(3.232.129.123) 您好!臺灣時間:2021/03/06 01:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊清閔
研究生(外文):CHING MIN CHUANG
論文名稱:改變I-LINE光學微影機數值孔徑以提升微影解析度之研究
論文名稱(外文):Improved Lithography Resolution by Varying I-LINE Optical Lithography Numerical Aperture
指導教授:吳國梅
指導教授(外文):G. M. WU
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
論文頁數:101
中文關鍵詞:動態隨機存取記憶體微影製程解析度連接洞數值孔徑
外文關鍵詞:DRAMLithography processResolutioncontact holeNumerical Aperture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
DRAM(Dynamic Random-Access Memory)動態隨機存取記憶體,隨著電腦科技的進步,記憶體晶片的容量需求越來越大, 積體電路(IC)製造者勢必想用最小的晶圓面積作出最大的記憶容量,因此必需不斷的減小元件特徵尺寸來持續的降低成本,才能符合下世代先進DRAM之需求。本實驗利用DRAM其中一道製程連接洞來研究,目前以KrF解析的最佳WINDOW TARGET為335nm(CD PATTEM),如以I-LINE的光源365nm解析能力還未達到最佳Best Focus。故本論文中藉由I-LINE(365nm)曝光機,搭配參數(孔徑)的改變,來改善解析度已達到KrF(248nm)的曝光效果。
實驗證實在Conventional的光圈變化再加上孔徑在0.62的情形下,藉由SEM所量出來的最低值在0.2833μm,證明在I-line曝光機是有能力改善解析度的技術,雖然目前仍有改善空間,但相信未來科技廠可利用低成本的技術做出最好的產品。

DRAM (Dynamic Random-Access Memory) is required for larger and larger capacity memory chips with the progress of technology. The IC (Integrated Circuit) manufacturers certainly want to make a largest memory capacity with small wafer size. All they have to do is reducing cost by decreasing the feature size for reaching the requirement of advanced DRAM in next generation. In this study, a process step of via hole was researched. The maximum resolution of window target is 335 nm (CD PATTEM) by KrF (248 nm). However, I-Line wavelength is 365 nm, still can not reach the best focus. Therefore, an I-Line exposure with changing parameters of aperture was used for improving the resolution, and it has reached the same efficiency similar to KrF.
In our research, by changing the aperture of conventional and annular and adding a mask with the aperture size of 0.62, the minimum value is 0.2833 μm which was measured by SEM. This result proves that we can have a higher resolution by improved I-Line exposure. Although there still need to improve, technology factories would have the best resolution with lowest cost in the future.

目錄
指導教授推薦書
口試委員會審定書
授權書
致謝............................ iv
摘要............................ v
Abstract........................vi
目錄............................vii
圖目錄...........................xi
表目錄...........................xiv
第一章 序論 ......................1
1.1 前言.........................1
1.2 研究動機......................1
1.3半導體產業簡介..................2
第二章 簡介........................5
2.1 記憶體的種類...................6
2.1.1記憶體的階層架構...............7
2.1.2 什麼是RAM....................7
2.1.3動態隨機存取記憶體..............8
2.1.4 DRAM的基本動作................9
2.1.5 DRAM的更新週期................11
2.2靜態RAM..........................12
2.2.1 DRAM和SRAM的特性比較...........13
2.3同步性DRAM........................14
2.3.1 SDRAM的歷史....................15
2.3.2 DDR、DDR2、DDR3 SDRAM之介紹 ....16
2.4 非揮發性記憶體簡介.................17
2.5將DRAM線路設計實現在製程上...........19
2.5.1晶圓生產流程......................20
2.5.2摩爾定律..........................21
2.5.3圖形尺寸和晶圓尺寸..................23
2.5.4微影製程簡介........................24
2.5.5光阻簡介............................25
2.5.6光微影製程步驟.......................26
2.5.7解析度與景深.........................27
2.5.8光源的演進...........................30
