跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/01/30 12:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林詮盛
研究生(外文):Chuan Sheng Lin
論文名稱:二元訊息傳遞系統RssAB控制Serratia marcescens多細胞行為與致病性
論文名稱(外文):The Two-Component System RssAB Coordinates Multicellularity And Pathogenesis In Serratia marcescens
指導教授:洪錦堂洪錦堂引用關係賴信志賴信志引用關係
指導教授(外文):J. T. HorngH. C. Lai
學位類別:博士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
論文頁數:126
中文關鍵詞:靈菌多細胞行為致病力二元訊息傳遞系統RssAB表面移行鐵離子溶血素
外文關鍵詞:Serratia marcescensMulticellularityPathogenesisTwo-component systemRssABSwarmingIronHemolysin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
第一部份:RssAB-FlhDC-ShlBA為Serratia marcescens致病力的主要調控路徑

Serratia marcescens屬於重要的人類伺機性病原菌,儘管擁有許多致病因子以及表現出不同的多細胞行為,有關其致病機制的研究仍舊有限。我們發現一套二元系統RssA-RssB (RssAB)可以藉由調控FlhDC的表現來調控S. marcescens的表面移行(swarming)與生物膜(biofilm),進而控制S. marcescens重要毒性因子溶血素(hemolysin, ShlA)的表現。進ㄧ步發現,當S. marcescens失去RssAB時,多細胞行為轉而傾向高度活動力的表面移行階段而無法有效構築生物膜,轉變成高度溶血性的病菌,進而對人類表皮細胞的毒殺能力與侵犯能力都明顯比野生株提高許多。更重要的是,在大鼠急性肺炎模式發現RssAB的剃除導致S. marcescens轉變成高度致病力,並在次致死量肺炎模式中可以造成全身性的感染,但野生株卻在肺部就有效被抑制住而無法侵犯深層組織,並在rssBA剔除株中將溶血素基因shlBA剔除時即導致其失去致病性與全身性侵犯的能力,進而證明RssAB確實透過調控溶血素的表現而影響S. marcescens的致病能力。臨床分離株的分析中也顯現出RssAB的保存性極高。因此,我們認為S. marcescens可以藉由RssAB來調控多細胞行為之間的轉換以及適當溶血素的產生,以利適應不同的環境,進而控制S. marcescens的致病能力與病理結果。

第二部份:三價鐵離子為細菌性表面移行啟動的決定性因子

細菌表面移行(Swarming)是ㄧ種包含細胞分化與型態轉變的多細胞行為,儘管在許多不同物種皆已提出各自的機制來解釋,決定表面移行的因子與感受系統仍有許多未知的地方,特別是在其啟動機制仍舊不清楚。此篇的研究利用Serratia marcescens的表面移行當作研究模式,發現細胞外的三價鐵離子濃度為其表面移行啟動的決定性因子,之中的機制是透過RssA-RssB (RssAB)二元調控系統直接感受細胞外三價鐵離子變化,進而調控表面移行細胞分化與進展相關因子的表現來決定啟動的時間點。其中,受RssAB直接調控的下游基因pvcABC的表現高低可改變三價鐵離子螯合物pseudoverdine的產量,以控制RssAB訊息傳遞的開關時間而影響表面移行的啟動時機,完整且具訊息傳遞功能的RssAB對於整合此訊息接收與下游基因調控是必要的。更重要的是,在不同細菌的表面移行中,鐵離子的影響皆具有類似的趨勢。因此,此研究闡明表面移行啟動的分子調控機制。
Part I: RssAB-FlhDC-ShlBA as a major pathogenesis pathway in Serratia marcescens

S. marcescens has long time being recognized as an important opportunistic pathogen and the underlying pathogenesis mechanism is not completely clear. Here, we report a key pathogenesis pathway in S. marcescens comprising the RssAB two-component system, and its downstream elements FlhDC and the dominant virulence factor hemolysin ShlBA. Expression of shlBA is under positive control of FlhDC which is repressed by RssAB signaling. At 37 °C, functional RssAB inhibits swarming, represses hemolysin production and promotes S. marcescens biofilm formation. In comparison, when rssBA is deleted, S. marcescens displays aberrant multicellularity favoring motile swarming with unbridled hemolysin production. Cellular and animal infection models further demonstrate that loss of rssBA transforms this opportunistic pathogen into hypervirulent phenotypes, leading to extensive inflammatory responses coupled with destructive and systemic infection. The hemolysin production is essential in this context. Collectively, a major virulence regulatory pathway is identified in S. marcescens.

Part II: Ferric iron as a control factor of bacterial swarming initiation

Bacterial swarming is a cell-density dependent, multicellular surface migration behavior involving significant cellular differentiation and phenotypical changes. Despite numerous studies on swarming for more than a century, how swarming initiation is controlled remains a mystery. Here, using Serratia marcescens swarming as a study model, we show that ferric iron (Fe3+) is a key controlling factor of swarming initiation. The underlying mechanism is through direct modulation of the signaling activity of a bacterial two-component system RssAB. RssAB signaling then controls expression of swarming-related genes and determines when bacterial population starts to swarm for obtaining Fe3+. RssB-regulated production of Fe3+ chelator pseudoverdine further negatively feedback controls RssAB signaling to achieve a Fe3+ homeostasis. The Fe3+ effect on swarming initiation is conserved in many bacterial species. Therefore, our work unravels a molecular mechanism by which bacteria sense environmental nutrient and control swarming development.
