跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/12 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙思涵
研究生(外文):Szu Han Chao
論文名稱:Akt1在斑馬魚血液循環系統發育過程中所扮演的角色
論文名稱(外文):The role of Akt1 in developing circulatory system of zebrafish
指導教授:鄭邑荃
指導教授(外文):Y. C. Cheng
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
論文頁數:88
中文關鍵詞:Akt1血液循環系統斑馬魚
外文關鍵詞:Akt1circulatory systemzebrafish
相關次數:
  • 被引用被引用:0
  • 點閱點閱:354
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
Akt1是一個在斑馬魚血液循環系統中最為廣泛研究的基因之一,並且常被指出可能在血癌與其他血液血管的疾病當中扮演重要的角色。然而目前大多數的研究主要是利用過度表現的變異基因來進行體外試驗,而這些方法無法反映出Akt1在真實的生理功能中造成的影響。在這裡,我們分析了Akt1在發育中的斑馬魚血液循環系統中的影響,並發現斑馬魚Akt1對於血液生成作用扮演著必需的角色。利用morpholino或是對Akt1磷酸化位點進行點突變的RNA來競爭抑制內生性Akt1的生成,皆會造成造血前趨細胞與血管內皮前趨細胞的減少,進而導致所有成熟血球的數量下降。而造成此現象可能是Akt1受到抑制之後,間接抑制了CyclinD1的活性,並導致不經由p53活化的細胞凋亡作用增加所造成。相反地,持續活化態的Akt1可促進造血幹細胞的分化。總而言之,我們在斑馬魚的研究闡明了Akt1對於血液血管共同前趨細胞的細胞存活扮演著必需的角色,並且可促進造血幹細胞的分化。此外,我也對於Akt1在造血細胞的存活中,提出了一個新的調控機制,進而對於Akt1在斑馬魚血液生成作用中所扮演的角色提供了更進一步的了解,也對於利用斑馬魚作為研究血癌與其他血液血管疾病的方法提供了更詳細的資訊。
Akt1 is one of the most characterized genes that plays fundamental role in hematopoiesis and vessel formation and is implicated in leukemias and blood/vessel disorders. However, most of the studies to date were performed by in vitro analysis mainly relies on the mis-expression of mutated constructs, which may not truly reflect the physiological role of Akt1. Here, I analyzed the role of Akt1 in developing circulatory system in zebrafish and found that zebrafish Akt1 is required for hematopoiesis. Abolishing endogenous Akt1 function by morpholino antisense oligos or a mutated-negative form resulted in depletion of hematovascular progenitors and consequently reduced all hematopoietic derivatives. And further analysis showed that this effect was caused by p53-independent cell apoptosis, intriguingly, through CyclinD1 activation. On the contrary, constitutive activation of Akt1 is sufficient to induce the differentiation of hematopoietic stem cells. In conjunction with previous in vitro studies, my study in zebrafish embryos clarified that Akt1 is required for the survival of hematovascular progenitors and is sufficient to induce hematopoietic stem cell differentiation, and in addition, it revealed a novel mechanism for the role of Akt1 in hematopoietic cell survival. My results therefore provide important information towards a better understanding for the role of Akt1 in hematopoiesis and outlined a useful model for studying hematopoietic disorders and leukemias.
