|
1. Grimont, P.A. and F. Grimont, The genus Serratia. Annu Rev Microbiol, 1978. 32: p. 221-48. 2. Hejazi, A. and F.R. Falkiner, Serratia marcescens. J Med Microbiol, 1997. 46(11): p. 903-12. 3. Wheat, R.P., A. Zuckerman, and L.A. Rantz, Infection due to chromobacteria; report of 11 cases. AMA Arch Intern Med, 1951. 88(4): p. 461-6. 4. Arakawa, Y., et al., Trends in antimicrobial-drug resistance in Japan. Emerg Infect Dis, 2000. 6(6): p. 572-5. 5. Traub, W.H., Antibiotic susceptibility of Serratia marcescens and Serratia liquefaciens. Chemotherapy, 2000. 46(5): p. 315-21. 6. Suh, B., et al., Outbreak of meropenem-resistant Serratia marcescens comediated by chromosomal AmpC beta-lactamase overproduction and outer membrane protein loss. Antimicrob Agents Chemother, 2010. 54(12): p. 5057-61. 7. Dessi, A., et al., Serratia marcescens infections and outbreaks in neonatal intensive care units. J Chemother, 2009. 21(5): p. 493-9. 8. Cohen, A.L., et al., Outbreak of Serratia marcescens bloodstream and central nervous system infections after interventional pain management procedures. Clin J Pain, 2008. 24(5): p. 374-80. 9. Civen, R., et al., Outbreak of Serratia marcescens infections following injection of betamethasone compounded at a community pharmacy. Clin Infect Dis, 2006. 43(7): p. 831-7. 10. Kurz, C.L., et al., Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J, 2003. 22(7): p. 1451-60. 11. Hertle, R., Serratia type pore forming toxins. Curr Protein Pept Sci, 2000. 1(1): p. 75-89. 12. Hertle, R., et al., Specific phosphatidylethanolamine dependence of Serratia marcescens cytotoxin activity. Mol Microbiol, 1997. 26(5): p. 853-65. 13. Hertle, R., et al., Cytotoxic action of Serratia marcescens hemolysin on human epithelial cells. Infect Immun, 1999. 67(2): p. 817-25. 14. Poole, K., E. Schiebel, and V. Braun, Molecular characterization of the hemolysin determinant of Serratia marcescens. J Bacteriol, 1988. 170(7): p. 3177-88. 15. Schiebel, E. and V. Braun, Integration of the Serratia marcescens haemolysin into human erythrocyte membranes. Mol Microbiol, 1989. 3(3): p. 445-53. 16. Schiebel, E., H. Schwarz, and V. Braun, Subcellular location and unique secretion of the hemolysin of Serratia marcescens. J Biol Chem, 1989. 264(27): p. 16311-20. 17. Hertle, R. and H. Schwarz, Serratia marcescens internalization and replication in human bladder epithelial cells. BMC Infect Dis, 2004. 4: p. 16. 18. Konig, W., et al., Role of cell-bound hemolysin as a pathogenicity factor for Serratia infections. Infect Immun, 1987. 55(11): p. 2554-61. 19. Marre, R., J. Hacker, and V. Braun, The cell-bound hemolysin of Serratia marcescens contributes to uropathogenicity. Microb Pathog, 1989. 7(2): p. 153-6. 20. Poole, K. and V. Braun, Iron regulation of Serratia marcescens hemolysin gene expression. Infect Immun, 1988. 56(11): p. 2967-71. 21. Shapiro, J.A., Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol, 1998. 52: p. 81-104. 22. Kaiser, D., Roland Thaxter's legacy and the origins of multicellular development. Genetics, 1993. 135(2): p. 249-54. 23. Piggot, P.J. and D.W. Hilbert, Sporulation of Bacillus subtilis. Curr Opin Microbiol, 2004. 7(6): p. 579-86. 24. Moons, P., C.W. Michiels, and A. Aertsen, Bacterial interactions in biofilms. Crit Rev Microbiol, 2009. 35(3): p. 157-68. 25. Nadell, C.D., J.B. Xavier, and K.R. Foster, The sociobiology of biofilms. FEMS Microbiol Rev, 2009. 33(1): p. 206-24. 26. Fraser, G.M. and C. Hughes, Swarming motility. Curr Opin Microbiol, 1999. 2(6): p. 630-5. 27. Hall-Stoodley, L., J.W. Costerton, and P. Stoodley, Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol, 2004. 2(2): p. 95-108. 28. Vlamakis, H., et al., Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev, 2008. 22(7): p. 945-53. 29. Branda, S.S., et al., Biofilms: the matrix revisited. Trends Microbiol, 2005. 13(1): p. 20-6. 30. Costerton, J.W., P.S. Stewart, and E.P. Greenberg, Bacterial biofilms: a common cause of persistent infections. Science, 1999. 284(5418): p. 1318-22. 31. del Pozo, J.L. and R. Patel, The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther, 2007. 