancer cell lines and cancer tissue on preliminary test……………80
Table 7 Correlation between clinicopathological features and BIGH3 expression in cancerous tissue from 31 pancreatic cancer patients………………………………………………………………81
Table 8 Correlation between clinicopathological features and ERO1L expression in cancerous tissue from 61 pancreatic cancer patients………………………………………………………………82
Table 9 Correlation between clinicopathological features and KLK7 expression in cancerous tissue from 35 pancreatic cancer patients………………………………………………………………83
Table 10 Correlation between clinicopathological features and ULBP2 expression in cancerous tissue from 67 pancreatic cancer patients………………………………………………84
Table 11 Correlation of serum BIGH3, ULBP2, KLK7, and CA19-9 with clinicopathologic characteristics in 154 pancreatic cancer patients………………………………………………85
Table 12 iTRAQ ratios and predicted secretion pathways of dysregulated proteins in conditioned media……86
Table 13 iTRAQ ratios and predicted secretion pathways of dysregulated proteins in cell extracts…………89

Figures
Figure 1 Workflow for candidate biomarkers identification, validation and further functional analysis in this thesis…………………………………………………………………95
Figure 2 Detection of 7 candidate proteins in pancreatic cancer cells and their conditioned media…………96
Figure 3 Detection of 7 candidate proteins in pancreatic cancer in pancreatic tissue sections………………97
Figure 4 Detection of BIGH3 expression in 31 pancreatic cancer tissues by IHC……………………………………99
Figure 5 Detection of ERO1L expression in 61 pancreatic cancer tissues by IHC……………………………………100
Figure 6 Detection of KLK7expression in 35 pancreatic cancer tissues by IHC……………………………………101
Figure 7 Detection of ULBP2 expression in 67 pancreatic cancer tissues by IHC……………………………………102
Figure 8 The degrees of differential expression with BIGH3, ERO1L, KLK7, and ULBP2…………………………………………103
Figure 9 Serum levels of BIGH3, KLK7, ULBP2, and CA 19-9 in pancreatic cancer patients…………………………………104
Figure 10 Correlations between KLK7, ULBP2 and CA 19-9……………………………………………………………………………………105
Figure 11 Receiver operating characteristic (ROC) curve analyses of BIGH3, KLK7, ULBP2, and CA 19-9 in pancreatic cancer patients……………………………………………107
Figure 12 Efficacy of KLK7, ULBP2, and CA 19-9 for early detection of pancreatic cancer………………………………108
Figure 13 ULBP2 levels in blood specimens from other cancer types…………………………………………………………………109
Figure 14 Result of ERO1L and ERO1L sequence alignment and ERO1L shRNAs targeting sequences………………110
Figure 15 Detection of ERO1L in shRNA transfected PANC-1 cells…………………………………………………………………111
Figure 16 The flow chart of iTRAQ-based quantitative proteomic analysis by 2D LC-MS/MS…………………………………112
Figure 17 Protein expression profiles of conditioned media and cell extracts in ERO1L knock-down experiment…113
Figure 18 Global distribution of quantified protein ratios……………………………………………………………………………114
Figure 19 Correlations of iTRAQ ratios and secretion profiles of dysregulated proteins in ERO1L knock-down experiment……………………………………………………………………115



Abbreviations
2D two-dimensional
ADAMs a disintegrin and metalloproteases
AUCs areas under the curves
BIGH3/TGFBI transforming growth factor-b-induced protein ig-h3
CA 19-9 carbohydrate antigen 19-9
CE cell extracts
CEA carcinoembryonic antigen
CGMH Chang Gung Memorial Hospital
CM conditioned media
CRC colorectal carcinoma
CT computed tomography
DMEM Dulbecco’s modified Eagle’s medium
emPAI exponentially modified protein abundance index
ER endoplasmic reticulum
ERO1L endoplasmic reticulum oxidoreductin 1-like
ERp44 endoplasmic reticulum protein 44
ETS1 v-ets erythroblastosis virus E26 oncogene homolog 1
EUS endoscopic ultrasound
FBS fetal bovine serum
GAPDH glyceraldehyde-3-phosphate dehydrogenase
GC gastric cancer
GEO Gene Expression Omnibus
HIF-1 hypoxia-inducible factor 1
HPA Human Protein Atlas database
HPLC high performance liquid chromatography
IGFBP7 insulin-like growth factor-binding protein 7
IHC immunihistochemistry
IPI International Protein Index
KLK7 kallikrein-7
LC-MS/MS liquid chromatography-tandem mass spectrometry
LTQ-Orbitrap linear trap quadrupole-Orbitrap
MMPs metalloproteases
NAPA a-soluble NSF attachment protein
NCBI National Center for Biotechnology Information
NK cell natural killer cell
NKG2DL Natural Killer group 2D ligand
NPC nasopharyngeal carcinoma
PBS phosphate-buffered saline
PC pancreatic cancer
PDAC pancreatic ductal adenocarcinoma
PDI protein disulfide isomerase
PGK1 phosphoglycerate kinase 1
PQD pulsed Q collision induced dissociation
PSAP prosaposin
ROC receiver operator characteristic
RT room temperature
SILAP stable isotope labeled proteome
TMHMM transmembrane Hidden Markov model
TNM tumor-node-metastasis
TPP Trans-Proteomics Pipeline
ULBP2 UL16 binding protein 2
UPR unfolded protein response
US ultrasound
VAPA vesicle-associated membrane protein-associated protein A
VEGF vascular endothelial growth factor


1. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 2011;61: 212-36.
2. 行政院衛生署. Cancer registry annual report, 2008 Taiwan. 2010.
3. 行政院衛生署. 97年度死因統計結果分析. 2009.
