|
[1] 葉惠青, 能源政策與能源結構發展方向, 94年6月 [2] 莊嘉琛,《太陽能工程–太陽能電池篇》,全華科技圖書股份有限公司92年3月 [3] Green M A. In:Proceeding of the 21st IEEE Photovolatic Specialists Conference.Orlando,USA,1990 [4] Chapin D M,Fuller C S,Pearson G L.J Appl Phys,1954,8: 676 [5] J. Zhao, A. Wang, M. A. Green, F. Ferrazza, "Novel 19.8%-efficient 'honeycomb'textured multicrystalline and 24.4% monocrystalline silicon solar cells," Appl.Phys. Lett., 73, 1991 (1998). [6] Andrew M. Gabor, John R. Tuttle, David S. Albin, Miguel A. Contreras, and Rommel Noufi, “High-efficiency CulnxGa1-xSe2 solar cells made from (Inx,Ga1-x)2Se3 precursor films”, Appl. Phys. Lett. 65 (2), 11 July 1994 [7] J.R. Tuttle, M.A. Contreras, T.J. Gillespie, K.R. Ramanathan, A.L. Tennant, J. Keane, A.M. Gabor, R. Noufi, “Accelerated publication 17.1% efficient Cu(In,Ga)Se2-based thin-film solar cell”, Prog. Photovoltaics 3, (1995) pp. 235-238. [8] K. Zweibel, H.S. Ullal, B. von Roedern, “PROGRESS AND ISSUES IN POLYCRYSTALLINE THIN-FILM PV TECHNOLOGIES”, published in: Proc. 25th IEEE Photovoltaic Specialists Conf., Washington, DC, 1996, p. 745. [9] I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L.Perkins, B. To, and R. Noufi, “19.9% Efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor”, Progress in Photovoltaics, 9,January 2008. [10] 田民波,《薄膜技術與薄膜材料》,初版,台北,五南書局,民國九十六年六月 [11] Christopher E. Valdivia, Optimization of antireflection coating design for multi-junction solar cells and concentrator systems, Proc. SPIE, Vol. 7099, 709915 (2008);doi:10.1117/12.807675\ [12] D.J. Friedman, J.F. Geisz, A.G. Norman, M.W. Wanlass, and S.R. Kurtz,” 0.7-eV GaInAs JUNCTION FOR A GaInP/GaAs/GaInAs(1eV)/GaInAs(0.7eV) FOUR-JUNCTION SOLAR CELL”. [13] M. Stan, D.Aiken, B.Cho, A.Cornfeld, V.Ley, P.Patel, P.Sharps, T.Varghese,” High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures”, Journal of Crystal Growth 312 1370–1374 (2010) [14] R. R. King,D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon,R. A. Sherif, and N. H. Karam, 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells, APPLIED PHYSICS LETTERS 90, 183516 (2007). [15] J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty,J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions, APPLIED PHYSICS LETTERS 93, 123505 (2008) [16] http://sharp-world.com/corporate/news/091022.html [17] http://www.renewableenergyworld.com/rea/news/article/2009/08/spectrolab-sets-solar-cell-efficiency-record-at-41-6?cmpid=rss [18] R. R. King et al., "40% efficient metamorphic GaInP / GaInAs / Ge multijunction solar cells," Appl. Phys. Lett., 90, 183516 (4 May 2007) [19] S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, and M. Grätzel,“Fabrication of Screen-Printing Pastes From TiO2 Powders for Dye-Sensitised Solar Cells,” Prog. Photovolt: Res. Appl, 14 (2007) 589-601. [20] CTCI Foundation,”漫談薄膜式光電池技術”,2005 [21] M. Yamaguchi, Solar Energy Materials and Solar Cells, 75, 261 (2003). [22] C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys., 51, 4494 (1980). [23] C. T. Sah, ”Reduction of Solar Cell Efficiency by Edge Defects Across the Back Surface Field Junction”, Solid State Electronics, Vol. 25, pp.851-858(1982). [24] M. A. Green, “Limits