82(2): p. 204-9. 32. Kearns, D.B., A field guide to bacterial swarming motility. Nat Rev Microbiol, 2010. 8(9): p. 634-44. 33. Harshey, R.M., Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol, 2003. 57: p. 249-73. 34. Williams, F.D. and R.H. Schwarzhoff, Nature of the swarming phenomenon in Proteus. Annu Rev Microbiol, 1978. 32: p. 101-22. 35. Kim, W., et al., Swarm-cell differentiation in Salmonella enterica serovar typhimurium results in elevated resistance to multiple antibiotics. J Bacteriol, 2003. 185(10): p. 3111-7. 36. Verstraeten, N., et al., Living on a surface: swarming and biofilm formation. Trends Microbiol, 2008. 16(10): p. 496-506. 37. Labbate, M., et al., Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J Bacteriol, 2004. 186(3): p. 692-8. 38. Rice, S.A., et al., Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J Bacteriol, 2005. 187(10): p. 3477-85. 39. Shanks, R.M., et al., A Serratia marcescens OxyR homolog mediates surface attachment and biofilm formation. J Bacteriol, 2007. 189(20): p. 7262-72. 40. Alberti, L. and R.M. Harshey, Differentiation of Serratia marcescens 274 into swimmer and swarmer cells. J Bacteriol, 1990. 172(8): p. 4322-8. 41. Givskov, M., et al., Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol, 1998. 180(3): p. 742-5. 42. Wei, J.R. and H.C. Lai, N-acylhomoserine lactone-dependent cell-to-cell communication and social behavior in the genus Serratia. Int J Med Microbiol, 2006. 296(2-3): p. 117-24. 43. Van Houdt, R., M. Givskov, and C.W. Michiels, Quorum sensing in Serratia. FEMS Microbiol Rev, 2007. 31(4): p. 407-24. 44. Szczotka-Flynn, L.B., et al., Increased resistance of contact lens-related bacterial biofilms to antimicrobial activity of soft contact lens care solutions. Cornea, 2009. 28(8): p. 918-26. 45. Hoch, J.A., Two-component and phosphorelay signal transduction. Curr Opin Microbiol, 2000. 3(2): p. 165-70. 46. Jung, K., et al., Histidine kinases and response regulators in networks. Curr Opin Microbiol, 2012. 15(2): p. 118-24. 47. Bader, M.W., et al., Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell, 2005. 122(3): p. 461-72. 48. Garcia Vescovi, E., F.C. Soncini, and E.A. Groisman, Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell, 1996. 84(1): p. 165-74. 49. Wosten, M.M., et al., A signal transduction system that responds to extracellular iron. Cell, 2000. 103(1): p. 113-25. 50. Hayes, P.H., et al., Cystine-rich type II antifreeze protein precursor is initiated from the third AUG codon of its mRNA. J Biol Chem, 1989. 264(31): p. 18761-7. 51. Otto, K. and T.J. Silhavy, Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci U S A, 2002. 99(4): p. 2287-92. 52. Raivio, T.L. and T.J. Silhavy, Periplasmic stress and ECF sigma factors. Annu Rev Microbiol, 2001. 55: p. 591-624. 53. Amabile-Cuevas, C.F. and B. Demple, Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon. Nucleic Acids Res, 1991. 19(16): p. 4479-84. 54. Lai, H.C., et al., The RssAB two-component signal transduction system in Serratia marcescens regulates swarming motility and cell envelope architecture in response to exogenous saturated fatty acids. J Bacteriol, 2005. 187(10): p. 3407-14. 55. Wei, J.R., et al., Biochemical characterization of RssA-RssB, a two-component signal transduction system regulating swarming behavior in Serratia marcescens. J Bacteriol, 2005. 187(16): p. 5683-90. 56. Soo, P.C., et al., Regulation of swarming motility and flhDCSm expression by RssAB signaling in Serratia marcescens. J Bacteriol, 2008. 190(7): p. 2496-504. 57. Tsai, Y.H., et al., RssAB signaling coordinates early development of surface multicellularity in Serratia marcescens. PLoS One, 2011. 6(8): p. e24154. 58. Allison, C., et al., Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infect Immun, 1992. 60(11): p. 4740-6. 59. Parsek, M.R. and P.K. Singh, Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol, 2003. 57: p. 677-701. 60. Shrout, J.D., et al., The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol, 2006. 62(5): p. 1264-77. 61. Maragakis, L.L., et al., Outbreak of multidrug-resistant Serratia marcescens infection in a neonatal intensive care unit. Infect Control Hosp Epidemiol, 2008. 