4. Sohn TA, Yeo CJ, Cameron JL, et al. Resected adenocarcinoma of the pancreas-616 patients: results, outcomes, and prognostic indicators. J Gastrointest Surg 2000;4: 567-79.
5. Winter JM, Cameron JL, Campbell KA, et al. 1423 pancreaticoduodenectomies for pancreatic cancer: A single-institution experience. J Gastrointest Surg 2006;10: 1199-210; discussion 210-1.
6. Pliarchopoulou K, Pectasides D. Pancreatic cancer: current and future treatment strategies. Cancer Treat Rev 2009;35: 431-6.
7. Hruban RH PM, Klimstra DS. Tumors of the Pancreas. Washington, DC: Armed Forces Institute of Pathology; 2007.
8. Sharma C, Eltawil KM, Renfrew PD, Walsh MJ, Molinari M. Advances in diagnosis, treatment and palliation of pancreatic carcinoma: 1990-2010. World J Gastroenterol 2011;17: 867-97.
9. Adsay NV, Pierson C, Sarkar F, et al. Colloid (mucinous noncystic) carcinoma of the pancreas. Am J Surg Pathol 2001;25: 26-42.
10. Brody JR, Costantino CL, Potoczek M, et al. Adenosquamous carcinoma of the pancreas harbors KRAS2, DPC4 and TP53 molecular alterations similar to pancreatic ductal adenocarcinoma. Mod Pathol 2009;22: 651-9.
11. Goggins M, Offerhaus GJ, Hilgers W, et al. Pancreatic adenocarcinomas with DNA replication errors (RER+) are associated with wild-type K-ras and characteristic histopathology. Poor differentiation, a syncytial growth pattern, and pushing borders suggest RER+. Am J Pathol 1998;152: 1501-7.
12. Hong SM, Park JY, Hruban RH, Goggins M. Molecular signatures of pancreatic cancer. Arch Pathol Lab Med 2011;135: 716-27.
13. Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008;321: 1801-6.
14. Hruban RH, van Mansfeld AD, Offerhaus GJ, et al. K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol 1993;143: 545-54.
15. Caldas C, Hahn SA, da Costa LT, et al. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 1994;8: 27-32.
16. Redston MS, Caldas C, Seymour AB, et al. p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res 1994;54: 3025-33.
17. Moore PS, Sipos B, Orlandini S, et al. Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch 2001;439: 798-802.
18. Scarpa A, Capelli P, Mukai K, et al. Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Pathol 1993;142: 1534-43.
19. Iacobuzio-Donahue CA, Song J, Parmiagiani G, Yeo CJ, Hruban RH, Kern SE. Missense mutations of MADH4: characterization of the mutational hot spot and functional consequences in human tumors. Clin Cancer Res 2004;10: 1597-604.
20. Hahn SA, Schutte M, Hoque AT, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996;271: 350-3.
21. Lowenfels AB, Maisonneuve P. Epidemiology and risk factors for pancreatic cancer. Best Pract Res Clin Gastroenterol 2006;20: 197-209.
22. Michaud DS, Liu S, Giovannucci E, Willett WC, Colditz GA, Fuchs CS. Dietary sugar, glycemic load, and pancreatic cancer risk in a prospective study. J Natl Cancer Inst 2002;94: 1293-300.
23. Michaud DS, Giovannucci E, Willett WC, Colditz GA, Stampfer MJ, Fuchs CS. Physical activity, obesity, height, and the risk of pancreatic cancer. JAMA 2001;286: 921-9.
24. Everhart J, Wright D. Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. JAMA 1995;273: 1605-9.
25. Buxbaum JL, Eloubeidi MA. Molecular and clinical markers of pancreas cancer. JOP 2010;11: 536-44.
26. Gullo L, Pezzilli R, Morselli-Labate AM. Diabetes and the risk of pancreatic cancer. N Engl J Med 1994;331: 81-4.
27. Koorstra JB, Hustinx SR, Offerhaus GJ, Maitra A. Pancreatic carcinogenesis. Pancreatology 2008;8: 110-25.
28. Gandolfi L, Torresan F, Solmi L, Puccetti A. The role of ultrasound in biliary and pancreatic diseases. Eur J Ultrasound 2003;16: 141-59.
29. Bottger TC, Boddin J, Duber C, Heintz A, Kuchle R, Junginger T. Diagnosing and staging of pancreatic carcinoma-what is necessary? Oncology 1998;55: 122-9.
30. Sahani DV, Shah ZK, Catalano OA, Boland GW, Brugge WR. Radiology of pancreatic adenocarcinoma: current status of imaging. J Gastroenterol Hepatol 2008;23: 23-33.
31. DeWitt J, Devereaux B, Chriswell M, et al. Comparison of endoscopic ultrasonography and multidetector computed tomography for detecting and staging pancreatic cancer. Ann Intern Med 2004;141: 753-63.
32. Dietrich CF, Braden B, Hocke M, Ott M, Ignee A. Improved characterisation of solitary solid pancreatic tumours using contrast enhanced transabdominal ultrasound. J Cancer Res Clin Oncol 2008;134: 635-43.
33. Dietrich CF, Ignee A, Braden B, Barreiros AP, Ott M, Hocke M. Improved differentiation of pancreatic tumors using contrast-enhanced endoscopic ultrasound. Clin Gastroenterol Hepatol 2008;6: 590-7 e1.
34. Oto A, Eltorky MA, Dave A, et al. Mimicks of pancreatic malignancy in patients with chronic pancreatitis: correlation of computed tomography imaging features with histopathologic findings. Curr Probl Diagn Radiol 2006;35: 199-205.
