跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 01:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧益昌
研究生(外文):Yi Cgang Deng
論文名稱:熱對III-V族太陽能電池的效率影響之研究
論文名稱(外文):Impact of heat on III-V compound solar cell efficiency
指導教授:張連璧張連璧引用關係
指導教授(外文):L. B. Chang
學位類別:碩士
校院名稱:長庚大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
論文頁數:71
中文關鍵詞:太陽能電池聚光模組
外文關鍵詞:solar cellheathcpy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,能源的枯竭因此發展替代能源的意識抬頭,尤其以太陽能而言更是各國值得深入探討,當中又以聚光型太陽能電池的光電轉換效率最高,然而從材料的選擇、磊晶、電極製作到反射層的選擇均影響元件的特性,成為提升轉換率之研究的重要課題。
在本論文中,我們將對III-V族太陽能電池的元件製作、退火處理、熱影響以及聚光模組的研究做分析,利用TLM模型得到最低的特徵接觸電阻,並實際利用在III-V族單接面(InGaP)、(InGaAs)以及三接面(InGaP/InGaAs/Ge)太陽能電池上以得到較佳的光電特性,以及探討熱對於太陽能電池所帶來的影響;至於在運用於聚光模組上,我們並嘗試回收多餘的光子以達到單位面積的較大轉換效率。
Recently, ,the rising awareness of the development of alternative energy, solar energy has been extensively research for application in renewable energy. On the top of them, the high concentration photovoltaic has the highest conversion efficiency. However, the choice of materials, the electrode design, the material select for solar cell, the optimum of anti-reflection coating were influence conversion efficiency enhancement.
In this study, we will III -V compound solar cell device fabrication annealing, the thermal impact and concentration photovoltaic to do analysis, use TLM get the minimum characteristics of contact resistance, and the actual utilization of III-V single-junction (InGaP), (InGaAs) and three-junction (InGaP / InGaAs / Ge) solar cells get the better optical and electrical properties, and to explore the impact of heat for the solar cell,when used in the concentration photovoltaic, we try to recycle the excess photon in order to achieve the better conversion efficiency of the unit area.
目錄

指導教授推薦書 …………………………………………………………………….i
口試委員會審定書 ………………………………………………………………ii
博碩士論文著作授權書 ………………………………………………………...iii
致謝 ...................................iv
摘要 ....................................v
Abstract .............................vi
目錄 …………………………………………………………………………………vii
表目錄 …………………………………………………………………………….viii
圖目錄 ……………………………………………………………………………...ix
第一章 導論 .....................1
1.1 前言 ..........................1
1.2 太陽能電池介紹 ......1
1.3研究目的與動機 ....9
第二章 實驗原理 …………………………………………………………………..10
2.1 太陽能電池工作原理 ………………………………………..……………….10
2.1.1 半導體材料的光吸收 …………………………………………………..10
2.1.2 P-N 接面 ……………..............12
2.1.3 太陽能電池等效電路 ……………………………………………………..15
2.1.4太陽光譜與入射強度定義 ………………………………………………...20
2.1.5 三接面(InGaP/InGaAs/Ge)太陽能電池設計 .…………………………….24
2.1.6 抗反射層原理 ….………………………………………………………….29
2.1.7 傳輸線模型原理 …………………………………………………………..32
第三章 實驗方法與參數 …………………………………………………………..34
3.1 元件製作流程 ……………..………………………………………………….34
3.2量測設備介紹 ………….……….……………………………………………..39