29(5): p. 418-23. 62. Buffet-Bataillon, S., et al., Outbreak of Serratia marcescens in a neonatal intensive care unit: contaminated unmedicated liquid soap and risk factors. J Hosp Infect, 2009. 72(1): p. 17-22. 63. Rather, P.N., Swarmer cell differentiation in Proteus mirabilis. Environ Microbiol, 2005. 7(8): p. 1065-73. 64. Fraser, G.M., et al., Swarming-coupled expression of the Proteus mirabilis hpmBA haemolysin operon. Microbiology, 2002. 148(Pt 7): p. 2191-201. 65. Overhage, J., et al., Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol, 2008. 190(8): p. 2671-9. 66. Eberl, L., et al., Involvement of N-acyl-L-hormoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol, 1996. 20(1): p. 127-36. 67. Pratt, L.A. and R. Kolter, Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol, 1998. 30(2): p. 285-93. 68. Cowles, K.N. and H. Goodrich-Blair, Expression and activity of a Xenorhabdus nematophila haemolysin required for full virulence towards Manduca sexta insects. Cell Microbiol, 2005. 7(2): p. 209-19. 69. Caiazza, N.C., et al., Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol, 2007. 189(9): p. 3603-12. 70. Merritt, J.H., et al., SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J Bacteriol, 2007. 189(22): p. 8154-64. 71. Justice, S.S., et al., Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol, 2008. 6(2): p. 162-8. 72. Soo, P.C., et al., Characterization of the dapA-nlpB genetic locus involved in regulation of swarming motility, cell envelope architecture, hemolysin production, and cell attachment ability in Serratia marcescens. Infect Immun, 2005. 73(9): p. 6075-84. 73. Isberg, R.R. and S. Falkow, A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature, 1985. 317(6034): p. 262-4. 74. Lu, C.C., et al., Resveratrol ameliorates Serratia marcescens-induced acute pneumonia in rats. J Leukoc Biol, 2008. 83(4): p. 1028-37. 75. Wang, J., et al., Morphine impairs host innate immune response and increases susceptibility to Streptococcus pneumoniae lung infection. J Immunol, 2005. 174(1): p. 426-34. 76. Pruss, B.M., et al., A complex transcription network controls the early stages of biofilm development by Escherichia coli. J Bacteriol, 2006. 188(11): p. 3731-9. 77. Stella, N.A., et al., Catabolite repression control of flagellum production by Serratia marcescens. Res Microbiol, 2008. 159(7-8): p. 562-8. 78. Shimizu, S., et al., Chorioamnionitis caused by Serratia marcescens in a non-immunocompromised host. J Clin Pathol, 2003. 56(11): p. 871-2. 79. Shimuta, K., et al., The hemolytic and cytolytic activities of Serratia marcescens phospholipase A (PhlA) depend on lysophospholipid production by PhlA. BMC Microbiol, 2009. 9: p. 261. 80. Givskov, M., et al., Induction of phospholipase- and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon flhD. Mol Microbiol, 1995. 15(3): p. 445-54. 81. Liu, J.H., et al., Role of flhDC in the expression of the nuclease gene nucA, cell division and flagellar synthesis in Serratia marcescens. J Biomed Sci, 2000. 7(6): p. 475-83. 82. Sadikot, R.T., et al., Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med, 2005. 171(11): p. 1209-23. 83. Prince, A.S., et al., Cell signaling underlying the pathophysiology of pneumonia. Am J Physiol Lung Cell Mol Physiol, 2006. 291(3): p. L297-300. 84. Bubeck Wardenburg, J. and O. Schneewind, Vaccine protection against Staphylococcus aureus pneumonia. J Exp Med, 2008. 205(2): p. 287-94. 85. Doran, K.S., et al., Group B streptococcal beta-hemolysin/cytolysin promotes invasion of human lung epithelial cells and the release of interleukin-8. J Infect Dis, 2002. 185(2): p. 196-203. 86. Wiles, T.J., et al., Inactivation of host Akt/protein kinase B signaling by bacterial pore-forming toxins. Mol Biol Cell, 2008. 19(4): p. 1427-38. 87. Ottemann, K.M. and J.F. Miller, Roles for motility in bacterial-host interactions. Mol Microbiol, 1997. 24(6): p. 1109-17. 88. Chilcott, G.S. and K.T. Hughes, Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev, 2000. 64(4): p. 694-708. 