35. Yeo TP, Hruban RH, Leach SD, et al. Pancreatic cancer. Curr Probl Cancer 2002;26: 176-275.
36. Katz MH, Savides TJ, Moossa AR, Bouvet M. An evidence-based approach to the diagnosis and staging of pancreatic cancer. Pancreatology 2005;5: 576-90.
37. Bunger S, Laubert T, Roblick UJ, Habermann JK. Serum biomarkers for improved diagnostic of pancreatic cancer: a current overview. J Cancer Res Clin Oncol 2011;137: 375-89.
38. Del Villano BC, Brennan S, Brock P, et al. Radioimmunometric assay for a monoclonal antibody-defined tumor marker, CA 19-9. Clin Chem 1983;29: 549-52.
39. Magnani JL, Nilsson B, Brockhaus M, et al. A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J Biol Chem 1982;257: 14365-9.
40. Tanaka N, Okada S, Ueno H, Okusaka T, Ikeda M. The usefulness of serial changes in serum CA19-9 levels in the diagnosis of pancreatic cancer. Pancreas 2000;20: 378-81.
41. Boeck S, Stieber P, Holdenrieder S, Wilkowski R, Heinemann V. Prognostic and therapeutic significance of carbohydrate antigen 19-9 as tumor marker in patients with pancreatic cancer. Oncology 2006;70: 255-64.
42. Lundin J, Roberts PJ, Kuusela P, Haglund C. The prognostic value of preoperative serum levels of CA 19-9 and CEA in patients with pancreatic cancer. Br J Cancer 1994;69: 515-9.
43. Sperti C, Pasquali C, Catalini S, et al. CA 19-9 as a prognostic index after resection for pancreatic cancer. J Surg Oncol 1993;52: 137-41.
44. Tian F, Appert HE, Myles J, Howard JM. Prognostic value of serum CA 19-9 levels in pancreatic adenocarcinoma. Ann Surg 1992;215: 350-5.
45. Safi F, Schlosser W, Falkenreck S, Beger HG. Prognostic value of CA 19-9 serum course in pancreatic cancer. Hepatogastroenterology 1998;45: 253-9.
46. Akdogan M, Sasmaz N, Kayhan B, Biyikoglu I, Disibeyaz S, Sahin B. Extraordinarily elevated CA19-9 in benign conditions: a case report and review of the literature. Tumori 2001;87: 337-9.
47. Magnani JL, Steplewski Z, Koprowski H, Ginsburg V. Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19-9 in the sera of patients as a mucin. Cancer Res 1983;43: 5489-92.
48. Harsha HC, Kandasamy K, Ranganathan P, et al. A compendium of potential biomarkers of pancreatic cancer. PLoS Med 2009;6: e1000046.
49. Chang MC, Chang YT, Su TC, et al. Adiponectin as a potential differential marker to distinguish pancreatic cancer and chronic pancreatitis. Pancreas 2007;35: 16-21.
50. Shimoyama S, Gansauge F, Gansauge S, Negri G, Oohara T, Beger HG. Increased angiogenin expression in pancreatic cancer is related to cancer aggressiveness. Cancer Res 1996;56: 2703-6.
51. Zhang W, Erkan M, Abiatari I, et al. Expression of extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in pancreatic neoplasm and pancreatic stellate cells. Cancer Biol Ther 2007;6: 218-27.
52. Monti P, Leone BE, Marchesi F, et al. The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Res 2003;63: 7451-61.
53. Simeone DM, Ji B, Banerjee M, et al. CEACAM1, a novel serum biomarker for pancreatic cancer. Pancreas 2007;34: 436-43.
54. Fukushima N, Koopmann J, Sato N, et al. Gene expression alterations in the non-neoplastic parenchyma adjacent to infiltrating pancreatic ductal adenocarcinoma. Mod Pathol 2005;18: 779-87.
55. Groblewska M, Mroczko B, Wereszczynska-Siemiatkowska U, Mysliwiec P, Kedra B, Szmitkowski M. Serum levels of granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF) in pancreatic cancer patients. Clin Chem Lab Med 2007;45: 30-4.
56. Sato N, Yamabuki T, Takano A, et al. Wnt inhibitor Dickkopf-1 as a target for passive cancer immunotherapy. Cancer Res 2010;70: 5326-36.
57. Akashi T, Oimomi H, Nishiyama K, et al. Expression and diagnostic evaluation of the human tumor-associated antigen RCAS1 in pancreatic cancer. Pancreas 2003;26: 49-55.
58. Ozkan H, Akar T, Koklu S, Coban S. Significance of serum receptor-binding cancer antigen (RCAS1) in pancreatic cancer and benign pancreatobiliary diseases. Pancreatology 2006;6: 268-72.
59. Haas SL, Jesnowski R, Steiner M, et al. Expression of tissue factor in pancreatic adenocarcinoma is associated with activation of coagulation. World J Gastroenterol 2006;12: 4843-9.
60. Walter K, Hong SM, Nyhan S, et al. Serum fatty acid synthase as a marker of pancreatic neoplasia. Cancer Epidemiol Biomarkers Prev 2009;18: 2380-5.
61. Koopmann J, Buckhaults P, Brown DA, et al. Serum macrophage inhibitory cytokine 1 as a marker of pancreatic and other periampullary cancers. Clin Cancer Res 2004;10: 2386-92.
62. Shimura T, Tsutsumi S, Hosouchi Y, et al. Clinical significance of soluble form of HLA class I molecule in Japanese patients with pancreatic cancer. Hum Immunol 2001;62: 615-9.
63. Melle C, Ernst G, Escher N, et al. Protein profiling of microdissected pancreas carcinoma and identification of HSP27 as a potential serum marker. Clin Chem 2007;53: 629-35.