Table of Contents
摘要……………………………………………………………………..vii
Abstract……………………………………………………………….viii
Table of Contents………………………………………………………ix
Table and Figure List……………………………………………………xii
CHAPTER I Introduction
1.1 Circulatory system……………………………………………1
1.2 Akt signaling pathway………………………………………2
1.3 Zebrafish circulatory system…………………………………4
1.4 Aim………………………………………….…….…….…….5
CHAPTER II Materials and Methods
2.1 Collection and maintenance of zebrafish embryos……………7
2.2 Whole mount in situ hybridization..………………………….7
2.3 Microinjection………………………………………………9
2.4 In vitro transcription for mRNA……………………………9
2.5 Immunohistochemistry and immunocytochemistry…………9
2.6 TdT-mediated dUTP nick end labeling (TUNEL) assay……11
2.7 Western blotting……………………………………………11
2.8 Flow cytometry………………………………………………12

CHAPTER III Results
3.1 The expression patterns of akt1 in zebrafish……………. …13
3.2 Zebrafish Akt1 knockdown resulted in reduction of hemangioblasts, HSCs, erythroid progenitors, granulocytes and lymphocytes…………………………………………………14
3.3 Zebrafish Akt1 knockdown increases p53-independent cell apoptosis during hematopoiesis………………………………17
3.4 Zebrafish Akt1 knockdown decreases cell proliferation during hematopoiesis…………………………………………………18
3.5 Gain of AKT1 function in zebrafish embryos does not affect the population of hemangioblasts and HSCs, but increase the population of erythroid progenitors, granulocytes and lymphocytes…………………………………………………19
3.6 Higher phosphorylation level of Akt1 is needed at 36 hpf…20
3.7 The expression patterns of ccnd1 is similar with akt1in zebrafish………………………………………………………20
3.8 CyclinD1T282A mRNA partially rescues akt1 morphants on scl and gata2 expression…………………………………………22
3.9 Akt1 positively regulate CyclinD1 on cell cycle distribution and may reduce cell proliferation rate………………………23
3.10 Akt1 inhibit cell apoptosis through CyclinD1 activation…23
3.11 Akt1 protein, but not its kinase activity is required for normal angiogenesis…………………………………………………24

CHAPTER IV Discussions and Future Works
4.1 Summary……………………………………………………26
4.2 The expression of Akt1 in the developmental circulatory system is evolutionarily conserved…………………………26
4.3 The specificity of Akt1 morpholino…………………………27
4.4 The role of Akt1 in zebrafish hemangioblasts………………28
4.5 The role of Akt1 in zebrafish hematopoietic stem cells (HSCs)………………………………………………………29
4.6 The interaction of Akt1 and CyclinD1 on hematopoiesis……31
4.7 The role of Akt1 in zebrafish erythropoiesis, granulopoiesis and lymphopoiesis……………………………………………34
4.8 The role of Akt1 in zebrafish vasculogenesis and angiogenesis…………………………………………………36

References………………………………………………………….……38
Figures…………………………………………………………………50

Table and Figure List
Figure 1. akt1 expression patterns in zebrafish…………………………38
Figure 2. Knockdown of Akt1 by akt1 MO and akt1T302A/S467A mRNA showed morphological defects of developing circulatory system…………………………………………………………40
Figure 3. Knockdown of Akt1 by akt1 MO and akt1T302A/S467A mRNA cause the reduction of hemangioblasts and hematopoietic cells……………………………………………………………42
Figure 4. akt1 mRNA partially rescues akt1 morphants………………44
Figure 5. Knockdown of Akt1 increases cell apoptosis………………46
Figure 6. The reduction of hemangioblasts and hematopoietic cells in akt1 morphants could not be rescued by co-injection with p53 MO……………………………………………………………47
Figure 7. Knockdown of Akt1 decreases cell proliferation during hematopoiesis and causes cell cycle arrest at G0/G1 and G2/M phase…………………………………………………………49
Figure 8. Over-expression of hu caAKT1 mRNA in zebrafish embryos increases the population of erythroid progenitors, granulocytes and lymphocytes………………………………………………51
Figure 9. Developmental regulation of Akt1 kinase activity…………………………………………………………53
Figure 10. ccnd1 expression patterns in zebrafish………………………54
Figure 11. ccnd1T282A mRNA partially rescues akt1 morphants in hemangioblasts and HSCs……………………………………55
Figure 12. ccnd1T282A mRNA rescues akt1 morphants on cell apoptosis………………………………………………………57
Figure 13. ccnd1T282A mRNA increases the S phase distribution in akt1 morphants……………………………………………………59
Figure 14. Knockdown of Akt1 by Akt1 MO, over-expression of akt1T302A/S467A mRNA and caAKT1 mRNA cause angiogenesis defects…………………………………………………………61
References
1. Huber, T.L. Dissecting hematopoietic differentiation using the embryonic stem cell differentiation model. Int J Dev Biol 54, 991-1002.
2. Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J.C. &; Keller, G. A common precursor for hematopoietic and endothelial cells. Development 125, 725-732 (1998).
3. Luc, S., Buza-Vidas, N. &; Jacobsen, S.E. Delineating the cellular pathways of hematopoietic lineage commitment. Semin Immunol 20, 213-220 (2008).
4. Lessard, J., Faubert, A. &; Sauvageau, G. Genetic programs regulating HSC specification, maintenance and expansion. Oncogene 23, 7199-7209 (2004).
5. Serbedzija, G.N., Flynn, E. &; Willett, C.E. Zebrafish angiogenesis: a new model for drug screening. Angiogenesis 3, 353-359 (1999).
6. Carradice, D. &; Lieschke, G.J. Zebrafish in hematology: sushi or science? Blood 111, 3331-3342 (2008).
7. de Jong, J.L. &; Zon, L.I. Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu Rev Genet 39, 481-501 (2005).