2.6相位移光罩(Phase Shifting Mask,PSM)...32
2.7 改善解析度之方法........................33
2.8抗反射塗佈(Anti-Reflection Coating, ARC)...36
2.8.1 阻劑駐波效應和缺陷效應..................36
2.8.2抗反射層之設計原理.......................38
2.8.3 底層抗反射層...........................41
第三章 實驗架構與量測機台....................43
3.1實驗架構..................................43
3.2實驗流程..................................44
3.3光阻旋轉塗佈...............................46
3.4曝光機台...................................48
3.4.1 I-line原理..............................48
3.4.2 KrF原理.................................49
3.4.3 掃描式照明系統............................50
3.5量測機台....................................51
3.5.1 SEM(掃描式電子顯微鏡)....................51
3.5.2 掃描式電子顯微鏡原理 ......................52
3.5.3 掃描式電子顯微鏡應用.......................52
第四章 實驗結果與討論...........................54
4.1 ARC的表面分析 ...............................54
4.2 KrF和I-line實驗結果..........................56
4.3改變I-LINE光圈和孔徑...........................59
4.4 上HMDS的晶圓實驗..............................66
第五章 結論與未來展望..............................73
5.1結論...........................................73
5.2 未來展望.......................................76
參考文獻...........................................77
圖目錄
圖 1 記憶體的種類...................................6
圖2 記憶體的階層架構.................................7
圖3 DRAM的記憶體元件電路圖[6-7]....................9
圖4 深溝型記憶體細胞實際結構圖.........................9
圖5 DRAM的基本動作...................................10
圖6 DRAM的更新週期...................................12
圖7 SRAM元件構造圖(6個電晶體)........................13
圖8 DDR、DDR2、DDR3記憶體圖...........................17
圖9 DRAM線路實現在製程上示意圖.........................19
圖10左圖為堆疊式(STACK),右圖為深溝式(DEEP TRENCH)...20
圖11製程流程圖........................................21
圖12 摩爾定律........................................22
圖13 以不同尺寸所顯示的晶片尺寸........................23
圖14 相對晶圓尺寸......................................24
圖15正負光阻之圖案化製程................................26
圖16微影製程之流程......................................27
圖17 沒有透鏡的光繞射...................................28
圖18 經過透鏡的光繞射...................................28
圖19 NA和K1技術發展....................................30
圖20 各種曝光光源波長...................................31
圖21 左圖為相位移光罩(PSM)右圖為傳統光罩.................33
圖22 離軸照明...........................................34
圖23 各種離軸照明的形狀...................................34
圖24左圖傳統照明;右圖為環形照明...........................35
圖25 照明條件的製程窗口...................................36
圖26 入射光與反射光相互干涉,E2、 E3代表其電場強度,疊加後電場強度為E23................................................... 37
圖27為光強度在阻劑中隨厚度分佈的情形 ........................37
圖28 缺陷效應............................................ 38
圖29 光入射於光阻劑,於空氣/阻劑界面與阻劑/基材界面 之間產生多重反射示意圖............................................... 40
圖30 表層抗反射層(左),底層抗反射層(右)..................40
圖31 M1-M2 CONNECT架構圖 ................................43
圖32 實驗流程示意圖.......................................45
圖33 光阻旋轉塗佈動態圖...................................47
圖34 準分子能階圖........................................49
圖35 照明系統構造圖.......................................50
圖36 SEM構造圖..........................................53
圖37 線寬、洞寬和間隔寬度示意圖............................ 53
圖38 有BARC.............................................55