指導教授推薦書書
口試委員審定書
國家圖書館電子論文授權書 ..............................................................iii
長庚大學論文著作授權書..................................................................iv
誌謝.....................................................................................v
中文摘要................................................................................vi
第一部分: RssAB-FlhDC-ShlBA為Serratia marcescens致病力的主要調控路徑....................vi
第二部份: 三價鐵離子為細菌性表面移行啟動的決定性因子...................................vii
Abstract..............................................................................viii
Part I: RssAB-FlhDC-ShlBA as a major pathogenesis pathway in Serratia marcescens......viii
Part II: Ferric iron as a controlling factor of bacterial swarming initiation...........ix
Table of Contents........................................................................x
Chapter 1 General Introduction...........................................................1
1.1 Serratia marcescens as a unique bacterium in Enterobacteriaceae......................1
1.2 S. marcescens is recognized as a harmful opportunistic pathogen......................1
1.3 Hemolysin plays a major role in S. marcescens pathogenesis and virulence capability..2
1.4 Bacterial multicellularity...........................................................3
1.5 Inverse relationship between swarming motility and biofilm formation.................4
1.6 Surface multicellulairy in S. marcescens.............................................5
1.7 Two-component systems (TCSs) act as typical bacterial signaling transduction systems
and bridge crosstalk between bacteria and environments...............................6
1.8 RssA-RssB (RssAB) signaling functions as a typical TCS and coregulates swarming and
hemolytic activity in S. marcescens..................................................6
1.9 Objectives and Significance..........................................................7
1.10 Aims................................................................................8
Part I: RssAB-FlhDC-ShlBA as a major pathogenesis pathway in Serratia marcescens.........9
Chapter 2 Introduction...................................................................9
2.1 S. marcescens is an important opportunistic pathogen.................................9
2.2 Hemolysin determinant ShlBA is the dominant virulence factor in S. marcescens........9
2.3 RssAB coregulates swarming motility and hemolytic activity in S. marcescens.........10
2.4 RssAB represses swarming motility through direct down-regulation of flhDC
expression..........................................................................10
2.5 Aim and strategy....................................................................11
Chapter 3 Materials and Methods.........................................................13
3.1 Bacterial strains...................................................................13
3.2 Enzymes, chemicals, reagents and primers............................................13
3.3 Reverse transcription-PCR (RT-PCR) assay............................................13
3.4 Swarming assay......................................................................14
3.5 Biofilm attachment assay............................................................14
3.6 Hemolysis assay.....................................................................15
3.7 Construction of EGFP-expressing plasmids............................................15
3.8 Cell culture........................................................................16
3.9 Cellular cytotoxicity assay.........................................................17
3.10 Cellular invasion assay............................................................17
3.11 Promoter assay.....................................................................19
3.12 Rat acute pneumonia model..........................................................19
3.13 Quantification of bacterial burden in lung and bronchoalveolar lavage (BAL) fluid..20
3.14 BAL fluid cellularity analysis.....................................................21
3.15 Cytokine measurement...............................................................21
3.16 Rat sublethal pneumonia model......................................................21
Chapter 4 Results.......................................................................23
4.1 RssAB represses hemolytic activity through down-regulation of flhDC expression......23
4.2 Role of RssAB, FlhDC and ShlBA in biofilm formation and swarming....................24
4.3 RssAB-FlhDC-ShlBA controls virulence capability against human bronchial epithelial
cells...............................................................................26
4.4 RssAB and ShlBA dominantly control pathogenesis in a rat acute pneumonia model......28
4.5 Deletion of rssBA in S. marcescens leads to systemic infection inmmuno-competent
rats................................................................................30
Chapter 5 Discussion....................................................................32