89. Givaudan, A. and A. Lanois, flhDC, the flagellar master operon of Xenorhabdus nematophilus: requirement for motility, lipolysis, extracellular hemolysis, and full virulence in insects. J Bacteriol, 2000. 182(1): p. 107-15. 90. Churchward, G., The two faces of Janus: virulence gene regulation by CovR/S in group A streptococci. Mol Microbiol, 2007. 64(1): p. 34-41. 91. Engleberg, N.C., et al., Contribution of CsrR-regulated virulence factors to the progress and outcome of murine skin infections by Streptococcus pyogenes. Infect Immun, 2004. 72(2): p. 623-8. 92. Engleberg, N.C., et al., Spontaneous mutations in the CsrRS two-component regulatory system of Streptococcus pyogenes result in enhanced virulence in a murine model of skin and soft tissue infection. J Infect Dis, 2001. 183(7): p. 1043-54. 93. Foreman-Wykert, A.K. and J.F. Miller, Hypervirulence and pathogen fitness. Trends Microbiol, 2003. 11(3): p. 105-8. 94. Mouslim, C., et al., Conflicting needs for a Salmonella hypervirulence gene in host and non-host environments. Mol Microbiol, 2002. 45(4): p. 1019-27. 95. Gal-Mor, O., et al., A novel secretion pathway of Salmonella enterica acts as an antivirulence modulator during salmonellosis. PLoS Pathog, 2008. 4(4): p. e1000036. 96. Cho, K.H. and M.G. Caparon, Patterns of virulence gene expression differ between biofilm and tissue communities of Streptococcus pyogenes. Mol Microbiol, 2005. 57(6): p. 1545-56. 97. Coulthurst, S.J., et al., Quorum sensing has an unexpected role in virulence in the model pathogen Citrobacter rodentium. EMBO Rep, 2007. 8(7): p. 698-703. 98. Knowles, S., et al., An outbreak of multiply resistant Serratia marcescens: the importance of persistent carriage. Bone Marrow Transplant, 2000. 25(8): p. 873-7. 99. Harshey, R.M., Bees aren't the only ones: swarming in gram-negative bacteria. Mol Microbiol, 1994. 13(3): p. 389-94. 100. Kearns, D.B. and R. Losick, Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol, 2003. 49(3): p. 581-90. 101. Jarrell, K.F. and M.J. McBride, The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol, 2008. 6(6): p. 466-76. 102. Butler, M.T., Q. Wang, and R.M. Harshey, Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci U S A, 2010. 107(8): p. 3776-81. 103. Lai, S., J. Tremblay, and E. Deziel, Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol, 2009. 11(1): p. 126-36. 104. Kim, W. and M.G. Surette, Metabolic differentiation in actively swarming Salmonella. Mol Microbiol, 2004. 54(3): p. 702-14. 105. Mariconda, S., Q. Wang, and R.M. Harshey, A mechanical role for the chemotaxis system in swarming motility. Mol Microbiol, 2006. 60(6): p. 1590-602. 106. Kearns, D.B. and R. Losick, Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev, 2005. 19(24): p. 3083-94. 107. Inoue, T., et al., Genome-wide screening of genes required for swarming motility in Escherichia coli K-12. J Bacteriol, 2007. 189(3): p. 950-7. 108. Wang, Q., et al., Gene expression patterns during swarming in Salmonella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes. Mol Microbiol, 2004. 52(1): p. 169-87. 109. McCarter, L. and M. Silverman, Iron regulation of swarmer cell differentiation of Vibrio parahaemolyticus. J Bacteriol, 1989. 171(2): p. 731-6. 110. Matilla, M.A., et al., Temperature and pyoverdine-mediated iron acquisition control surface motility of Pseudomonas putida. Environ Microbiol, 2007. 9(7): p. 1842-50. 111. Laub, M.T. and M. Goulian, Specificity in two-component signal transduction pathways. Annu Rev Genet, 2007. 41: p. 121-45. 112. Eberl, L., S. Molin, and M. Givskov, Surface motility of Serratia liquefaciens MG1. J Bacteriol, 1999. 181(6): p. 1703-12. 113. Sambrook, J., T. Maniatis, and E.F. Fritsch, Molecular cloning: a laboratory manual, 2nd ed. 1989, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory. 114. Clarke, M.B., et al., The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci U S A, 2006. 103(27): p. 10420-5. 115. Lin, C.S., et al., RssAB-FlhDC-ShlBA as a major pathogenesis pathway in Serratia marcescens. Infect Immun, 2010. 78(11): p. 4870-81. 