圖39無BARC..............................................55
圖40 KRF SEM TOP VIEW...................................58
圖41 NA=0.52(CONVENTIONAL)SEM TOP VIEW............... 59
圖42 NA=0.62(CONVENTIONAL) SEM TOP VIEW...............60
圖43 KRF & I-LINE 實驗數據比較...........................61
圖44 KRF & I-LINE FEM曲線圖比較......................... 62
圖45 無ARC NA=0.62 (CONVENTIONAL)SEM TOP VIEW.........64
圖46無ARC NA:0.62(ANNULAR)........................... 65
圖47無ARC NA:0.62(CONVENTIONAL)...................... 65
圖48 HMDS NA=0.62(CONVENTIONAL)SEM....................67
圖49 HMDS NA=0.62(CONVENTIONAL)曲線圖..................68
圖50 HMDS NA=0.62(CONVENTIONAL)SEM....................69
圖51 HMDS NA=0.62(CONVENTIONAL)FEM曲圖.................70
圖52 HMDS NA=0.62(ANNULAR)SEM.........................71
圖53 HMDS NA=0.52 CONVENTIONAL DOSE:615 MJ/CM2 SEM....72

表目錄
表1 DRAM和SRAM之特性比較..................................14
表2 改善微影解析度方法之綜合歸納圖..........................32
表3 KRF實驗數據.......................................... 56
表4 I-LINE實驗數據....................................... 56
表5 NA=0.52 CONVENTIONAL SEM............................ 58
表6 NA=0.62 CONVENTIONAL SEM............................60
表7 NA=0.62 CONVENTIONAL SEM........................... 63
表8 HMDS實驗參數.........................................66
表9 HMDS NA=0.62(CONVENTIONAL)SEM.....................67
表10 HMDS NA=0.62(CONVENTIONAL)SEM....................69
表11 HMDS NA=0.62(ANNULAR) SEM ........................71
[1] 旺宏股份有限公司 標準成本制度之規劃與設計。
[2] R. M. Dennard, “Field Effect Transistor Memory,”U. S. Patent 3,387,286,(filed 1967,granted 1963)。
[3] 刁建成 編譯,90年12月, 半導體IC產品製造與應用,全華科技圖書股份有限公司。
[4] 林振華、林振富 編譯,90年12月,ULSI DRAM技術,全華科技圖書股份有限公司。
[5] 曹中 編授 計算機概論上P14~15頁,大東海文化事業公司專業出版。
[6] Mark White, PhD, Jet Propulsion Laboratory, “A Study Of Scaling Effects On DRAM Reliability”,978-4244-8556-8/11, IEEE (2011)
[7] 林振華、林振富 編譯,90年12月,ULSI DRAM技術,全華科技圖書股份有限公司。
[8] Balasubramanya Bhat • Frank Mueller, “Making DRAM refresh predictable”, Springer Science+Business Media, LLC(2011)
[9] Stefan Drapatz , Karl Hofmann , Georg Georgakos , Doris Schmitt-Landsiedel,“A method to analyze the impact of fast-recovering NBTI degradation on the stability of large-scale SRAM arrays”, 0038-1101/ see front matter Elsevier Ltd. All rights reserved.pp. 191-196(2011)
[10] http://zh.wikipedia.org/wiki/DDR_SDRAM,維基百科,DDR SDRAM。
[11] Paolo Cappelletti, Carla Golla, Piero Olive and Enrico Zanoni,“Flash Memory”
[12] 龍文安 著,2006年9月二版,半導體奈米技術,五南圖書出版股份有限公司。
[13] 羅正忠 審閱 、許招墉 譯者,95年9月10日,最新圖解半導體製程概論,普林斯頓國際有限公司
[14] Shang-Yi Chiang Senior Vice President of R&D, TSMC, Taiwan, "Challenges of Future Silicon IC Technology",978-1-4244-8492-8/11,pp.1 IEEE(2011)
[15] Hong Xiao 原著,羅正忠、張鼎張 譯者,96年9月,半導體製程技術導論修訂版,學銘圖書有限公司。
[16] 簡玠裕,國立中央大學機械工程學系碩士論文,1997出版,”旋轉塗佈光阻液厚度及均勻度實驗分析”
[17] Harry J. Levinson,“Principles of Lithography”,Bellingham Washington:SPIE Press,2001,19-38.
[18] Jongkyung Hong, Chongsik Woo, Jaewoo Park, Byeong-ho Cho, Jaeseung Choi, Hyunjo Yang, Chan-ha Park, Youngdea Kim, Goomin Jeong, Jung-chan Kim, Khil-ohk Kang, Chunsoo Kang, Jongwoon Park, Donggyu Yim, Youngwook Song,“CD Control at Low K1 Optical Lithography in DRAM Device”, Proceedings of SPIE Vol.5038,pp. 406-414(2003).