5.1 Proposed mechanism on how RssAB modulates multicellularity and pathogenesis in S.
marcescens..........................................................................32
5.2 Coordinate regulation of hemolysin production and multicellularity is vital for
bacterial pathogenesis..............................................................34
5,3 Role of antivirulence genes in pathogen fitness.....................................36
5.4 Pathophysiological role of RssAB in S. marcescens...................................37
Part II: Ferric iron as a controlling factor of bacterial swarming initiation...........39
Chapter 6 Introduction..................................................................39
6.1 Swarming development involves multiple regulatory networks and stimuli..............39
6.2 Iron-related components are correlated with swarming development....................39
6.3 The two-component system RssAB regulates S. marcescens swarming initiation..........40
6.4 Aim and strategy....................................................................41
Chapter 7 Materials and Methods.........................................................42
7.1 Bacterial strains and culture conditions............................................42
7.2 Enzymes, chemicals, reagents and primers............................................42
7.3 Swarming motility assay.............................................................43
7.4 Construction of recombinant plasmids................................................43
7.5 Purification of proteins............................................................47
7.6 Evaluation of gene expression.......................................................49
7.7 In vitro protein-DNA pull-down assay................................................50
7.8 Electrophoretic mobility shift assay (EMSA).........................................51
7.9 Imaging RssB localization by fluorescent microscopy.................................51
7.10 Spheroplast-based trypsinization assay.............................................52
7.11 Iron-mediated cleavage assay.......................................................53
7.12 Liposome-based phosphorelay of RssAB signaling cascade.............................54
7.13 Tryptophan fluorescence quenching assay............................................55
7.14 Iron binding assay.................................................................55
7.15 Detection of pseudoverdine.........................................................55
Chapter 8 Results.......................................................................57
8.1 Fe3+ availability regulates bacterial swarming initiation...........................57
8.2 Fe3+ modulates swarming initiation through the TCS RssAB............................58
8.3 Fe3+ availability dynamically modulates RssAB signaling in the swarming lag phase...58
8.4 RssAB rapidly responds to Fe3+ in a nanomolar scale.................................59
8.5 RssAB directly senses Fe3+..........................................................60
8.6 Iron modulates RssB-regulated genes involved in swarming development................61
8.7 Pseudoverdine regulates swarming initiation in a RssAB-dependent manner.............62
Chpater 9 Discussion....................................................................65
9.1 Proposed mechanism of iron-regulated swarming initiation in S. marcescens...........65
9.2 Iron sensing accounts for cell-density dependent manner of swarming development.....66
9.3 Environmental iron availability may generally serve as a check point of bacterial
swarming initiation.................................................................67
9.4 Decision-making of bacterial lifestyles involves iron battle........................68
9.5 RssAB signaling fine-tunes multicellularity and virulence by sensing iron
availability........................................................................68
Chapter 10 References...................................................................70
Chapter 11 Tables.......................................................................88
Table 1. Bacterial strains and plasmids used in Part I..................................88
Table 2. PCR primers used in Part I.....................................................89
Table 3. Amino acids residues variation detected in RssB and RssA from S. marcescens
clinical isolates compared with those of S. marcescens CH-1....................90
Table 4. Bacterial strains and plasmids used in Part II.................................92
Table 5. PCR primers used in Part II....................................................94
Table 6. Identified RssB-binding sites in the genome of S. marcescens...................95
Chapter 12 Figures......................................................................96
Figure 1. RssAB represses hemolysin synthesis and hemolytic activity through
down-regulation of flhDC expression...........................................96
Figure 2. RssAB and FlhDC are required for efficient biofilm attachment.................97
Figure 3. Deletion of rssBA increases S. marcescens cellular cytotoxicity,
invasive activity and shlBA promoter activity.................................98
Figure 4. ShlBA under RssAB control plays an important role in S. marcescens acute
pneumonia pathogenesis........................................................99
Figure 5. The rssBA deletion leads to systemic infection of S. marcescens in a sub-lethal
pneumonia model of immuno-competent rats.....................................100
Figure 6. Proposed mechanisms on how RssAB controls multicellularity and pathogenesis in
S. marcescens................................................................101
Figure 7. Functional RssAB signaling specifically responds to Fe3+ availability and
controls the swarming initiation in S. marcescens............................102
Figure 8. Fe3+ availability regulates swarming initiation timing in B. subtilis and V.
parahaemolyticus.............................................................103
Figure 9. Fe3+ activates RssAB signaling cascade and represses swarming initiation.....104
Figure 10. RssAB rapidly senses Fe3+ in a nanomolar scale..............................105
Figure 11. RssA directly recognizes Fe3+ through periplasmic domain and initiates
phosphotransfer to RssB.....................................................106
Figure 12. Downstream genes directly regulated by RssB differentially affect swarming
behavior....................................................................107
Figure 13. Pseudoverdine feedback controls RssAB signaling and swarming initiation.....108
Figure 14. Model for RssAB-regulated swarming initiation by sensing Fe3+ availability..109
1. Grimont, P.A. and F. Grimont, The genus Serratia. Annu Rev Microbiol, 1978. 32: p.
221-48.
2. Hejazi, A. and F.R. Falkiner, Serratia marcescens. J Med Microbiol, 1997. 46(11): p.
903-12.
3. Wheat, R.P., A. Zuckerman, and L.A. Rantz, Infection due to chromobacteria; report of
11 cases. AMA Arch Intern Med, 1951. 88(4): p. 461-6.
4. Arakawa, Y., et al., Trends in antimicrobial-drug resistance in Japan. Emerg Infect
Dis, 2000. 6(6): p. 572-5.
5. Traub, W.H., Antibiotic susceptibility of Serratia marcescens and Serratia
liquefaciens. Chemotherapy, 2000. 46(5): p. 315-21.
6. Suh, B., et al., Outbreak of meropenem-resistant Serratia marcescens comediated by
chromosomal AmpC beta-lactamase overproduction and outer membrane protein loss.
Antimicrob Agents Chemother, 2010. 54(12): p. 5057-61.
7. Dessi, A., et al., Serratia marcescens infections and outbreaks in neonatal intensive
care units. J Chemother, 2009. 21(5): p. 493-9.
8. Cohen, A.L., et al., Outbreak of Serratia marcescens bloodstream and central nervous
system infections after interventional pain management procedures. Clin J Pain, 2008.