64. Bellone G, Smirne C, Mauri FA, et al. Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival. Cancer Immunol Immunother 2006;55: 684-98.
65. Mroczko B, Lukaszewicz-Zajac M, Wereszczynska-Siemiatkowska U, et al. Clinical significance of the measurements of serum matrix metalloproteinase-9 and its inhibitor (tissue inhibitor of metalloproteinase-1) in patients with pancreatic cancer: metalloproteinase-9 as an independent prognostic factor. Pancreas 2009;38: 613-8.
66. Joergensen MT, Brunner N, De Muckadell OB. Comparison of circulating MMP-9, TIMP-1 and CA19-9 in the detection of pancreatic cancer. Anticancer Res 2010;30: 587-92.
67. Gold DV, Modrak DE, Ying Z, Cardillo TM, Sharkey RM, Goldenberg DM. New MUC1 serum immunoassay differentiates pancreatic cancer from pancreatitis. J Clin Oncol 2006;24: 252-8.
68. Hwang TL, Liang Y, Chien KY, Yu JS. Overexpression and elevated serum levels of phosphoglycerate kinase 1 in pancreatic ductal adenocarcinoma. Proteomics 2006;6: 2259-72.
69. Baril P, Gangeswaran R, Mahon PC, et al. Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the beta4 integrin and the PI3k pathway. Oncogene 2007;26: 2082-94.
70. Rosty C, Christa L, Kuzdzal S, et al. Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res 2002;62: 1868-75.
71. Takayama R, Nakagawa H, Sawaki A, et al. Serum tumor antigen REG4 as a diagnostic biomarker in pancreatic ductal adenocarcinoma. J Gastroenterol 2010;45: 52-9.
72. Guweidhi A, Kleeff J, Adwan H, et al. Osteonectin influences growth and invasion of pancreatic cancer cells. Ann Surg 2005;242: 224-34.
73. Kolb A, Kleeff J, Guweidhi A, et al. Osteopontin influences the invasiveness of pancreatic cancer cells and is increased in neoplastic and inflammatory conditions. Cancer Biol Ther 2005;4: 740-6.
74. Koopmann J, Fedarko NS, Jain A, et al. Evaluation of osteopontin as biomarker for pancreatic adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2004;13: 487-91.
75. Zhou W, Sokoll LJ, Bruzek DJ, et al. Identifying markers for pancreatic cancer by gene expression analysis. Cancer Epidemiol Biomarkers Prev 1998;7: 109-12.
76. Suwa H, Ohshio G, Okada N, et al. Clinical significance of serum p53 antigen in patients with pancreatic carcinomas. Gut 1997;40: 647-53.
77. Gansauge F, Gansauge S, Schmidt E, Muller J, Beger HG. Prognostic significance of molecular alterations in human pancreatic carcinoma--an immunohistological study. Langenbecks Arch Surg 1998;383: 152-5.
78. Attallah AM, Abdel-Aziz MM, El-Sayed AM, Tabll AA. Detection of serum p53 protein in patients with different gastrointestinal cancers. Cancer Detect Prev 2003;27: 127-31.
79. Ventrucci M, Cipolla A, Racchini C, Casadei R, Simoni P, Gullo L. Tumor M2-pyruvate kinase, a new metabolic marker for pancreatic cancer. Dig Dis Sci 2004;49: 1149-55.
80. Joergensen MT, Heegaard NH, Schaffalitzky de Muckadell OB. Comparison of plasma Tu-M2-PK and CA19-9 in pancreatic cancer. Pancreas 2010;39: 243-7.
81. Nakamura H, Bai J, Nishinaka Y, et al. Expression of thioredoxin and glutaredoxin, redox-regulating proteins, in pancreatic cancer. Cancer Detect Prev 2000;24: 53-60.
82. Kobayashi A, Yamaguchi T, Ishihara T, et al. Usefulness of plasma vascular endothelial growth factor in the diagnosis of pancreatic carcinoma: differential diagnosis, tumor progression, and patient survival. Pancreas 2005;31: 74-8.
83. Chang ST, Zahn JM, Horecka J, et al. Identification of a biomarker panel using a multiplex proximity ligation assay improves accuracy of pancreatic cancer diagnosis. J Transl Med 2009;7: 105.
84. Faca VM, Song KS, Wang H, et al. A mouse to human search for plasma proteome changes associated with pancreatic tumor development. PLoS Med 2008;5: e123.
85. Guo J, Wang W, Liao P, et al. Identification of serum biomarkers for pancreatic adenocarcinoma by proteomic analysis. Cancer Sci 2009;100: 2292-301.
86. Tian M, Cui YZ, Song GH, et al. Proteomic analysis identifies MMP-9, DJ-1 and A1BG as overexpressed proteins in pancreatic juice from pancreatic ductal adenocarcinoma patients. BMC Cancer 2008;8: 241.
87. Yu KH, Barry CG, Austin D, et al. Stable isotope dilution multidimensional liquid chromatography-tandem mass spectrometry for pancreatic cancer serum biomarker discovery. J Proteome Res 2009;8: 1565-76.
88. Cecconi D, Palmieri M, Donadelli M. Proteomics in pancreatic cancer research. Proteomics 2011;11: 816-28.
89. Wu CC, Chien KY, Tsang NM, et al. Cancer cell-secreted proteomes as a basis for searching potential tumor markers: nasopharyngeal carcinoma as a model. Proteomics 2005;5: 3173-82.
90. Wu CC, Chen HC, Chen SJ, et al. Identification of collapsin response mediator protein-2 as a potential marker of colorectal carcinoma by comparative analysis of cancer cell secretomes. Proteomics 2008;8: 316-32.