[19] HyeongSoo Kim, SeokKyun Kim, YoungSik Kim, SangMan Bae,DongHeok Park,YoungDeuk Kim, YoonSuk Hyun, HyoungReun Kim, KeunKyu Kong, MinSeok Son, YongSoon Jung and BongHo Choi,“Implementation of KrF 0.29 k1 Lithography”, Proceedings of SPIE Vol.5754,pp.185-195(SPIE Bellingham, WA, 2005)
[20] Yung Feng Cheng, Yueh Lin Chou, Ya Ching Hou, Bo Jou Lu, Chuen Huei Yang,“Feasibility Study of 45nm Metal Patterning with 0.93NA”Proc. of SPIE Vol.6520,pp. 65204J-1~8,(2007)0227-786X/07
[21] Woo-Sung Han,”Lithorghy technology trend for DRAM devices",Proceedings of SPIE Vol.4754, pp. 15-25(2002)
[22] 莊怡芬 ”真空紫外微影技術抵抗反射層及Fabry-Perot型光罩抗反射層之研究",碩士,光電科學研究所,中央大學,2001年6月
[23] 林重仁”Al2O3-ZrO2-SiO2 減式相位移光罩之光學特性研究",碩士,材料工程研究所,大同大學,2002
[24] 汪美里“相位偏移光罩在先進動態記憶體之研究”,碩士,電子工程研究所,長庚大學,96年7月(2006)
[25] T. Takigawa, T. Tojo, Y. Ogawa, K. Koyama, A. Ono, S. Inoue, S. Ito, and M. Goto, SPIE Vol. 2512, pp.180,1995.
[26] M. D. Levenson, N. S. Viswanathan, “Improving Resolution in photolithography with a phase-shifting mask”,IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol.ED-29, pp. 1828-1836(1982)
[27] 郭立萍,黃惠杰,王向朝,”Off-axis illumination for optical lithography", Laser Journal(Vol.26.NO.1.2005),pp. 23-25
[28] D.L FEHRS., Lovering H.B., Scruton R.T.”Illuminator Modification of an Optical Aligner", SPIE Vol.178,pp. 621-634(2004)
[29] MACK C A.”Optimum Stepper Performance Through Image
Manipulation", SPIE Vol.178,pp. 614-620(2004)
[30] Eun-Jin Kim*, Jee-Hye You, Seong-Sue Kim1, Han-Ku Cho1, Ilsin An, and Hye-Keun OhDepartment of Applied Physics, Hanyang University, Ansan, Kyeonggi-Do, 426-791, South Korea1Samsung Electronics Co., LTD., San#16 Banwol-Dong, Hwasung-City, Gyeonggi-Do, South Korea, “Incident Angle Change Caused by Different Off-Axis Illumination in Extreme Ultraviolet Lithography”, Proc. of SPIE Vol. 7271, 727143 •(2009)
[31] Rengmao Wu, Haifeng Li, Zhenrong Zheng,* and Xu Liu,“Freeform lens arrays for off-axis illumination in an optical lithography system”,APPLIED OPTICS,Vol.50,No.5,pp. 0030-4018(2011)

[32] Moh Lung Ling, Gek Soon Chuaa, Qunying Linb , Cho Jui Tay, Chenggen Quan,” Customized illumination shapes for 193nm immersion lithography",SPIE Vol. 6924, 692435, (2008)
[33] Bruce W.Smith, “Forbidden pitch or duty-free: Revealing the causes of across-pitch imaging differences”, Proceedings of SPIE Vol. 5040, pp. 399-407(2003).
[34] Xuelong Shi, Stephen Hsu, Fung Chen, Michael Hsu, Robert J.Socha, Micea Dusa, “Understanding the forbidden pitch phenomenon and assist feature placement, Proceedings of SPIE Vol. 4689, 985–996 (2002).