8. Manning, B.D. &; Cantley, L.C. AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274 (2007).
9. Franke, T.F. PI3K/Akt: getting it right matters. Oncogene 27, 6473-6488 (2008).
10. Brazil, D.P., Yang, Z.Z. &; Hemmings, B.A. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29, 233-242 (2004).
11. Martelli, A.M., et al. The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin signaling network and the control of normal myelopoiesis. Histol Histopathol 25, 669-680.
12. Chen, W.S., et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 15, 2203-2208 (2001).
13. Cho, H., Thorvaldsen, J.L., Chu, Q., Feng, F. &; Birnbaum, M.J. Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 276, 38349-38352 (2001).
14. Buitenhuis, M. &; Coffer, P.J. The role of the PI3K-PKB signaling module in regulation of hematopoiesis. Cell Cycle 8, 560-566 (2009).
15. Buitenhuis, M., et al. Protein kinase B (c-akt) regulates hematopoietic lineage choice decisions during myelopoiesis. Blood 111, 112-121 (2008).
16. Somanath, P.R., Razorenova, O.V., Chen, J. &; Byzova, T.V. Akt1 in endothelial cell and angiogenesis. Cell Cycle 5, 512-518 (2006).
17. Kawauchi, K., Ogasawara, T., Yasuyama, M., Otsuka, K. &; Yamada, O. The PI3K/Akt pathway as a target in the treatment of hematologic malignancies. Anticancer Agents Med Chem 9, 550-559 (2009).
18. Ma, F.X. &; Han, Z.C. Akt signaling and its role in postnatal neovascularization. Histol Histopathol 20, 275-281 (2005).
19. Fayard, E., Tintignac, L.A., Baudry, A. &; Hemmings, B.A. Protein kinase B/Akt at a glance. J Cell Sci 118, 5675-5678 (2005).
20. Yang, Z.Z., et al. Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J Biol Chem 278, 32124-32131 (2003).
21. Peng, X., Haldar, S., Deshpande, S., Irani, K. &; Kass, D.A. Wall stiffness suppresses Akt/eNOS and cytoprotection in pulse-perfused endothelium. Hypertension 41, 378-381 (2003).
22. Ciau-Uitz, A., Liu, F. &; Patient, R. Genetic control of hematopoietic development in Xenopus and zebrafish. Int J Dev Biol 54, 1139-1149.
23. Payne, E. &; Look, T. Zebrafish modelling of leukaemias. Br J Haematol 146, 247-256 (2009).
24. Liu, L., Zhu, S., Gong, Z. &; Low, B.C. K-ras/PI3K-Akt signaling is essential for zebrafish hematopoiesis and angiogenesis. PLoS One 3, e2850 (2008).
25. Zhao, B., et al. Nogo-B receptor is essential for angiogenesis in zebrafish via Akt pathway. Blood 116, 5423-5433 (2010).
26. Chan, J., Bayliss, P.E., Wood, J.M. &; Roberts, T.M. Dissection of angiogenic signaling in zebrafish using a chemical genetic approach. Cancer Cell 1, 257-267 (2002).
27. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. &; Schilling, T.F. Stages of embryonic development of the zebrafish. Dev Dyn 203, 253-310 (1995).
28. Thisse, C. &; Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3, 59-69 (2008).
29. Gurley, L.R., D'Anna, J.A., Barham, S.S., Deaven, L.L. &; Tobey, R.A. Histone phosphorylation and chromatin structure during mitosis in Chinese hamster cells. Eur J Biochem 84, 1-15 (1978).
30. Chen, A.T. &; Zon, L.I. Zebrafish blood stem cells. J Cell Biochem 108, 35-42 (2009).
31. Bolli, N., et al. cpsf1 is required for definitive HSC survival in zebrafish. Blood 117, 3996-4007.
32. Sivertsen, E.A., et al. PI3K/Akt-dependent Epo-induced signalling and target genes in human early erythroid progenitor cells. Br J Haematol 135, 117-128 (2006).
33. Zhao, W., Kitidis, C., Fleming, M.D., Lodish, H.F. &; Ghaffari, S. Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood 107, 907-915 (2006).
34. Ramaswamy, S., et al. Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci U S A 96, 2110-2115 (1999).
35. Yamauchi, H., et al. Fgf21 is essential for haematopoiesis in zebrafish. EMBO Rep 7, 649-654 (2006).
36. Bennett, C.M., et al. Myelopoiesis in the zebrafish, Danio rerio. Blood 98, 643-651 (2001).
37. Langenau, D.M. &; Zon, L.I. The zebrafish: a new model of T-cell and thymic development. Nat Rev Immunol 5, 307-317 (2005).