第四章 實驗結果與討論 …………………………………………………………..42
4.1退火材料特性分析……………………………………………………………..42
4.2 熱對太陽能電池影響研究…………………………………………………….47
4.3熱對太陽能電池的效率影響探討……………………………………………..53
4.4 聚光模組以及回收反射光的探討…………………………………………….56
第五章 結論 ………………………………………………………………………..59
參考文獻 ……………………………………………………………………………61

表目錄
表 2.1不同空氣質量的單位面積入射功率表……..…………………………….24
表 4.1原始聚光模組與回收反射光數據比較 ………………………………….57

圖目錄
圖1.1 地球能源消耗示意圖(BP2011) .……..……………………...……..…………2
圖1.2 太陽能電池種類示意圖 .……………………………………..……………...4
圖1.3 太陽能電池電池種類及光電轉換效率圖 .……………..……..……..……...4
圖1.4 染敏太陽能電池工作原理 .………………………………....……………….6
圖1.5 CIGS太陽能電池工作原理 ..……………………………….….……………7
圖1.6 不同能隙材料吸收光頻圖 .………………………………..………………...8
圖1.7 聚光模組示圖 .………………………………………………..…..………….9
圖2.1 (a)本質轉換與(b)外質轉圖 .……………………………….………….……..10
圖2.2 直接能隙與間接能隙的E-k圖…………………………..……….…….…….12
圖2.3 太陽能電池工作原理圖…………………………..………………….………13
圖2.4 未照光太陽能電池特性曲線圖…………………………..………….………15
圖2.5 照光後太陽能電池特性曲線圖……………………...……..……….……….16
圖2.6 非理想太陽能電池等效電路圖…………………………..…….……………17
圖2.7 太陽能電池 特性曲線圖…………………………..……….…………...18
圖2.8 空氣質量定義示意圖…………………………..….………………...……….22
圖2.9 太陽光頻譜………………………..…………………….……………………22
圖2.10 ASTM G173-03太陽光頻譜………………………………………………….23
圖2.11 基本太陽能電池結構圖…………………………………………………….25
圖2.12 穿隧接面連接上下子電池能帶示意圖…………………………………….29
圖2.13 抗反射層示意圖…………………………………………………………….32
圖2.14 金屬電極配置圖…………………………………………………………….33
圖2.15 電阻與間距 (R-L) 的關係圖………………………………………………33
圖3.1 三接面(InGaP/InGaAs/Ge)太陽能電池結構 ………...……………………...34
圖3.2 元件完整結構圖……………………………………………………………..39
圖3.3 太陽能光源模擬器架構圖…………………………………………………..40
圖3.4 表面輪廓儀架構圖…………………………………………………………..41
圖4.1 阻值與距離之線性曲線……………………………………………………..42
圖4.2 不同溫度退火阻值圖………………………………………………………..45
圖4.3 不同溫度下正面電極變化圖………………………………………………..45
圖4.4 (InGaP)升溫對於Voc影響曲線………………………………………………48
圖4.5 (InGaP)升溫對於Jsc影響曲線………………………………………………..48
圖4.6 (InGaP)升溫對於Eff影響曲線 ..…………………………………………...49
圖4.7 (InGaAs)升溫對於Voc影響曲線 ……………………….……………….…49
圖4.8 (InGaAs)升溫對於Jsc影響曲線…………………………….………………50
圖4.9 (InGaAs)升溫對於Eff影響曲線 ………………….….….………………51
圖 4.10 (InGaP/InGaAs/Ge)升溫對於Voc影響曲線 ...……………………………51
圖4.11 (InGaP/InGaAs/Ge)升溫對於Jsc影響曲線 ..….…….……………..……52
圖4.12 (InGaP/InGaAs/Ge)升溫對於Eff影響曲線 ..…....….…..……….………52
圖4.13 Voc值隨著二極體溫度效應下降 ..….…………………….…………..…53
圖4.14升溫對於FF影響曲線以及IV特性曲線 ..….………………….………55
圖4.15 (A)原始聚光模組示意圖 ..…….…………………………………………56
圖4.15 (B)附加電池來回收反射光的聚光模組示意圖.…….……………………56
圖4.16 未加聚光杯下時間與溫度關係圖 ..…….…………………………….…58
圖4.17有聚光杯下時間與溫度關係圖 ...….……………………………….……58
[1] 葉惠青, 能源政策與能源結構發展方向, 94年6月
[2] 莊嘉琛,《太陽能工程–太陽能電池篇》,全華科技圖書股份有限公司92年3月
[3] Green M A. In:Proceeding of the 21st IEEE Photovolatic Specialists Conference.Orlando,USA,1990
[4] Chapin D M,Fuller C S,Pearson G L.J Appl Phys,1954,8: 676
[5] J. Zhao, A. Wang, M. A. Green, F. Ferrazza, "Novel 19.8%-efficient 'honeycomb'textured multicrystalline and 24.4% monocrystalline silicon solar cells," Appl.Phys. Lett., 73, 1991 (1998).