24(5): p. 374-80.
9. Civen, R., et al., Outbreak of Serratia marcescens infections following injection of
betamethasone compounded at a community pharmacy. Clin Infect Dis, 2006. 43(7): p.
831-7.
10. Kurz, C.L., et al., Virulence factors of the human opportunistic pathogen Serratia
marcescens identified by in vivo screening. EMBO J, 2003. 22(7): p. 1451-60.
11. Hertle, R., Serratia type pore forming toxins. Curr Protein Pept Sci, 2000. 1(1): p.
75-89.
12. Hertle, R., et al., Specific phosphatidylethanolamine dependence of Serratia
marcescens cytotoxin activity. Mol Microbiol, 1997. 26(5): p. 853-65.
13. Hertle, R., et al., Cytotoxic action of Serratia marcescens hemolysin on human
epithelial cells. Infect Immun, 1999. 67(2): p. 817-25.
14. Poole, K., E. Schiebel, and V. Braun, Molecular characterization of the hemolysin
determinant of Serratia marcescens. J Bacteriol, 1988. 170(7): p. 3177-88.
15. Schiebel, E. and V. Braun, Integration of the Serratia marcescens haemolysin into
human erythrocyte membranes. Mol Microbiol, 1989. 3(3): p. 445-53.
16. Schiebel, E., H. Schwarz, and V. Braun, Subcellular location and unique secretion of
the hemolysin of Serratia marcescens. J Biol Chem, 1989. 264(27): p. 16311-20.
17. Hertle, R. and H. Schwarz, Serratia marcescens internalization and replication in
human bladder epithelial cells. BMC Infect Dis, 2004. 4: p. 16.
18. Konig, W., et al., Role of cell-bound hemolysin as a pathogenicity factor for
Serratia infections. Infect Immun, 1987. 55(11): p. 2554-61.
19. Marre, R., J. Hacker, and V. Braun, The cell-bound hemolysin of Serratia marcescens
contributes to uropathogenicity. Microb Pathog, 1989. 7(2): p. 153-6.
20. Poole, K. and V. Braun, Iron regulation of Serratia marcescens hemolysin gene
expression. Infect Immun, 1988. 56(11): p. 2967-71.
21. Shapiro, J.A., Thinking about bacterial populations as multicellular organisms. Annu
Rev Microbiol, 1998. 52: p. 81-104.
22. Kaiser, D., Roland Thaxter's legacy and the origins of multicellular development.
Genetics, 1993. 135(2): p. 249-54.
23. Piggot, P.J. and D.W. Hilbert, Sporulation of Bacillus subtilis. Curr Opin Microbiol,
2004. 7(6): p. 579-86.
24. Moons, P., C.W. Michiels, and A. Aertsen, Bacterial interactions in biofilms. Crit
Rev Microbiol, 2009. 35(3): p. 157-68.
25. Nadell, C.D., J.B. Xavier, and K.R. Foster, The sociobiology of biofilms. FEMS
Microbiol Rev, 2009. 33(1): p. 206-24.
26. Fraser, G.M. and C. Hughes, Swarming motility. Curr Opin Microbiol, 1999. 2(6): p.
630-5.
27. Hall-Stoodley, L., J.W. Costerton, and P. Stoodley, Bacterial biofilms: from the
natural environment to infectious diseases. Nat Rev Microbiol, 2004. 2(2): p. 95-108.
28. Vlamakis, H., et al., Control of cell fate by the formation of an architecturally
complex bacterial community. Genes Dev, 2008. 22(7): p. 945-53.
29. Branda, S.S., et al., Biofilms: the matrix revisited. Trends Microbiol, 2005. 13(1):
p. 20-6.
30. Costerton, J.W., P.S. Stewart, and E.P. Greenberg, Bacterial biofilms: a common cause
of persistent infections. Science, 1999. 284(5418): p. 1318-22.
31. del Pozo, J.L. and R. Patel, The challenge of treating biofilm-associated bacterial
infections. Clin Pharmacol Ther, 2007. 82(2): p. 204-9.
32. Kearns, D.B., A field guide to bacterial swarming motility. Nat Rev Microbiol, 2010.
8(9): p. 634-44.
33. Harshey, R.M., Bacterial motility on a surface: many ways to a common goal. Annu Rev
Microbiol, 2003. 57: p. 249-73.
34. Williams, F.D. and R.H. Schwarzhoff, Nature of the swarming phenomenon in Proteus.
Annu Rev Microbiol, 1978. 32: p. 101-22.
35. Kim, W., et al., Swarm-cell differentiation in Salmonella enterica serovar
typhimurium results in elevated resistance to multiple antibiotics. J Bacteriol,
2003. 185(10): p. 3111-7.
36. Verstraeten, N., et al., Living on a surface: swarming and biofilm formation. Trends
Microbiol, 2008. 16(10): p. 496-506.
37. Labbate, M., et al., Quorum sensing-controlled biofilm development in Serratia
liquefaciens MG1. J Bacteriol, 2004. 186(3): p. 692-8.
38. Rice, S.A., et al., Biofilm formation and sloughing in Serratia marcescens are
controlled by quorum sensing and nutrient cues. J Bacteriol, 2005. 187(10): p.