38. Alessi, D.R., et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15, 6541-6551 (1996).
39. Kitamura, T., et al. Requirement for activation of the serine-threonine kinase Akt (protein kinase B) in insulin stimulation of protein synthesis but not of glucose transport. Mol Cell Biol 18, 3708-3717 (1998).
40. Fatrai, S., et al. Akt induces beta-cell proliferation by regulating cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes 55, 318-325 (2006).
41. Skeen, J.E., et al. Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53-independent and mTORC1-dependent manner. Cancer Cell 10, 269-280 (2006).
42. Bednarski, J.J., et al. RAG-induced DNA double-strand breaks signal through Pim2 to promote pre-B cell survival and limit proliferation. J Exp Med (2011).
43. Khwaja, A. Akt is more than just a Bad kinase. Nature 401, 33-34 (1999).
44. Song, G., Ouyang, G. &; Bao, S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9, 59-71 (2005).
45. Gerety, S.S. &; Wilkinson, D.G. Morpholino artifacts provide pitfalls and reveal a novel role for pro-apoptotic genes in hindbrain boundary development. Dev Biol 350, 279-289.
46. Ekker, S.C. &; Larson, J.D. Morphant technology in model developmental systems. Genesis 30, 89-93 (2001).
47. Summerton, J. Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489, 141-158 (1999).
48. Juntilla, M.M. &; Koretzky, G.A. Critical roles of the PI3K/Akt signaling pathway in T cell development. Immunol Lett 116, 104-110 (2008).
49. Sasaki, T., et al. Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040-1046 (2000).
50. Schmidt, M., et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 22, 7842-7852 (2002).
51. Chang, F., et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17, 590-603 (2003).
52. Duquesne, F., Florent, M., Roue, G., Troussard, X. &; Sola, B. Ectopic expression of cyclin D1 impairs the proliferation and enhances the apoptosis of a murine lymphoid cell line. Cell Death Differ 8, 51-62 (2001).
53. Muntean, A.G., et al. Cyclin D-Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization. Blood 109, 5199-5207 (2007).
54. Neumeister, P., et al. Cyclin D1 governs adhesion and motility of macrophages. Mol Biol Cell 14, 2005-2015 (2003).
55. Tanaka, H., et al. GATA-1 blocks IL-6-induced macrophage differentiation and apoptosis through the sustained expression of cyclin D1 and bcl-2 in a murine myeloid cell line M1. Blood 95, 1264-1273 (2000).
56. Wang, J., et al. The role of Skp2 in hematopoietic stem cell quiescence, pool size, and self-renewal. Blood 118, 5429-5438 (2011).
57. Lovec, H., Grzeschiczek, A., Kowalski, M.B. &; Moroy, T. Cyclin D1/bcl-1 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice. EMBO J 13, 3487-3495 (1994).
58. Guo, Y., et al. Phosphorylation of cyclin D1 at Thr 286 during S phase leads to its proteasomal degradation and allows efficient DNA synthesis. Oncogene 24, 2599-2612 (2005).
59. Diehl, J.A. Cycling to cancer with cyclin D1. Cancer Biol Ther 1, 226-231 (2002).
60. Diehl, J.A., Zindy, F. &; Sherr, C.J. Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev 11, 957-972 (1997).
61. Alt, J.R., Cleveland, J.L., Hannink, M. &; Diehl, J.A. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev 14, 3102-3114 (2000).
62. Lawson, N.D. &; Weinstein, B.M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248, 307-318 (2002).
63. Melet, F., Motro, B., Rossi, D.J., Zhang, L. &; Bernstein, A. Generation of a novel Fli-1 protein by gene targeting leads to a defect in thymus development and a delay in Friend virus-induced erythroleukemia. Mol Cell Biol 16, 2708-2718 (1996).
64. Thompson, M.A., et al. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev Biol 197, 248-269 (1998).
65. Isogai, S., Lawson, N.D., Torrealday, S., Horiguchi, M. &; Weinstein, B.M. Angiogenic network formation in the developing vertebrate trunk. Development 130, 5281-5290 (2003).
66. Baldessari, D. &; Mione, M. How to create the vascular tree? (Latest) help from the zebrafish. Pharmacol Ther 118, 206-230 (2008).
67. Chan, T.O., Rittenhouse, S.E. &; Tsichlis, P.N. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 68, 965-1014 (1999).
68. Peng, X.D., et al. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 17, 1352-1365 (2003).
69. Juntilla, M.M., Wofford, J.A., Birnbaum, M.J., Rathmell, J.C. &; Koretzky, G.A. Akt1 and Akt2 are required for alphabeta thymocyte survival and differentiation. Proc Natl Acad Sci U S A 104, 12105-12110 (2007).