on the open circuit voltage and efficiency of silicon solar cell imposed by intrinsic auger process”, IEEE, Vol. ED31. [25] W. Shockley, H. J. Queisser, “Detailed balance limit on efficiency of p-n junction solar cells”, Phys, Vol. ED32, pp.510-519(1991). [26] T. Tideje, “Limiting efficiency of silicon solar cells”, IEEE, Vol. ED31, pp.711-716(1984). [27] P. Campbell and M. A. Green, “The limiting efficiency of the silicon solar cells under concentrated sunlight”, IEEE, Vol. ED33, pp. 234-239(1986). [28] J.O. Schumacher and W. Wettling, “Device Physics of Silicon Solar Cells”, pp.55~60 [29] Donals A.Neamen, “Fundamentals of Semiconductor Physics and Devices”, pp. 284~330, 2005. [30] Ben G. Streetman,Sanjay Banerjee, “Solid State Electronic Device”.p171~p217,2000. [31] S.M. Sze ,“Semiconductor Devices Physics and Technology”, pp. 85~127, 2002. [32] Kanaan Kano ,“Semiconductor Device” ,p5-1~p5-49,2000. [33] Martin A. Green, “Solar Cells: Operating Principles, Technology and System Applications”, Prentice-Hall Inc., Englewood Cliffs, (1982). [34] Zhang Y, Mascarenhas A, Wang L, Phys. Rev. Lett. 63, 201312 (2000). [35] http://www.batop.de/information/n_InGaAs.html [36] Yves Willems,G. Borghs, promotor , R. Mertens, promoter,J. Poortmans,G. Adriaenssens ,O. Van der Biest,P. Heremans, secretaries,M.R. Leys (imec),N. Mason (University of Oxford),”Metamorphic InGaP/InGaAs multijunction solar cells on germanium substrates”IMEC,(2008). [37] J. M. Olson, D. J. Friedman and Sarah Kurtz ,High-Efficiency III-V Multijunction Solar Cells, Handbook of Photovoltaic Science and Engineering, ISBN: 0-471-49196-9,(2003) [38] H. Kurita, T. Takamoto, E. Ikeda, and M. Ohmori”High-Efficiency Monolithic InGaP/GaAs Tandem Solar cells with Improved Top-Cell Back Surface Field layer”,IEEE. [39] M. Ladle Ristow, M. S. Kuryla, B. C. Chung, and L. D. Partain, ”Cap Thickness Effect on Al0.37Ga0.63As and GaAs Diode Solar Cells”, IEEE Transactions on Electron Device, pp.183-185(1996). [40] M. F. Stuckings, and A. W. Blakers, ”A study of shading and resistive loss from the finger of encapsulated solar cells”, Energy Material & Solar Cells, pp.233-242(1999). [41] Masafumi Yamaguchi, Tatsuya Takamoto, Kenji Araki”Super high-efficiency multi-junction and concentrator solar cells”, Solar Energy Materials & Solar Cells 90 3068–3077(2006). [42] Sze S, Physics of Semiconductor Devices, Wiley, New York, NY (1969). [43] Wolfgang Guter, Andreas W. Bett,“ IV-CHARACTERIZATION OF DEVICES CONSISTING OF SOLAR CELLS AND TUNNEL DIODES”, IEEE 4th World Conference on Photovoltaic Energy Conversion, no. 4059737, pp. 749-752 (2006). [44] http://refractiveindex.info/?group=CRYSTALS&material=TiO2 [45] Bernhard, C. G. & Miller, W. H., 1962. A corneal nipple pattern in insect compound eyes, Acta Physiol. Scand., 56, 385–386. [46] D. G. Stavenga, S. Foletti1, G. Palasantzas and K. Arikawa, 2006. Light on the moth-eye corneal nipple array of the butterflies, Proceedings of the Royal Society B, 273, 661-667. [47] D. J. Aiken, 2000. High performance anti-reflection coatings for broadband multi-junction solar cells, Sol. Energy Mater. Sol. Cells, 64, 393. [48] D. J. Friedman, J. M. Olson, 2001. Analysis of Ge junctions for GaInP/GaAs/Ge three-junction solar cells, Prog. Photovolt: Res. Appl., 9, 179-189. [49] D. J. Friedman, J.M. Olson, S. Ward, T. Moriarty, K. Emery, Sarah Kurtz, A. Duda, 2000. Ge concentrator cells for III-V multijunction devices, Proc. 28 th IEEE Photovoltaic Specialists Conference, (Academic, Anchorage, Alaska), 965-967. [50] D. Poitras, J. A. Dobrowolski, 2004. Toward perfect antireflection coatings. 