3477-85.
39. Shanks, R.M., et al., A Serratia marcescens OxyR homolog mediates surface attachment
and biofilm formation. J Bacteriol, 2007. 189(20): p. 7262-72.
40. Alberti, L. and R.M. Harshey, Differentiation of Serratia marcescens 274 into swimmer
and swarmer cells. J Bacteriol, 1990. 172(8): p. 4322-8.
41. Givskov, M., et al., Two separate regulatory systems participate in control of
swarming motility of Serratia liquefaciens MG1. J Bacteriol, 1998. 180(3): p. 742-5.
42. Wei, J.R. and H.C. Lai, N-acylhomoserine lactone-dependent cell-to-cell communication
and social behavior in the genus Serratia. Int J Med Microbiol, 2006. 296(2-3): p.
117-24.
43. Van Houdt, R., M. Givskov, and C.W. Michiels, Quorum sensing in Serratia. FEMS
Microbiol Rev, 2007. 31(4): p. 407-24.
44. Szczotka-Flynn, L.B., et al., Increased resistance of contact lens-related bacterial
biofilms to antimicrobial activity of soft contact lens care solutions. Cornea, 2009.
28(8): p. 918-26.
45. Hoch, J.A., Two-component and phosphorelay signal transduction. Curr Opin Microbiol,
2000. 3(2): p. 165-70.
46. Jung, K., et al., Histidine kinases and response regulators in networks. Curr Opin
Microbiol, 2012. 15(2): p. 118-24.
47. Bader, M.W., et al., Recognition of antimicrobial peptides by a bacterial sensor
kinase. Cell, 2005. 122(3): p. 461-72.
48. Garcia Vescovi, E., F.C. Soncini, and E.A. Groisman, Mg2+ as an extracellular signal:
environmental regulation of Salmonella virulence. Cell, 1996. 84(1): p. 165-74.
49. Wosten, M.M., et al., A signal transduction system that responds to extracellular
iron. Cell, 2000. 103(1): p. 113-25.
50. Hayes, P.H., et al., Cystine-rich type II antifreeze protein precursor is initiated
from the third AUG codon of its mRNA. J Biol Chem, 1989. 264(31): p. 18761-7.
51. Otto, K. and T.J. Silhavy, Surface sensing and adhesion of Escherichia coli
controlled by the Cpx-signaling pathway. Proc Natl Acad Sci U S A, 2002. 99(4): p.
2287-92.
52. Raivio, T.L. and T.J. Silhavy, Periplasmic stress and ECF sigma factors. Annu Rev
Microbiol, 2001. 55: p. 591-624.
53. Amabile-Cuevas, C.F. and B. Demple, Molecular characterization of the soxRS genes of
Escherichia coli: two genes control a superoxide stress regulon. Nucleic Acids Res,
1991. 19(16): p. 4479-84.
54. Lai, H.C., et al., The RssAB two-component signal transduction system in Serratia
marcescens regulates swarming motility and cell envelope architecture in response to
exogenous saturated fatty acids. J Bacteriol, 2005. 187(10): p. 3407-14.
55. Wei, J.R., et al., Biochemical characterization of RssA-RssB, a two-component signal
transduction system regulating swarming behavior in Serratia marcescens. J Bacteriol,
2005. 187(16): p. 5683-90.
56. Soo, P.C., et al., Regulation of swarming motility and flhDCSm expression by RssAB
signaling in Serratia marcescens. J Bacteriol, 2008. 190(7): p. 2496-504.
57. Tsai, Y.H., et al., RssAB signaling coordinates early development of surface
multicellularity in Serratia marcescens. PLoS One, 2011. 6(8): p. e24154.
58. Allison, C., et al., Ability of Proteus mirabilis to invade human urothelial cells is
coupled to motility and swarming differentiation. Infect Immun, 1992. 60(11): p.
4740-6.
59. Parsek, M.R. and P.K. Singh, Bacterial biofilms: an emerging link to disease
pathogenesis. Annu Rev Microbiol, 2003. 57: p. 677-701.
60. Shrout, J.D., et al., The impact of quorum sensing and swarming motility on
Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol,
2006. 62(5): p. 1264-77.
61. Maragakis, L.L., et al., Outbreak of multidrug-resistant Serratia marcescens
infection in a neonatal intensive care unit. Infect Control Hosp Epidemiol, 2008.
29(5): p. 418-23.
62. Buffet-Bataillon, S., et al., Outbreak of Serratia marcescens in a neonatal intensive
care unit: contaminated unmedicated liquid soap and risk factors. J Hosp Infect,
2009. 72(1): p. 17-22.
63. Rather, P.N., Swarmer cell differentiation in Proteus mirabilis. Environ Microbiol,
2005. 7(8): p. 1065-73.
64. Fraser, G.M., et al., Swarming-coupled expression of the Proteus mirabilis hpmBA
haemolysin operon. Microbiology, 2002. 148(Pt 7): p. 2191-201.
65. Overhage, J., et al., Swarming of Pseudomonas aeruginosa is a complex adaptation
leading to increased production of virulence factors and antibiotic resistance. J
Bacteriol, 2008. 190(8): p. 2671-9.