91. Wu CC, Huang YS, Lee LY, et al. Overexpression and elevated plasma level of tumor-associated antigen 90K/Mac-2 binding protein in colorectal carcinoma. Proteom Clin Appl 2008;2: 1586-95.
92. Weng LP, Wu CC, Hsu BL, et al. Secretome-based identification of Mac-2 binding protein as a potential oral cancer marker involved in cell growth and motility. J Proteome Res 2008;7: 3765-75.
93. Wu CC, Hsu CW, Chen CD, et al. Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas. Mol Cell Proteomics 2010;9: 1100-17.
94. Freedman RB, Dunn AD, Ruddock LW. Protein folding: a missing redox link in the endoplasmic reticulum. Curr Biol 1998;8: R468-70.
95. Frand AR, Kaiser CA. The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol Cell 1998;1: 161-70.
96. Pollard MG, Travers KJ, Weissman JS. Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol Cell 1998;1: 171-82.
97. Frand AR, Kaiser CA. Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol Cell 1999;4: 469-77.
98. Tu BP, Ho-Schleyer SC, Travers KJ, Weissman JS. Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Science 2000;290: 1571-4.
99. Cabibbo A, Pagani M, Fabbri M, et al. ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum. J Biol Chem 2000;275: 4827-33.
100. Pagani M, Fabbri M, Benedetti C, et al. Endoplasmic reticulum oxidoreductin 1-lbeta (ERO1-Lbeta), a human gene induced in the course of the unfolded protein response. J Biol Chem 2000;275: 23685-92.
101. Pagani M, Pilati S, Bertoli G, Valsasina B, Sitia R. The C-terminal domain of yeast Ero1p mediates membrane localization and is essential for function. FEBS Lett 2001;508: 117-20.
102. Anelli T, Alessio M, Bachi A, et al. Thiol-mediated protein retention in the endoplasmic reticulum: the role of ERp44. EMBO J 2003;22: 5015-22.
103. Alberini CM, Bet P, Milstein C, Sitia R. Secretion of immunoglobulin M assembly intermediates in the presence of reducing agents. Nature 1990;347: 485-7.
104. Wang Y, Lam KS, Yau MH, Xu A. Post-translational modifications of adiponectin: mechanisms and functional implications. Biochem J 2008;409: 623-33.
105. Qiang L, Wang H, Farmer SR. Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-L alpha. Mol Cell Biol 2007;27: 4698-707.
106. Wang ZV, Schraw TD, Kim JY, et al. Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention. Mol Cell Biol 2007;27: 3716-31.
107. Otsu M, Bertoli G, Fagioli C, et al. Dynamic retention of Ero1alpha and Ero1beta in the endoplasmic reticulum by interactions with PDI and ERp44. Antioxid Redox Signal 2006;8: 274-82.
108. Gess B, Hofbauer KH, Wenger RH, Lohaus C, Meyer HE, Kurtz A. The cellular oxygen tension regulates expression of the endoplasmic oxidoreductase ERO1-Lalpha. Eur J Biochem 2003;270: 2228-35.
109. Carmeliet P, Dor Y, Herbert JM, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998;394: 485-90.
110. Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 2000;88: 1474-80.
111. Zhong H, De Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 1999;59: 5830-5.
112. Kitada T, Seki S, Sakaguchi H, Sawada T, Hirakawa K, Wakasa K. Clinicopathological significance of hypoxia-inducible factor-1alpha expression in human pancreatic carcinoma. Histopathology 2003;43: 550-5.
113. May D, Itin A, Gal O, Kalinski H, Feinstein E, Keshet E. Ero1-L alpha plays a key role in a HIF-1-mediated pathway to improve disulfide bond formation and VEGF secretion under hypoxia: implication for cancer. Oncogene 2005;24: 1011-20.
114. Ishikawa M, Yoshida K, Yamashita Y, et al. Experimental trial for diagnosis of pancreatic ductal carcinoma based on gene expression profiles of pancreatic ductal cells. Cancer Sci 2005;96: 387-93.
115. Ravn V, Rasmussen BB, Hojholt L, Barfoed M, Heiberg I, Thorpe SM. Reproducibility of subjective immunohistochemical estrogen- and progesterone receptor determination in human endometrium. Pathol Res Pract 1993;189: 1015-22.
116. Chang KP, Chang YT, Wu CC, et al. Multiplexed immunobead-based profiling of cytokine markers for detection of nasopharyngeal carcinoma and prognosis of patient survival. Head Neck 2010;In press.
117. Olsen JV, de Godoy LM, Li G, et al. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 2005;4: 2010-21.
118. Griffin TJ, Xie H, Bandhakavi S, et al. iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer. J Proteome Res 2007;6: 4200-9.
119. Bantscheff M, Boesche M, Eberhard D, Matthieson T, Sweetman G, Kuster B. Robust and sensitive iTRAQ quantification on an LTQ Orbitrap mass spectrometer. Mol Cell Proteomics 2008;7: 1702-13.
120. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004;340: 783-95.
121. Nielsen H, Krogh A. Prediction of signal peptides and signal anchors by a hidden Markov model. Proc Int Conf Intell Syst Mol Biol 1998;6: 122-30.
122. Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 2004;17: 349-56.
123. Moller S, Croning MD, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 2001;17: 646-53.
124. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004;340: 783-95.
125. Nielsen H, Krogh A. Prediction of signal peptides and signal anchors by a hidden Markov model. Proc Int Conf Intell Syst Mol Biol 1998;6: 122-30.
126. Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 2004;17: 349-56.
127. Bjorling E, Lindskog C, Oksvold P, et al. A web-based tool for in silico biomarker discovery based on tissue-specific protein profiles in normal and cancer tissues. Mol Cell Proteomics 2008;7: 825-44.