2. Theory, Appl. Opt. 43, 1286. [51] D. S. Hobbs, R. D. Macleod, J. R. Riccobono, 2007. Update on the development of surface relief micro-structures, Proc. of SPIE, 6545, 65450Y. [52] J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, M. Acree, 2002. Toward perfect antireflection coatings: numerical investigation, Appl. Opt., 41, 3075. [53] I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, 2001. Band parameters for III–V compound semiconductors and their alloys, Journal of Applied Physics, 89, 5815-5875. [54] J. L. Balenzategui, F. Chenlo, 2005. Measurement and analysis of angular response of bare and encapsulated silicon solar cells, Sol. Energy Mat. & Sol. Cells, 86, 53-83. [55] J. M. Olson, D. J. Friedman and S. Kurtz, 2003. High-Efficiency III-V Multijunction Solar Cells High-Efficiency III-V Multijunction Solar Cells, in Antonio Luque, Steven Hegedus, (Ed.), Handbook of Photovoltaic Science and Engineering, Academic, Orlando, Fla., 360-411. [56] Keith Emery, 2003. Measurement and Characterization of Solar Cells and Modules, in Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, New York,.701-752.
[57] M. A. Green, 2003. Third Generation Photovoltaics: Advanced Solar Electricity Generation, Springer- Verlag, Berlin, 1-3. [58] Martin A. Green, Keith Emery, Yoshihiro Hishikawa and Wilhelm Warta, 2009. Solar cell efficiency table v.33, Prog. Photovolt: Res. Appl. 17, 85–94. [59] M. Meusel, C. Baur1, G. Le´tay, A.W. Bett, W. Warta and E. Fernandez, 2003. Spectral Response Measurements of Monolithic GaInP/Ga(In)As/Ge Triple-Junction Solar Cells: Measurement Artifacts and their Explanation, Prog. Photovolt: Res. Appl., 11, 499-514. [60] P. Lalanne, G. M. Morris, 1997. Antireflection behavior of silicon subwavelength periodic structures for visible light, Nanotechnology, 8, 53. [61] Stephen P. Tobin, S. M. Vernon, C. Bajgar, Steven J. Wojtczuk, Michael R. Melloch, A. Keshavarzi, T. B. Stellwag, S. Venkatensan, Mark S. Lundstrom, Keith A. Emery, 1990. Assement of MOCVD- and MBE-Grown GaAs for High-Efficiency Solar Cell Applications, IEEE Transactions On Electron Devices, 37, 469-477. [62] S. S. Li, 1993. Semiconductor Physical Electronics, Plenum Press, New York. [63] W. Guter, A. W. Bett, 2006. IV-Characterization of devices consisting of solar cells and tunnel diodes, IEEE transactions on electron devices, 53, 2216-2222. [64] W. H. Southwell, 1983. Gradient-index antireflection coatings, Opt. Lett. 8, 584. [65] Wei Yu, Yanbin Yang, Huijing Du, Wenge Ding, Li Han, Guangsheng Fu, 2005. Optical absorption spectra analysis of silicon-rich hydrogenated amorphous silicon nitride thin films, Proceedings of SPIE Vol. 5635 (SPIE, Bellingham, WA, 2005)
|