66. Eberl, L., et al., Involvement of N-acyl-L-hormoserine lactone autoinducers in
controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol,
1996. 20(1): p. 127-36.
67. Pratt, L.A. and R. Kolter, Genetic analysis of Escherichia coli biofilm formation:
roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol, 1998. 30(2):
p. 285-93.
68. Cowles, K.N. and H. Goodrich-Blair, Expression and activity of a Xenorhabdus
nematophila haemolysin required for full virulence towards Manduca sexta insects.
Cell Microbiol, 2005. 7(2): p. 209-19.
69. Caiazza, N.C., et al., Inverse regulation of biofilm formation and swarming motility
by Pseudomonas aeruginosa PA14. J Bacteriol, 2007. 189(9): p. 3603-12.
70. Merritt, J.H., et al., SadC reciprocally influences biofilm formation and swarming
motility via modulation of exopolysaccharide production and flagellar function. J
Bacteriol, 2007. 189(22): p. 8154-64.
71. Justice, S.S., et al., Morphological plasticity as a bacterial survival strategy. Nat
Rev Microbiol, 2008. 6(2): p. 162-8.
72. Soo, P.C., et al., Characterization of the dapA-nlpB genetic locus involved in
regulation of swarming motility, cell envelope architecture, hemolysin production,
and cell attachment ability in Serratia marcescens. Infect Immun, 2005. 73(9): p.
6075-84.
73. Isberg, R.R. and S. Falkow, A single genetic locus encoded by Yersinia
pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli
K-12. Nature, 1985. 317(6034): p. 262-4.
74. Lu, C.C., et al., Resveratrol ameliorates Serratia marcescens-induced acute pneumonia
in rats. J Leukoc Biol, 2008. 83(4): p. 1028-37.
75. Wang, J., et al., Morphine impairs host innate immune response and increases
susceptibility to Streptococcus pneumoniae lung infection. J Immunol, 2005. 174(1):
p. 426-34.
76. Pruss, B.M., et al., A complex transcription network controls the early stages of
biofilm development by Escherichia coli. J Bacteriol, 2006. 188(11): p. 3731-9.
77. Stella, N.A., et al., Catabolite repression control of flagellum production by
Serratia marcescens. Res Microbiol, 2008. 159(7-8): p. 562-8.
78. Shimizu, S., et al., Chorioamnionitis caused by Serratia marcescens in a
non-immunocompromised host. J Clin Pathol, 2003. 56(11): p. 871-2.
79. Shimuta, K., et al., The hemolytic and cytolytic activities of Serratia marcescens
phospholipase A (PhlA) depend on lysophospholipid production by PhlA. BMC Microbiol,
2009. 9: p. 261.
80. Givskov, M., et al., Induction of phospholipase- and flagellar synthesis in Serratia
liquefaciens is controlled by expression of the flagellar master operon flhD. Mol
Microbiol, 1995. 15(3): p. 445-54.
81. Liu, J.H., et al., Role of flhDC in the expression of the nuclease gene nucA, cell
division and flagellar synthesis in Serratia marcescens. J Biomed Sci, 2000. 7(6): p.
475-83.
82. Sadikot, R.T., et al., Pathogen-host interactions in Pseudomonas aeruginosa
pneumonia. Am J Respir Crit Care Med, 2005. 171(11): p. 1209-23.
83. Prince, A.S., et al., Cell signaling underlying the pathophysiology of pneumonia. Am
J Physiol Lung Cell Mol Physiol, 2006. 291(3): p. L297-300.
84. Bubeck Wardenburg, J. and O. Schneewind, Vaccine protection against Staphylococcus
aureus pneumonia. J Exp Med, 2008. 205(2): p. 287-94.
85. Doran, K.S., et al., Group B streptococcal beta-hemolysin/cytolysin promotes invasion
of human lung epithelial cells and the release of interleukin-8. J Infect Dis, 2002.
185(2): p. 196-203.
86. Wiles, T.J., et al., Inactivation of host Akt/protein kinase B signaling by bacterial
pore-forming toxins. Mol Biol Cell, 2008. 19(4): p. 1427-38.
87. Ottemann, K.M. and J.F. Miller, Roles for motility in bacterial-host interactions.
Mol Microbiol, 1997. 24(6): p. 1109-17.
88. Chilcott, G.S. and K.T. Hughes, Coupling of flagellar gene expression to flagellar
assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol
Mol Biol Rev, 2000. 64(4): p. 694-708.
89. Givaudan, A. and A. Lanois, flhDC, the flagellar master operon of Xenorhabdus
nematophilus: requirement for motility, lipolysis, extracellular hemolysis, and full
virulence in insects. J Bacteriol, 2000. 182(1): p. 107-15.
90. Churchward, G., The two faces of Janus: virulence gene regulation by CovR/S in group
A streptococci. Mol Microbiol, 2007. 64(1): p. 34-41.
91. Engleberg, N.C., et al., Contribution of CsrR-regulated virulence factors to the
progress and outcome of murine skin infections by Streptococcus pyogenes. Infect
Immun, 2004. 72(2): p. 623-8.