128. Ishihama Y, Oda Y, Tabata T, et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 2005;4: 1265-72.
129. Cao D, Maitra A, Saavedra JA, Klimstra DS, Adsay NV, Hruban RH. Expression of novel markers of pancreatic ductal adenocarcinoma in pancreatic nonductal neoplasms: additional evidence of different genetic pathways. Mod Pathol 2005;18: 752-61.
130. Iacobuzio-Donahue CA, Maitra A, Olsen M, et al. Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 2003;162: 1151-62.
131. Mauri P, Scarpa A, Nascimbeni AC, et al. Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: a strategy for identification of novel cancer markers. FASEB J 2005;19: 1125-7.
132. Yoshida T, Shiraki N, Baba H, et al. Expression patterns of epiplakin1 in pancreas, pancreatic cancer and regenerating pancreas. Genes Cells 2008;13: 667-78.
133. El Fitori J, Kleeff J, Giese NA, et al. Melanoma Inhibitory Activity (MIA) increases the invasiveness of pancreatic cancer cells. Cancer Cell Int 2005;5: 3.
134. Johnson SK, Ramani VC, Hennings L, Haun RS. Kallikrein 7 enhances pancreatic cancer cell invasion by shedding E-cadherin. Cancer 2007;109: 1811-20.
135. Kosmahl M, Wagner J, Peters K, Sipos B, Kloppel G. Serous cystic neoplasms of the pancreas: an immunohistochemical analysis revealing alpha-inhibin, neuron-specific enolase, and MUC6 as new markers. Am J Surg Pathol 2004;28: 339-46.
136. O'Connor TP, Wade TP, Sunwoo YC, et al. Small cell undifferentiated carcinoma of the pancreas. Report of a patient with tumor marker studies. Cancer 1992;70: 1514-9.
137. Qian X, Rothman VL, Nicosia RF, Tuszynski GP. Expression of thrombospondin-1 in human pancreatic adenocarcinomas: role in matrix metalloproteinase-9 production. Pathol Oncol Res 2001;7: 251-9.
138. Okada K, Hirabayashi K, Imaizumi T, et al. Stromal thrombospondin-1 expression is a prognostic indicator and a new marker of invasiveness in intraductal papillary-mucinous neoplasm of the pancreas. Biomed Res 2010;31: 13-9.
139. Rosty C, Ueki T, Argani P, et al. Overexpression of S100A4 in pancreatic ductal adenocarcinomas is associated with poor differentiation and DNA hypomethylation. Am J Pathol 2002;160: 45-50.
140. Crnogorac-Jurcevic T, Gangeswaran R, Bhakta V, et al. Proteomic analysis of chronic pancreatitis and pancreatic adenocarcinoma. Gastroenterology 2005;129: 1454-63.
141. Yamaguchi H, Inoue T, Eguchi T, et al. Fascin overexpression in intraductal papillary mucinous neoplasms (adenomas, borderline neoplasms, and carcinomas) of the pancreas, correlated with increased histological grade. Mod Pathol 2007;20: 552-61.
142. Haglund C, Ylatupa S, Mertaniemi P, Partanen P. Cellular fibronectin concentration in the plasma of patients with malignant and benign diseases: a comparison with CA 19-9 and CEA. Br J Cancer 1997;76: 777-83.
143. Baudin E, Gigliotti A, Ducreux M, et al. Neuron-specific enolase and chromogranin A as markers of neuroendocrine tumours. Br J Cancer 1998;78: 1102-7.
144. D'Alessandro M, Mariani P, Lomanto D, Carlei F, Lezoche E, Speranza V. Serum neuron-specific enolase in diagnosis and follow-up of gastrointestinal neuroendocrine tumors. Tumour Biol 1992;13: 352-7.
145. Guweidhi A, Kleeff J, Adwan H, et al. Osteonectin influences growth and invasion of pancreatic cancer cells. Ann Surg 2005;242: 224-34.
146. Mor G, Visintin I, Lai Y, et al. Serum protein markers for early detection of ovarian cancer. Proc Natl Acad Sci USA 2005;102: 7677-82.
147. Pavlou MP, Diamandis EP. The cancer cell secretome: a good source for discovering biomarkers? J Proteomics 2010;73: 1896-906.
148. Gunawardana CG, Kuk C, Smith CR, Batruch I, Soosaipillai A, Diamandis EP. Comprehensive analysis of conditioned media from ovarian cancer cell lines identifies novel candidate markers of epithelial ovarian cancer. J Proteome Res 2009;8: 4705-13.
149. Kulasingam V, Diamandis EP. Proteomics analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets. Mol Cell Proteomics 2007;6: 1997-2011.
150. Planque C, Kulasingam V, Smith CR, Reckamp K, Goodglick L, Diamandis EP. Identification of five candidate lung cancer biomarkers by proteomics analysis of conditioned media of four lung cancer cell lines. Mol Cell Proteomics 2009;8: 2746-58.
151. Sardana G, Jung K, Stephan C, Diamandis EP. Proteomic analysis of conditioned media from the PC3, LNCaP, and 22Rv1 prostate cancer cell lines: discovery and validation of candidate prostate cancer biomarkers. J Proteome Res 2008;7: 3329-38.
152. Xue H, Lu B, Zhang J, et al. Identification of serum biomarkers for colorectal cancer metastasis using a differential secretome approach. J Proteome Res 2010;9: 545-55.
153. Feng XP, Yi H, Li MY, et al. Identification of biomarkers for predicting nasopharyngeal carcinoma response to radiotherapy by proteomics. Cancer Res 2010;70: 3450-62.
154. Gronborg M, Kristiansen TZ, Iwahori A, et al. Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol Cell Proteomics 2006;5: 157-71.