[6] Andrew M. Gabor, John R. Tuttle, David S. Albin, Miguel A. Contreras, and Rommel Noufi, “High-efficiency CulnxGa1-xSe2 solar cells made from (Inx,Ga1-x)2Se3 precursor films”, Appl. Phys. Lett. 65 (2), 11 July 1994
[7] J.R. Tuttle, M.A. Contreras, T.J. Gillespie, K.R. Ramanathan, A.L. Tennant, J. Keane, A.M. Gabor, R. Noufi, “Accelerated publication 17.1% efficient Cu(In,Ga)Se2-based thin-film solar cell”, Prog. Photovoltaics 3, (1995) pp. 235-238.
[8] K. Zweibel, H.S. Ullal, B. von Roedern, “PROGRESS AND ISSUES IN POLYCRYSTALLINE THIN-FILM PV TECHNOLOGIES”, published in: Proc. 25th IEEE Photovoltaic Specialists Conf., Washington, DC, 1996, p. 745.
[9] I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L.Perkins, B. To, and R. Noufi, “19.9% Efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor”, Progress in Photovoltaics, 9,January 2008.
[10] 田民波,《薄膜技術與薄膜材料》,初版,台北,五南書局,民國九十六年六月
[11] Christopher E. Valdivia, Optimization of antireflection coating design for multi-junction solar cells and concentrator systems, Proc. SPIE, Vol. 7099, 709915 (2008);doi:10.1117/12.807675\
[12] D.J. Friedman, J.F. Geisz, A.G. Norman, M.W. Wanlass, and S.R. Kurtz,” 0.7-eV GaInAs JUNCTION FOR A GaInP/GaAs/GaInAs(1eV)/GaInAs(0.7eV) FOUR-JUNCTION SOLAR CELL”.
[13] M. Stan, D.Aiken, B.Cho, A.Cornfeld, V.Ley, P.Patel, P.Sharps, T.Varghese,” High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures”, Journal of Crystal Growth 312 1370–1374 (2010)
[14] R. R. King,D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon,R. A. Sherif, and N. H. Karam, 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells, APPLIED PHYSICS LETTERS 90, 183516 (2007).
[15] J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty,J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions, APPLIED PHYSICS LETTERS 93, 123505 (2008)
[16] http://sharp-world.com/corporate/news/091022.html
[17] http://www.renewableenergyworld.com/rea/news/article/2009/08/spectrolab-sets-solar-cell-efficiency-record-at-41-6?cmpid=rss
[18] R. R. King et al., "40% efficient metamorphic GaInP / GaInAs / Ge multijunction solar cells," Appl. Phys. Lett., 90, 183516 (4 May 2007)
[19] S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, and M. Grätzel,“Fabrication of Screen-Printing Pastes From TiO2 Powders for Dye-Sensitised Solar Cells,” Prog. Photovolt: Res. Appl, 14 (2007) 589-601.
[20] CTCI Foundation,”漫談薄膜式光電池技術”,2005
[21] M. Yamaguchi, Solar Energy Materials and Solar Cells, 75, 261 (2003).
[22] C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys., 51, 4494 (1980).
[23] C. T. Sah, ”Reduction of Solar Cell Efficiency by Edge Defects Across the Back Surface Field Junction”, Solid State Electronics, Vol. 25, pp.851-858(1982).