[35] Yang Zhao, Yan Gong, Shun Li, Wei Zhang,” A Design of Beam Shaping Unit for 193nm Lithography Illumination System Using Angular Spectrum Theory",Proc. of SPIE Vol. 7544,75443Z.0277-786X/10(2010)
[36] Hyoung-ryeun Kim, Yeong-Bae Ahn, JongKuk Kim, SeokKyun Kim, DongHeok Park and Young-Sik Kim,” Implementation of Contact Hole Patterning Performance with KrF Resist Flow Process for 60nm Node DRAM Application", Proc. of SPIE Vol. 6154 ,pp. 615441-1~7, (2006)
[37] John Sturtevant and Bernie Roman, “Antireflection strategies for advanced photolithography” Microlithography World, Vol.4 (1995) pp.13-21.
[38] Sang-Soo Choi, Han Sun Cha, Jong-Soo Kim, Jong Mun Park, DohHoon Kim, Kag Hyeon Lee, Jinho Ahn, Hai Bin Chung, and Bo WooKim, “A novel anti-reflective structure for metal layer patterning,”Proc. of SPIE, Vol. 3333 (1998) pp.336-346.
[39] Yoshio Kawai, Akihiro Otaka, Akinobu Tanaka, and TadahitoMatsuda, “The effect of an organic base in chemically amplifiedresist on patterning characteristics using KrF lithography,” Jpn. J.Appl. Phys., Vol. 33 (1994) pp.7023-7027.
[40] Moon-Gyu Sung, Young-Mi Lee, Eun-Mi Lee, Young-Soo Sohn,Ilsin An, and Hye-Keun Oh, “Soft bake effect in 193 nm chemicall yamplified resist,” Proc. of SPIE, Vol. 3999 (2000) pp.1062-1069.
[41] Sung-Eun Hong, Min-Ho Jung, Jae-Chang Jung, Geunsu Lee,Jin-Soo Kim, Cha-Won Koh, and Ki-Ho Baik, “The acidity control for compatibility of novel organic bottom antireflective coating materials with various KrF and ArF photoresists,” Proc. of SPIE, Vol. 3999 (2000) pp.966-973.
[42] C. A. Mack , “Antireflective coatings,” Microlithography World,Vol.3 (1997) pp.29.
[43] Hsuen-Li Chen and Lon A. Wang, “Hexamethyldisiloxane film as the bottom antireflective coating layer for ArF excimer laser lithography,” Applied Optics, Vol. 38 (1999) pp.4885-4890.
[44] Ryoko Yamanaka, Takashi Hattori, Toshiyuki Mine, Keiko Hattori, Toshihiko Tanaka and Tsuneo Terasawa, “Suppression of
resist-pattern deformation on SiON bottom antireflective layer in
deep-UV lithography,” Proc. of SPIE, Vol. 3678 (1999)pp.198-204
[45] Etsuko Iguchi, Hiroshi Komano, Toshimasa Nakayama, “A new bottom anti-reflection coating approach for KrF lithography at sub150 nm design rule,” Proc. of SPIE, Vol. 3999 (2000) pp.521-530.
[46] Jim D. Meador, Xie Shao, Vandana Krishnamurthy, Manuel Arjona, Mandar Bhave, Gu Xu, James Claypool, and Anne Lindgren,“Second-Generation 193 nm Bottom Antireflective Coatings (BARCs),” Proc. of SPIE, Vol. 3999 (2000) pp.1009-1018.
[47] L. F. Thompson, C. G. Willson, M. J. Bowden, “Introduction to Microliithography,” (American Chemical Society publication, Washington D. C. 1994).
[48] Johannes van Wingerden, “Optimisation of substrate reflectivity, resist thickness and resist absorption for CD control and resolution,” Proc. of SPIE, Vol. 3679 (1999) pp.905-913.
[49] C. Y. Chang, and S. M. Sze, “ULSI Technology,” (McGraw-Hill Company publication, New York, 1996).
[50] Byung-Hyuk Jun, Sang-Soo Han, Kyong-Sub Kim, Joon-Sung Lee,Zhong-Tao Jiang, Byeong-Soo Bae, Kwangsoo No, Dong-Wan Kim, Ho-Young Kang, and Young-Bum Koh, “Titanium oxide film for the bottom antireflective layer in deep ultraviolet lithography,” Applied Optics, Vol.36 (1997) pp.1482-1486.