155. Makawita S, Smith C, Batruch I, et al. Integrated proteomic profiling of cell line conditioned media and pancreatic juice for the identification of pancreatic cancer biomarkers. Mol Cell Proteomics 2011;10: M111 008599.
156. Faca VM, Song KS, Wang H, et al. A mouse to human search for plasma proteome changes associated with pancreatic tumor development. PLoS Med 2008;5: e123.
157. Brand RE, Nolen BM, Zeh HJ, et al. Serum biomarker panels for the detection of pancreatic cancer. Clin Cancer Res 2011;17: 805-16.
158. Thapa N, Lee BH, Kim IS. TGFBIp/betaig-h3 protein: a versatile matrix molecule induced by TGF-beta. Int J Biochem Cell Biol 2007;39: 2183-94.
159. Roessler M, Rollinger W, Palme S, et al. Identification of nicotinamide N-methyltransferase as a novel serum tumor marker for colorectal cancer. Clin Cancer Res 2005;11: 6550-7.
160. Lin B, Madan A, Yoon JG, et al. Massively parallel signature sequencing and bioinformatics analysis identifies up-regulation of TGFBI and SOX4 in human glioblastoma. PLoS One 2010;5: e10210.
161. Zhao Y, El-Gabry M, Hei TK. Loss of Betaig-h3 protein is frequent in primary lung carcinoma and related to tumorigenic phenotype in lung cancer cells. Mol Carcinog 2006;45: 84-92.
162. Schneider D, Kleeff J, Berberat PO, et al. Induction and expression of betaig-h3 in pancreatic cancer cells. Biochim Biophys Acta 2002;1588: 1-6.
163. Turtoi A, Musmeci D, Wang Y, et al. Identification of novel accessible proteins bearing diagnostic and therapeutic potential in human pancreatic ductal adenocarcinoma. J Proteome Res 2011;10: 4302-13.
164. Borgono CA, Diamandis EP. The emerging roles of human tissue kallikreins in cancer. Nat Rev Cancer 2004;4: 876-90.
165. Sotiropoulou G, Pampalakis G, Diamandis EP. Functional roles of human kallikrein-related peptidases. J Biol Chem 2009;284: 32989-94.
166. Emami N, Diamandis EP. Utility of kallikrein-related peptidases (KLKs) as cancer biomarkers. Clin Chem 2008;54: 1600-7.
167. Talieri M, Diamandis EP, Gourgiotis D, Mathioudaki K, Scorilas A. Expression analysis of the human kallikrein 7 (KLK7) in breast tumors: a new potential biomarker for prognosis of breast carcinoma. Thromb Haemost 2004;91: 180-6.
168. Santin AD, Cane S, Bellone S, et al. The serine protease stratum corneum chymotryptic enzyme (kallikrein 7) is highly overexpressed in squamous cervical cancer cells. Gynecol Oncol 2004;94: 283-8.
169. Oikonomopoulou K, Li L, Zheng Y, et al. Prediction of ovarian cancer prognosis and response to chemotherapy by a serum-based multiparametric biomarker panel. Br J Cancer 2008;99: 1103-13.
170. Talieri M, Li L, Zheng Y, et al. The use of kallikrein-related peptidases as adjuvant prognostic markers in colorectal cancer. Br J Cancer 2009;100: 1659-65.
171. Zhao H, Dong Y, Quan J, et al. Correlation of the expression of human kallikrein-related peptidases 4 and 7 with the prognosis in oral squamous cell carcinoma. Head Neck 2011;33: 566-72.
172. Ramani VC, Hennings L, Haun RS. Desmoglein 2 is a substrate of kallikrein 7 in pancreatic cancer. BMC Cancer 2008;8: 373.
173. Planque C, Li L, Zheng Y, et al. A multiparametric serum kallikrein panel for diagnosis of non-small cell lung carcinoma. Clin Cancer Res 2008;14: 1355-62.
174. Singh J, Naran A, Misso NL, Rigby PJ, Thompson PJ, Bhoola KD. Expression of kallikrein-related peptidases (KRP/hK5, 7, 6, 8) in subtypes of human lung carcinoma. Int Immunopharmacol 2008;8: 300-6.
175. Pende D, Rivera P, Marcenaro S, et al. Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes: analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res 2002;62: 6178-86.
176. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci U S A 1999;96: 6879-84.
177. Cosman D, Mullberg J, Sutherland CL, et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 2001;14: 123-33.
178. Eagle RA, Trowsdale J. Promiscuity and the single receptor: NKG2D. Nat Rev Immunol 2007;7: 737-44.
179. Maccalli C, Nonaka D, Piris A, et al. NKG2D-mediated antitumor activity by tumor-infiltrating lymphocytes and antigen-specific T-cell clones isolated from melanoma patients. Clin Cancer Res 2007;13: 7459-68.
180. Watson NF, Spendlove I, Madjd Z, et al. Expression of the stress-related MHC class I chain-related protein MICA is an indicator of good prognosis in colorectal cancer patients. Int J Cancer 2006;118: 1445-52.
181. Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002;419: 734-8.
182. Waldhauer I, Steinle A. Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res 2006;66: 2520-6.
183. Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci U S A 1996;93: 12445-50.
184. Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 1998;279: 1737-40.
185. Pende D, Cantoni C, Rivera P, et al. Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin. Eur J Immunol 2001;31: 1076-86.
186. Marten A, von Lilienfeld-Toal M, Buchler MW, Schmidt J. Soluble MIC is elevated in the serum of patients with pancreatic carcinoma diminishing gammadelta T cell cytotoxicity. Int J Cancer 2006;119: 2359-65.