70. Lakhanpal, G.K., et al. The inositol phosphatase SHIP-1 is negatively regulated by Fli-1 and its loss accelerates leukemogenesis. Blood 116, 428-436.
71. Liu, F., Walmsley, M., Rodaway, A. &; Patient, R. Fli1 acts at the top of the transcriptional network driving blood and endothelial development. Curr Biol 18, 1234-1240 (2008).
72. Tothova, Z., et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325-339 (2007).
73. Kharas, M.G., et al. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 115, 1406-1415.
74. Martelli, A.M., et al. Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 20, 911-928 (2006).
75. Zhao, S., et al. Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 18, 267-275 (2004).
76. Gomez-Sintes, R., Hernandez, F., Lucas, J.J. &; Avila, J. GSK-3 Mouse Models to Study Neuronal Apoptosis and Neurodegeneration. Front Mol Neurosci 4, 45 (2011).
77. Huang, J., et al. Pivotal role for glycogen synthase kinase-3 in hematopoietic stem cell homeostasis in mice. J Clin Invest 119, 3519-3529 (2009).
78. Reddiconto, G., et al. Targeting of GSK3beta promotes imatinib-mediated apoptosis in quiescent CD34+ chronic myeloid leukemia progenitors, preserving normal stem cells. Blood 119, 2335-2345 (2012).
79. Burgering, B.M. &; Medema, R.H. Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol 73, 689-701 (2003).
80. Pap, M. &; Cooper, G.M. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J Biol Chem 273, 19929-19932 (1998).
81. Pap, M. &; Cooper, G.M. Role of translation initiation factor 2B in control of cell survival by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta signaling pathway. Mol Cell Biol 22, 578-586 (2002).
82. Jope, R.S. &; Johnson, G.V. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29, 95-102 (2004).
83. Watcharasit, P., et al. Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage. Proc Natl Acad Sci U S A 99, 7951-7955 (2002).
84. Grimes, C.A. &; Jope, R.S. CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium. J Neurochem 78, 1219-1232 (2001).
85. Lin, C.F., et al. GSK-3beta acts downstream of PP2A and the PI 3-kinase-Akt pathway, and upstream of caspase-2 in ceramide-induced mitochondrial apoptosis. J Cell Sci 120, 2935-2943 (2007).
86. Trowbridge, J.J., Xenocostas, A., Moon, R.T. &; Bhatia, M. Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat Med 12, 89-98 (2006).
87. Centeno, F., Mora, A., Fuentes, J.M., Soler, G. &; Claro, E. Partial lithium-associated protection against apoptosis induced by C2-ceramide in cerebellar granule neurons. Neuroreport 9, 4199-4203 (1998).
88. Albanese, C., et al. Activation of the cyclin D1 gene by the E1A-associated protein p300 through AP-1 inhibits cellular apoptosis. J Biol Chem 274, 34186-34195 (1999).
89. Fu, M., Wang, C., Li, Z., Sakamaki, T. &; Pestell, R.G. Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 145, 5439-5447 (2004).
90. Ohta, Y. &; Ichimura, K. Proliferation markers, proliferating cell nuclear antigen, Ki67, 5-bromo-2'-deoxyuridine, and cyclin D1 in mouse olfactory epithelium. Ann Otol Rhinol Laryngol 109, 1046-1048 (2000).
91. Ladha, M.H., Lee, K.Y., Upton, T.M., Reed, M.F. &; Ewen, M.E. Regulation of exit from quiescence by p27 and cyclin D1-CDK4. Mol Cell Biol 18, 6605-6615 (1998).
92. Jones, R.G., et al. Protein kinase B regulates T lymphocyte survival, nuclear factor kappaB activation, and Bcl-X(L) levels in vivo. J Exp Med 191, 1721-1734 (2000).
93. Kitaguchi, T., Kawakami, K. &; Kawahara, A. Transcriptional regulation of a myeloid-lineage specific gene lysozyme C during zebrafish myelopoiesis. Mech Dev 126, 314-323 (2009).
94. Liu, F. &; Wen, Z. Cloning and expression pattern of the lysozyme C gene in zebrafish. Mech Dev 113, 69-72 (2002).
95. Ackah, E., et al. Akt1/protein kinase Balpha is critical for ischemic and VEGF-mediated angiogenesis. J Clin Invest 115, 2119-2127 (2005).
96. Gerber, H.P., et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273, 30336-30343 (1998).



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