|
1. Jaenisch, R. and A. Bird, Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet, 2003. 33 Suppl: p. 245-54. 2. Bird, A., Perceptions of epigenetics. Nature, 2007. 447(7143): p. 396-8. 3. Kampranis, S.C. and P.N. Tsichlis, Histone demethylases and cancer. Adv Cancer Res, 2009. 102: p. 103-69. 4. Cheung, P. and P. Lau, Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol, 2005. 19(3): p. 563-73. 5. Klose, R.J., E.M. Kallin, and Y. Zhang, JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet, 2006. 7(9): p. 715-27. 6. Kornberg, R.D. and Y. Lorch, Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell, 1999. 98(3): p. 285-94. 7. Woodcock, C.L., Chromatin architecture. Curr Opin Struct Biol, 2006. 16(2): p. 213-20. 8. Draker, R. and P. Cheung, Transcriptional and epigenetic functions of histone variant H2A.Z. Biochem Cell Biol, 2009. 87(1): p. 19-25. 9. Black, B.E. and E.A. Bassett, The histone variant CENP-A and centromere specification. Curr Opin Cell Biol, 2008. 20(1): p. 91-100. 10. Redon, C.E., et al., gamma-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv Space Res, 2009. 43(8): p. 1171-1178. 11. Kouzarides, T., Chromatin modifications and their function. Cell, 2007. 128(4): p. 693-705. 12. Kusch, T. and J.L. Workman, Histone variants and complexes involved in their exchange. Subcell Biochem, 2007. 41: p. 91-109. 13. Shi, Y., Histone lysine demethylases: emerging roles in development, physiology and disease. Nat Rev Genet, 2007. 8(11): p. 829-33. 14. Grant, S., Targeting histone demethylases in cancer therapy. Clin Cancer Res, 2009. 15(23): p. 7111-3. 15. Shi, Y., et al., Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 2004. 119(7): p. 941-53. 16. Seligson, D.B., et al., Global histone modification patterns predict risk of prostate cancer recurrence. Nature, 2005. 435(7046): p. 1262-6. 17. Anand, R. and R. Marmorstein, Structure and mechanism of lysine-specific demethylase enzymes. J Biol Chem, 2007. 282(49): p. 35425-9. 18. Klose, R.J. and Y. Zhang, Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol, 2007. 8(4): p. 307-18. 19. Forneris, F., et al., LSD1: oxidative chemistry for multifaceted functions in chromatin regulation. Trends Biochem Sci, 2008. 33(4): p. 181-9. 20. Lee, M.G., et al., An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature, 2005. 437(7057): p. 432-5. 21. Kahl, P., et al., Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res, 2006. 66(23): p. 11341-7. 22. Huang, J., et al., p53 is regulated by the lysine demethylase LSD1. Nature, 2007. 449(7158): p. 105-8. 23. Lin, Y., et al., The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J, 2010. 29(11): p. 1803-16. 24. Sato, F., et al., MicroRNAs and epigenetics. FEBS J, 2011. 278(10): p. 1598-609. 25. Lee, Y., et al., MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 2004. 23(20): p. 4051-60. 26. Gregory, R.I., et al., The Microprocessor complex mediates the genesis of microRNAs. Nature, 2004. 432(7014): p. 235-40. 27. Yi, R., et al., Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 2003. 17(24): p. 3011-6. 28. Schwarz, D.S., Y. Tomari, and P.D. Zamore, The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Curr Biol, 2004. 14(9): p. 787-91. 29. Zeng, Y., R. Yi, and B.R. Cullen, MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A, 2003. 100(17): p. 9779-84. 30. Lu, J., et al., MicroRNA expression profiles classify human cancers. Nature, 2005. 435(7043): p. 834-8. 31. Garzon, R., et al., MicroRNA expression and function in cancer. Trends Mol Med, 2006. 12(12): p. 580-7. 32. O'Donnell, K.A., et al., c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 2005. 435(7043): p. 839-43. 33. He, L., et al., A microRNA polycistron as a potential human oncogene. Nature, 2005. 435(7043): p. 828-33. 34. Ventura, A., et al., Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell, 2008. 132(5): p. 875-86. 35. Volinia, S., et al., A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A, 2006. 103(7): p. 2257-61. 36. Ota, A., et al., Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res, 2004. 64(9): p. 3087-95. 37. Tagawa, H., et al., Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development. Cancer Sci, 2007. 98(9): p. 1482-90. 38. Yu, Z., et al., A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol, 2008. 182(3): p. 509-17. 39. Amente, S., L. Lania, and B. Majello, Epigenetic reprogramming of Myc target genes. Am J Cancer Res, 2011. 1(3): p. 413-418. 40. Han, J., et al., Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 2006. 125(5): p. 887-901. 41. Mendell, J.T., miRiad roles for the miR-17-92 cluster in development and disease. Cell, 2008. 133(2): p. 217-22.
|