187. Paschen A, Sucker A, Hill B, et al. Differential clinical significance of individual NKG2D ligands in melanoma: soluble ULBP2 as an indicator of poor prognosis superior to S100B. Clin Cancer Res 2009;15: 5208-15.
188. Li K, Mandai M, Hamanishi J, et al. Clinical significance of the NKG2D ligands, MICA/B and ULBP2 in ovarian cancer: high expression of ULBP2 is an indicator of poor prognosis. Cancer Immunol Immunother 2009;58: 641-52.
189. McGilvray RW, Eagle RA, Rolland P, Jafferji I, Trowsdale J, Durrant LG. ULBP2 and RAET1E NKG2D ligands are independent predictors of poor prognosis in ovarian cancer patients. Int J Cancer 2010;127: 1412-20.
190. Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005;436: 1186-90.
191. Hayakawa Y, Smyth MJ. Innate immune recognition and suppression of tumors. Adv Cancer Res 2006;95: 293-322.
192. Cheon S, Lee JH, Park S, et al. Overexpression of IL-32alpha increases natural killer cell-mediated killing through up-regulation of Fas and UL16-binding protein 2 (ULBP2) expression in human chronic myeloid leukemia cells. J Biol Chem 2011;286: 12049-55.
193. Ito T, Nakayama T, Ito M, Naito S, Kanematsu T, Sekine I. Expression of the ets-1 proto-oncogene in human pancreatic carcinoma. Mod Pathol 1998;11: 209-15.
194. Nishida A, Andoh A, Inatomi O, Fujiyama Y. Interleukin-32 expression in the pancreas. J Biol Chem 2009;284: 17868-76.
195. Eisele G, Wischhusen J, Mittelbronn M, et al. TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain 2006;129: 2416-25.
196. Le Maux Chansac B, Misse D, Richon C, et al. Potentiation of NK cell-mediated cytotoxicity in human lung adenocarcinoma: role of NKG2D-dependent pathway. Int Immunol 2008;20: 801-10.
197. Waldhauer I, Goehlsdorf D, Gieseke F, et al. Tumor-associated MICA is shed by ADAM proteases. Cancer Res 2008;68: 6368-76.
198. Tamahashi U, Kumagai J, Takizawa T, Sekine M, Eishi Y. Expression and intracellular localization of matrix metalloproteinases in intraductal papillary mucinous neoplasms of the pancreas. Virchows Arch 2008;453: 79-87.
199. Jones LE, Humphreys MJ, Campbell F, Neoptolemos JP, Boyd MT. Comprehensive analysis of matrix metalloproteinase and tissue inhibitor expression in pancreatic cancer: increased expression of matrix metalloproteinase-7 predicts poor survival. Clin Cancer Res 2004;10: 2832-45.
200. Harvey SR, Hurd TC, Markus G, et al. Evaluation of urinary plasminogen activator, its receptor, matrix metalloproteinase-9, and von Willebrand factor in pancreatic cancer. Clin Cancer Res 2003;9: 4935-43.
201. Nakamura H, Horita S, Senmaru N, et al. Association of matrilysin expression with progression and poor prognosis in human pancreatic adenocarcinoma. Oncol Rep 2002;9: 751-5.
202. Yamamoto H, Itoh F, Iku S, et al. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human pancreatic adenocarcinomas: clinicopathologic and prognostic significance of matrilysin expression. J Clin Oncol 2001;19: 1118-27.
203. Maatta M, Soini Y, Liakka A, Autio-Harmainen H. Differential expression of matrix metalloproteinase (MMP)-2, MMP-9, and membrane type 1-MMP in hepatocellular and pancreatic adenocarcinoma: implications for tumor progression and clinical prognosis. Clin Cancer Res 2000;6: 2726-34.
204. Gong YL, Xu GM, Huang WD, Chen LB. Expression of matrix metalloproteinases and the tissue inhibitors of metalloproteinases and their local invasiveness and metastasis in Chinese human pancreatic cancer. J Surg Oncol 2000;73: 95-9.
205. Krishnamachary B, Semenza GL. Analysis of hypoxia-inducible factor 1alpha expression and its effects on invasion and metastasis. Methods Enzymol 2007;435: 347-54.
206. Smith RA, Tang J, Tudur-Smith C, Neoptolemos JP, Ghaneh P. Meta-analysis of immunohistochemical prognostic markers in resected pancreatic cancer. Br J Cancer 2011;104: 1440-51.
207. Song X, Wang H, Logsdon CD, et al. Overexpression of receptor tyrosine kinase Axl promotes tumor cell invasion and survival in pancreatic ductal adenocarcinoma. Cancer 2011;117: 734-43.
208. Chen X, Han G, Zhai H, et al. Expression and clinical significance of CacyBP/SIP in pancreatic cancer. Pancreatology 2008;8: 470-7.
209. Yoshitomi H, Kobayashi S, Ohtsuka M, et al. Specific expression of endoglin (CD105) in endothelial cells of intratumoral blood and lymphatic vessels in pancreatic cancer. Pancreas 2008;37: 275-81.
210. Welsch T, Endlich K, Giese T, Buchler MW, Schmidt J. Eps8 is increased in pancreatic cancer and required for dynamic actin-based cell protrusions and intercellular cytoskeletal organization. Cancer Lett 2007;255: 205-18.
211. Koopmann J, Rosenzweig CN, Zhang Z, et al. Serum markers in patients with resectable pancreatic adenocarcinoma: macrophage inhibitory cytokine 1 versus CA19-9. Clin Cancer Res 2006;12: 442-6.
212. Dittert DD, Kielisch C, Alldinger I, et al. Prognostic significance of immunohistochemical RhoA expression on survival in pancreatic ductal adenocarcinoma: a high-throughput analysis. Hum Pathol 2008;39: 1002-10.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