[24] M. A. Green, “Limits on the open circuit voltage and efficiency of silicon solar cell imposed by intrinsic auger process”, IEEE, Vol. ED31.
[25] W. Shockley, H. J. Queisser, “Detailed balance limit on efficiency of p-n junction solar cells”, Phys, Vol. ED32, pp.510-519(1991).
[26] T. Tideje, “Limiting efficiency of silicon solar cells”, IEEE, Vol. ED31, pp.711-716(1984).
[27] P. Campbell and M. A. Green, “The limiting efficiency of the silicon solar cells under concentrated sunlight”, IEEE, Vol. ED33, pp. 234-239(1986).
[28] J.O. Schumacher and W. Wettling, “Device Physics of Silicon Solar Cells”, pp.55~60
[29] Donals A.Neamen, “Fundamentals of Semiconductor Physics and Devices”, pp. 284~330, 2005.
[30] Ben G. Streetman,Sanjay Banerjee, “Solid State Electronic Device”.p171~p217,2000.
[31] S.M. Sze ,“Semiconductor Devices Physics and Technology”, pp. 85~127, 2002.
[32] Kanaan Kano ,“Semiconductor Device” ,p5-1~p5-49,2000.
[33] Martin A. Green, “Solar Cells: Operating Principles, Technology and System Applications”, Prentice-Hall Inc., Englewood Cliffs, (1982).
[34] Zhang Y, Mascarenhas A, Wang L, Phys. Rev. Lett. 63, 201312 (2000).
[35] http://www.batop.de/information/n_InGaAs.html
[36] Yves Willems,G. Borghs, promotor , R. Mertens, promoter,J. Poortmans,G. Adriaenssens ,O. Van der Biest,P. Heremans, secretaries,M.R. Leys (imec),N. Mason (University of Oxford),”Metamorphic InGaP/InGaAs multijunction solar cells on germanium substrates”IMEC,(2008).
[37] J. M. Olson, D. J. Friedman and Sarah Kurtz ,High-Efficiency III-V Multijunction Solar Cells, Handbook of Photovoltaic Science and Engineering, ISBN: 0-471-49196-9,(2003)
[38] H. Kurita, T. Takamoto, E. Ikeda, and M. Ohmori”High-Efficiency Monolithic InGaP/GaAs Tandem Solar cells with Improved Top-Cell Back Surface Field layer”,IEEE.
[39] M. Ladle Ristow, M. S. Kuryla, B. C. Chung, and L. D. Partain, ”Cap Thickness Effect on Al0.37Ga0.63As and GaAs Diode Solar Cells”, IEEE Transactions on Electron Device, pp.183-185(1996).
[40] M. F. Stuckings, and A. W. Blakers, ”A study of shading and resistive loss from the finger of encapsulated solar cells”, Energy Material & Solar Cells, pp.233-242(1999).
[41] Masafumi Yamaguchi, Tatsuya Takamoto, Kenji Araki”Super high-efficiency multi-junction and concentrator solar cells”, Solar Energy Materials & Solar Cells 90 3068–3077(2006).
[42] Sze S, Physics of Semiconductor Devices, Wiley, New York, NY (1969).
[43] Wolfgang Guter, Andreas W. Bett,“ IV-CHARACTERIZATION OF DEVICES CONSISTING OF SOLAR CELLS AND TUNNEL DIODES”, IEEE 4th World Conference on Photovoltaic Energy Conversion, no. 4059737, pp. 749-752 (2006).
[44] http://refractiveindex.info/?group=CRYSTALS&material=TiO2
[45] Bernhard, C. G. & Miller, W. H., 1962. A corneal nipple pattern in insect compound eyes, Acta Physiol. Scand., 56, 385–386.
[46] D. G. Stavenga, S. Foletti1, G. Palasantzas and K. Arikawa, 2006. Light on the moth-eye corneal nipple array of the butterflies, Proceedings of the Royal Society B, 273, 661-667.
[47] D. J. Aiken, 2000. High performance anti-reflection coatings for broadband multi-junction solar cells, Sol. Energy Mater. Sol. Cells, 64, 393.