92. Engleberg, N.C., et al., Spontaneous mutations in the CsrRS two-component regulatory
system of Streptococcus pyogenes result in enhanced virulence in a murine model of
skin and soft tissue infection. J Infect Dis, 2001. 183(7): p. 1043-54.
93. Foreman-Wykert, A.K. and J.F. Miller, Hypervirulence and pathogen fitness. Trends
Microbiol, 2003. 11(3): p. 105-8.
94. Mouslim, C., et al., Conflicting needs for a Salmonella hypervirulence gene in host
and non-host environments. Mol Microbiol, 2002. 45(4): p. 1019-27.
95. Gal-Mor, O., et al., A novel secretion pathway of Salmonella enterica acts as an
antivirulence modulator during salmonellosis. PLoS Pathog, 2008. 4(4): p. e1000036.
96. Cho, K.H. and M.G. Caparon, Patterns of virulence gene expression differ between
biofilm and tissue communities of Streptococcus pyogenes. Mol Microbiol, 2005. 57(6):
p. 1545-56.
97. Coulthurst, S.J., et al., Quorum sensing has an unexpected role in virulence in the
model pathogen Citrobacter rodentium. EMBO Rep, 2007. 8(7): p. 698-703.
98. Knowles, S., et al., An outbreak of multiply resistant Serratia marcescens: the
importance of persistent carriage. Bone Marrow Transplant, 2000. 25(8): p. 873-7.
99. Harshey, R.M., Bees aren't the only ones: swarming in gram-negative bacteria. Mol
Microbiol, 1994. 13(3): p. 389-94.
100. Kearns, D.B. and R. Losick, Swarming motility in undomesticated Bacillus subtilis.
Mol Microbiol, 2003. 49(3): p. 581-90.
101. Jarrell, K.F. and M.J. McBride, The surprisingly diverse ways that prokaryotes move.
Nat Rev Microbiol, 2008. 6(6): p. 466-76.
102. Butler, M.T., Q. Wang, and R.M. Harshey, Cell density and mobility protect swarming
bacteria against antibiotics. Proc Natl Acad Sci U S A, 2010. 107(8): p. 3776-81.
103. Lai, S., J. Tremblay, and E. Deziel, Swarming motility: a multicellular behaviour
conferring antimicrobial resistance. Environ Microbiol, 2009. 11(1): p. 126-36.
104. Kim, W. and M.G. Surette, Metabolic differentiation in actively swarming Salmonella.
Mol Microbiol, 2004. 54(3): p. 702-14.
105. Mariconda, S., Q. Wang, and R.M. Harshey, A mechanical role for the chemotaxis
system in swarming motility. Mol Microbiol, 2006. 60(6): p. 1590-602.
106. Kearns, D.B. and R. Losick, Cell population heterogeneity during growth of Bacillus
subtilis. Genes Dev, 2005. 19(24): p. 3083-94.
107. Inoue, T., et al., Genome-wide screening of genes required for swarming motility in
Escherichia coli K-12. J Bacteriol, 2007. 189(3): p. 950-7.
108. Wang, Q., et al., Gene expression patterns during swarming in Salmonella
typhimurium: genes specific to surface growth and putative new motility and
pathogenicity genes. Mol Microbiol, 2004. 52(1): p. 169-87.
109. McCarter, L. and M. Silverman, Iron regulation of swarmer cell differentiation of
Vibrio parahaemolyticus. J Bacteriol, 1989. 171(2): p. 731-6.
110. Matilla, M.A., et al., Temperature and pyoverdine-mediated iron acquisition control
surface motility of Pseudomonas putida. Environ Microbiol, 2007. 9(7): p. 1842-50.
111. Laub, M.T. and M. Goulian, Specificity in two-component signal transduction
pathways. Annu Rev Genet, 2007. 41: p. 121-45.
112. Eberl, L., S. Molin, and M. Givskov, Surface motility of Serratia liquefaciens MG1.
J Bacteriol, 1999. 181(6): p. 1703-12.
113. Sambrook, J., T. Maniatis, and E.F. Fritsch, Molecular cloning: a laboratory manual,
2nd ed. 1989, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory.
114. Clarke, M.B., et al., The QseC sensor kinase: a bacterial adrenergic receptor. Proc
Natl Acad Sci U S A, 2006. 103(27): p. 10420-5.
115. Lin, C.S., et al., RssAB-FlhDC-ShlBA as a major pathogenesis pathway in Serratia
marcescens. Infect Immun, 2010. 78(11): p. 4870-81.
116. Drew, D., et al., Optimization of membrane protein overexpression and purification
using GFP fusions. Nat Methods, 2006. 3(4): p. 303-13.
117. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using
real-time quantitative PCR and the 2-ΔΔCT Method. Methods, 2001. 25(4): p. 402-8.
118. Dietz, P., G. Gerlach, and D. Beier, Identification of target genes regulated by the
two-component system HP166-HP165 of Helicobacter pylori. J Bacteriol, 2002. 184(2):
p. 350-62.
119. Birdsell, D.C. and E.H. Cota-Robles, Production and ultrastructure of lysozyme and
ethylenediaminetetraacetate-lysozyme spheroplasts of Escherichia coli. J Bacteriol,
1967. 93(1): p. 427-37.