[51] Shuo-Yen Chou, Chien-Ming Wang, Chin-Chiu Hsia, Li-Jui Chen, Gue-Wuu Hwang, Shyh-Dar Lee, and Jen-Chung Lou, “Anti-reflection strategies for sub-0.18μm dual damascene structure patterning on KrF 248 nm lithography,” Proc. of SPIE, Vol. 3679 (1999) pp.923-931
[52] Satoko Nakaoka, Hisashi Watanabe, and Yoshimitsu Okuda,
“Comparison of CD variation between organic and inorganic bottom anti-reflective coating on topographic substrates,” Proc. of SPIE, Vol.3679 (1999) pp.932-941.
[53] C. H. Lin, L. A. Wang, and H. L. Chen, “Optimized bilayer
hexamethyldisiloxane film as bottom anti-reflective coating for both KrF and ArF lithographies,” J. Vac. Sci. Technol. B, Vol. 18, No. 6(2000) pp.3323-3327
[54] George E. Bailey, Nicholas K. Eib, Earnest C. Murphy, “Progressions in deep ultraviolet bottom anti-reflective coatings,” Proc. of SPIE, Vol.3999 (2000) pp.935-948.
[55] James C. Cox, Lynn Welsh, Deborah Murphy, “Process effects resulting from conversion to a safe-solvent organic BARC,” Proc. Of SPIE, Vol. 3333 (1998) pp.1040-1050.
[56] Qizhi He, Wei W. Lee, Maureen Hanratty, Daty Rogers, Guoqiang Xing, Abha Singh, Eden Zieliski, “Inorganic antireflective coating process for deep-UV lithography,” Proc. of SPIE, Vol. 3334 (1998) pp.337-346.
[57] Qun Ying Lin, Alex Cheng, John Sudijono and Charles Lin, “Dual layer inorganic SiON bottom ARC for 0.25μm DUV hard mask applications,” Proc. of SPIE, Vol. 3678 (1999) pp.186-197.
[58] Y. Trouiller, N. Buffet, T. Mourier, Y. Gobil, P. Schiavone, Y. Quere,“Inorganic bottom ARC SiOxNy for interconnection levels on 0.18μm technology,” Proc. of SPIE, Vol. 3333 (1998) pp.324-333.
[59] Hideki Ina, Satoru Oishi and Koichi Sentoku,“Focus & Dose Measurement Method in Volume Production ”, Proc. Of SPIE Vol.5752,PP. 1371-1382(2005)
[60] Hak-young Sim, Hyoung-soon Yune, Yeong-bae Ahn, James Moon, Byoung-sub Nam, Donggyu Yim, Sung-ki Park,“Stydy of various RET for process margin improvement in 3Xnm DRAM contact”, Proc. Of SPIE Vol.7973, pp. 79732N-1~5(2011)
[61] Tae-Jun You, Sung-Woo Ko, James Moon, Yeong-Bae Ahn, Byung-Ho Nam and Dong-Gyu Yim,“The study of contact hole for 65nm node with KrF”, Proc. Of SPIE Vol.6283, 628336,(2006)
[62] Myoung-Ho Jung, Hyun-Woo Kim,J.Hong…”Performance of SSQ type ArF Bi-Layer Resist in 80-nm Node DRAM Line and Space Fabrication”,Process Development,Semiconductor R&D Center,Samsung Electronics Co.,LTD.San #24,Nongseo-Ri, Giheung-Eup,Yongin-City,Gyeonggi-Do,449-711 Korea. Proceedings of SPIE Vol.5376,pp.1100-1106(2004)
[63] 邱華仁“I-LINE光阻膜厚之調控以增進微影解析度之研究”,碩士,電子工程研究所,長庚大學,100年10月(2011)
[64] Moh Lung Ling, Gek Soon Chua, Qunying Lin, Cho Jui Tay, Chenggen Quan,“Customized illumination shapes for 193nm immersion lithography”, Proc. Of SPIE Vol.6924,692435,(2008)



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