[48] D. J. Friedman, J. M. Olson, 2001. Analysis of Ge junctions for GaInP/GaAs/Ge three-junction solar cells, Prog. Photovolt: Res. Appl., 9, 179-189.
[49] D. J. Friedman, J.M. Olson, S. Ward, T. Moriarty, K. Emery, Sarah Kurtz, A. Duda, 2000. Ge concentrator cells for III-V multijunction devices, Proc. 28 th IEEE Photovoltaic Specialists Conference, (Academic, Anchorage, Alaska), 965-967.
[50] D. Poitras, J. A. Dobrowolski, 2004. Toward perfect antireflection coatings. 2. Theory, Appl. Opt. 43, 1286.
[51] D. S. Hobbs, R. D. Macleod, J. R. Riccobono, 2007. Update on the development of surface relief micro-structures, Proc. of SPIE, 6545, 65450Y.
[52] J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, M. Acree, 2002. Toward perfect antireflection coatings: numerical investigation, Appl. Opt., 41, 3075.
[53] I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, 2001. Band parameters for III–V compound semiconductors and their alloys, Journal of Applied Physics, 89, 5815-5875.
[54] J. L. Balenzategui, F. Chenlo, 2005. Measurement and analysis of angular response of bare and encapsulated silicon solar cells, Sol. Energy Mat. & Sol. Cells, 86, 53-83.
[55] J. M. Olson, D. J. Friedman and S. Kurtz, 2003. High-Efficiency III-V Multijunction Solar Cells High-Efficiency III-V Multijunction Solar Cells, in Antonio Luque, Steven Hegedus, (Ed.), Handbook of Photovoltaic Science and Engineering, Academic, Orlando, Fla., 360-411.
[56] Keith Emery, 2003. Measurement and Characterization of Solar Cells and Modules, in Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, New York,.701-752.

[57] M. A. Green, 2003. Third Generation Photovoltaics: Advanced Solar Electricity Generation, Springer- Verlag, Berlin, 1-3.
[58] Martin A. Green, Keith Emery, Yoshihiro Hishikawa and Wilhelm Warta, 2009. Solar cell efficiency table v.33, Prog. Photovolt: Res. Appl. 17, 85–94.
[59] M. Meusel, C. Baur1, G. Le´tay, A.W. Bett, W. Warta and E. Fernandez, 2003. Spectral Response Measurements of Monolithic GaInP/Ga(In)As/Ge Triple-Junction Solar Cells: Measurement Artifacts and their Explanation, Prog. Photovolt: Res. Appl., 11, 499-514.
[60] P. Lalanne, G. M. Morris, 1997. Antireflection behavior of silicon subwavelength periodic structures for visible light, Nanotechnology, 8, 53.
[61] Stephen P. Tobin, S. M. Vernon, C. Bajgar, Steven J. Wojtczuk, Michael R. Melloch, A. Keshavarzi, T. B. Stellwag, S. Venkatensan, Mark S. Lundstrom, Keith A. Emery, 1990. Assement of MOCVD- and MBE-Grown GaAs for High-Efficiency Solar Cell Applications, IEEE Transactions On Electron Devices, 37, 469-477.
[62] S. S. Li, 1993. Semiconductor Physical Electronics, Plenum Press, New York.
[63] W. Guter, A. W. Bett, 2006. IV-Characterization of devices consisting of solar cells and tunnel diodes, IEEE transactions on electron devices, 53, 2216-2222.
[64] W. H. Southwell, 1983. Gradient-index antireflection coatings, Opt. Lett. 8, 584.
[65] Wei Yu, Yanbin Yang, Huijing Du, Wenge Ding, Li Han, Guangsheng Fu, 2005. Optical absorption spectra analysis of silicon-rich hydrogenated amorphous silicon nitride thin films, Proceedings of SPIE Vol. 5635 (SPIE, Bellingham, WA, 2005)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top