120. Missiakas, D., C. Georgopoulos, and S. Raina, Identification and characterization of
the Escherichia coli gene dsbB, whose product is involved in the formation of
disulfide bonds in vivo. Proc Natl Acad Sci U S A, 1993. 90(15): p. 7084-8.
121. Janausch, I.G., et al., Phosphorylation and DNA binding of the regulator DcuR of the
fumarate-responsive two-component system DcuSR of Escherichia coli. Microbiology,
2004. 150(Pt 4): p. 877-83.
122. Janausch, I.G., I. Garcia-Moreno, and G. Unden, Function of DcuS from Escherichia
coli as a fumarate-stimulated histidine protein kinase in vitro. J Biol Chem, 2002.
277(42): p. 39809-14.
123. Devireddy, L.R., et al., A mammalian siderophore synthesized by an enzyme with a
bacterial homolog involved in enterobactin production. Cell, 2010. 141(6): p.
1006-17.
124. Stintzi, A., et al., Novel pyoverdine biosynthesis gene(s) of Pseudomonas aeruginosa
PAO. Microbiology, 1996. 142 ( Pt 5): p. 1181-90.
125. Wyckoff, E.E., et al., Characterization of ferric and ferrous iron transport systems
in Vibrio cholerae. J Bacteriol, 2006. 188(18): p. 6515-23.
126. Krell, T., et al., Bacterial sensor kinases: diversity in the recognition of
environmental signals. Annu Rev Microbiol, 2010. 64: p. 539-59.
127. Trimble, M.J. and L.L. McCarter, Bis-(3'-5')-cyclic dimeric GMP-linked quorum
sensing controls swarming in Vibrio parahaemolyticus. Proc Natl Acad Sci U S A,
2011. 108(44): p. 18079-84.
128. Gode-Potratz, C.J., D.M. Chodur, and L.L. McCarter, Calcium and iron regulate
swarming and type III secretion in Vibrio parahaemolyticus. J Bacteriol, 2010.
192(22): p. 6025-38.
129. Tolker-Nielsen, T., et al., Assessment of flhDC mRNA levels in Serratia liquefaciens
swarm cells. J Bacteriol, 2000. 182(10): p. 2680-6.
130. Grantcharova, N., et al., Bistable expression of CsgD in biofilm development of
Salmonella enterica Serovar Typhimurium. J Bacteriol, 2010. 192(2): p. 456-66.
131. Patriquin, G.M., et al., Influence of quorum sensing and iron on twitching motility
and biofilm formation in Pseudomonas aeruginosa. J Bacteriol, 2008. 190(2): p.
662-71.
132. Singh, P.K., et al., A component of innate immunity prevents bacterial biofilm
development. Nature, 2002. 417(6888): p. 552-5.
133. Fischbach, M.A., et al., How pathogenic bacteria evade mammalian sabotage in the
battle for iron. Nat Chem Biol, 2006. 2(3): p. 132-8.
134. Nairz, M., et al., The struggle for iron - a metal at the host-pathogen interface.
Cell Microbiol, 2010. 12(12): p. 1691-702.
135. Skaar, E.P., The battle for iron between bacterial pathogens and their vertebrate
hosts. PLoS Pathog, 2010. 6(8): p. e1000949.
136. Abbas, A., et al., A role for TonB1 in biofilm formation and quorum sensing in
Pseudomonas aeruginosa. FEMS Microbiol Lett, 2007. 274(2): p. 269-78.
137. Lamont, I.L., et al., Siderophore-mediated signaling regulates virulence factor
production in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 2002. 99(10): p.
7072-7.
138. Siegrist, M.S., et al., Mycobacterial Esx-3 is required for mycobactin-mediated iron
acquisition. Proc Natl Acad Sci U S A, 2009. 106(44): p. 18792-7.
139. Taguchi, F., et al., The siderophore pyoverdine of Pseudomonas syringae pv. tabaci
6605 is an intrinsic virulence factor in host tobacco infection. J Bacteriol, 2010.
192(1): p. 117-26.
140. Andrews, S.C., A.K. Robinson, and F. Rodriguez-Quinones, Bacterial iron homeostasis.
FEMS Microbiol Rev, 2003. 27(2-3): p. 215-37.
141. Nelson, N., Metal ion transporters and homeostasis. EMBO J, 1999. 18(16): p. 4361-71.
142. Herrero, M., V. de Lorenzo, and K.N. Timmis, Transposon vectors containing
non-antibiotic resistance selection markers for cloning and stable chromosomal
insertion of foreign genes in gram-negative bacteria. J Bacteriol, 1990. 172(11): p.
6557-67.
143. de Lorenzo, V. and K.N. Timmis, Analysis and construction of stable phenotypes in
gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol,
1994. 235: p. 386-405.
144. Chang, A.C. and S.N. Cohen, Construction and characterization of amplifiable
multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J
Bacteriol, 1978. 134(3): p. 1141-56.
145. Guzman, L.M., et al., Tight regulation, modulation, and high-level expression by
vectors containing the arabinose PBAD promoter. J Bacteriol, 1995. 177(14): p.
4121-30.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