116. Drew, D., et al., Optimization of membrane protein overexpression and purification using GFP fusions. Nat Methods, 2006. 3(4): p. 303-13. 117. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods, 2001. 25(4): p. 402-8. 118. Dietz, P., G. Gerlach, and D. Beier, Identification of target genes regulated by the two-component system HP166-HP165 of Helicobacter pylori. J Bacteriol, 2002. 184(2): p. 350-62. 119. Birdsell, D.C. and E.H. Cota-Robles, Production and ultrastructure of lysozyme and ethylenediaminetetraacetate-lysozyme spheroplasts of Escherichia coli. J Bacteriol, 1967. 93(1): p. 427-37. 120. Missiakas, D., C. Georgopoulos, and S. Raina, Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo. Proc Natl Acad Sci U S A, 1993. 90(15): p. 7084-8. 121. Janausch, I.G., et al., Phosphorylation and DNA binding of the regulator DcuR of the fumarate-responsive two-component system DcuSR of Escherichia coli. Microbiology, 2004. 150(Pt 4): p. 877-83. 122. Janausch, I.G., I. Garcia-Moreno, and G. Unden, Function of DcuS from Escherichia coli as a fumarate-stimulated histidine protein kinase in vitro. J Biol Chem, 2002. 277(42): p. 39809-14. 123. Devireddy, L.R., et al., A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell, 2010. 141(6): p. 1006-17. 124. Stintzi, A., et al., Novel pyoverdine biosynthesis gene(s) of Pseudomonas aeruginosa PAO. Microbiology, 1996. 142 ( Pt 5): p. 1181-90. 125. Wyckoff, E.E., et al., Characterization of ferric and ferrous iron transport systems in Vibrio cholerae. J Bacteriol, 2006. 188(18): p. 6515-23. 126. Krell, T., et al., Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol, 2010. 64: p. 539-59. 127. Trimble, M.J. and L.L. McCarter, Bis-(3'-5')-cyclic dimeric GMP-linked quorum sensing controls swarming in Vibrio parahaemolyticus. Proc Natl Acad Sci U S A, 2011. 108(44): p. 18079-84. 128. Gode-Potratz, C.J., D.M. Chodur, and L.L. McCarter, Calcium and iron regulate swarming and type III secretion in Vibrio parahaemolyticus. J Bacteriol, 2010. 192(22): p. 6025-38. 129. Tolker-Nielsen, T., et al., Assessment of flhDC mRNA levels in Serratia liquefaciens swarm cells. J Bacteriol, 2000. 182(10): p. 2680-6. 130. Grantcharova, N., et al., Bistable expression of CsgD in biofilm development of Salmonella enterica Serovar Typhimurium. J Bacteriol, 2010. 192(2): p. 456-66. 131. Patriquin, G.M., et al., Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol, 2008. 190(2): p. 662-71. 132. Singh, P.K., et al., A component of innate immunity prevents bacterial biofilm development. Nature, 2002. 417(6888): p. 552-5. 133. Fischbach, M.A., et al., How pathogenic bacteria evade mammalian sabotage in the battle for iron. Nat Chem Biol, 2006. 2(3): p. 132-8. 134. Nairz, M., et al., The struggle for iron - a metal at the host-pathogen interface. Cell Microbiol, 2010. 12(12): p. 1691-702. 135. Skaar, E.P., The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog, 2010. 6(8): p. e1000949. 136. Abbas, A., et al., A role for TonB1 in biofilm formation and quorum sensing in Pseudomonas aeruginosa. FEMS Microbiol Lett, 2007. 274(2): p. 269-78. 137. Lamont, I.L., et al., Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 2002. 99(10): p. 7072-7. 138. Siegrist, M.S., et al., Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc Natl Acad Sci U S A, 2009. 106(44): p. 18792-7. 139. Taguchi, F., et al., The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. J Bacteriol, 2010. 192(1): p. 117-26. 140. Andrews, S.C., A.K. Robinson, and F. Rodriguez-Quinones, Bacterial iron homeostasis. FEMS Microbiol Rev, 2003. 27(2-3): p. 215-37. 141. Nelson, N., Metal ion transporters and homeostasis. EMBO J, 1999. 18(16): p. 4361-71. 142. Herrero, M., V. de Lorenzo, and K.N. Timmis, Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol, 1990. 172(11): p. 6557-67. 143. de Lorenzo, V. and K.N. Timmis, Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol, 1994. 235: p. 386-405. 144. Chang, A.C. and S.N. Cohen, Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol, 1978. 134(3): p. 1141-56. 145. Guzman, L.M., et al., Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol, 1995. 177(14): p. 4121-30.
|