|
[1] L. E. Larson, “RF and microwave circuit design for wireless communications”, Boston, Artech House, 1996. [2] N. Colmenares, “The FCC on personal wireless,” IEEE Spectrum, May 1994, pp 39-46. [3] D. Bnatz, and F. Bauchot, “Wireless LAN design alternatives,” IEEE network, March/April 1994, pp.43-52. [4] M. Chelouche, and A. plattner, “Mobile broadband system (MBS): Trends and impact on 60 GHz band MMIC development,” Electronics and Communications Engineering Journal, June 1993, pp. 187-197. [5] F. X. Sinnesbichler, H. Geltinger and G. R. Olbrich, "A 38GHz push-push oscillator based on 25-GHz fT BJT's," IEEE Microwave Guided Wave lett., vol. 9, pp.151-153, Apr. 1999. [6] A. Boudiaf, D. Bachelet and C. Rumelhard, “A high-efficiency and low phase-noise 38-GHz pHEMT MMIC tripler,” IEEE Trans. Microwave Theory and Tech., vol. 48 pp.2546-2553, Dec. 2000. [7] Carl Weinschenk, "Speeding Up WiMax", April 16, 2010. [8] “Overvied of WiMax”, Encyclopædia Britannica [9] Scott Y. Seidel, “Radio Propagation and Planning at 28 GHz for Local Multipoint Distribution Service (LMDS),” IEEE Antennas and Propagation Society International Symposium, June, 1998, pp. 622-625. [10] Petri Mahonen, et. al,” Wireless internet over LMDS: architecture and experimental implementation,” IEEE Communications Magazine, vol 39, issue 5, May 2001, pp.126-132. [11] Peter N. Melezhik, et. al, “Coherent Ka-band radar with a semiconductor transmitter for airport surface movement monitoring,” Proceedings of Enhanced Surveillance of Aircraft and Vehicles-ESAV'08, September 3 – 5, Capri, Italy, pp. 1-5. [12] Axel Brokmeier, Thomas Geist, Berthold Zimmermann, and Roland Mack, “A Miniaturised Frontend for Ka-Band Radar Applications,” European Radar Conference-EURAD 2005, 6-7 Oct., 2005, pp. 367 – 370. [13] I. D. Robertson and S. Lucyszyn, RFIC and MMIC Design and Technology, London, IEE Publishers, 2001. [14] Steve Marsh, Practical MMIC Design, Artech House Publishers, 2006. [15] S. K. Moore, “Cheap chips for next wireless frontier,” IEEE Spectrum, vol. 43, 2006. [16] L. Yang, “60GHz for Gigabit WPAN and WLAN: Opportunities and Challenges”, Intel Developer Forum, San Francisco, Aug 2008, [17] WiMAX Forum, “Mobile WiMAX – Part I/II: A Technical Overview and Performance Evaluation,” Feb. 2006. [18] M. Finneran, “WiMax Versus Wi-Fi: A Comparison of Tech- nologies, Markets, and Business Plans,” pp. 1–24,Jun. [19] R. B. Marks, J. Costa, and B. Kiernan, “The evolution of Wireless- MAN,” IEEE Microw. Mag., vol. 9, no. 4, pp. 72–79, Aug. 2008. [20] J. G. Proakis and M. Salehi, Communication System Engineering, 2 ed, Prentice-Hall, Upper Saddle River, NJ, 2003. [21] R.-C. Liu, K.-L. Deng, and H. Wang, "A 0.6-22 GHz broadband CMOS distributed amplifier," in IEEE RFIC Symp. Dig., 2003, pp. 103-106. [22] B. M. Ballweber, R. Gpta, and D. J. Allstot, "A fully integrated 0.5-5.5 GHz CMOS distributed amplifier," IEEE J. Solid-State Circuits, vol. 35 ,no. 2, pp. 231-239, Feb. 2000. [23] H.-L. Huang, -. F. C. M, W.-S. Wuen, K. A. Wen, and C.-Y. Chang, "A low power CMOS distributed amplifier," in IEEE Annu. Wireless Microwave. Conf., 2005, p. 3. [24] R.-C. Liu, C.-S. Lin, K.-L. Deng, and H. Wang, "A 0.5-14 GHz 10.6-dB CMOS cascade distributed amplifier," in IEEE VLSI Circuits Symp. Dig., 2003, pp. 139-140. [25] H. Ahn and D. J. Allstot, "A 0.5-8.5-GHz fully differential CMOS distributed amplifier," IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 985-993, Aug. 2002. [26] Y. Ding and R. Harjani, "A CMOS High Efficiency +22 dBm Linear Power Amplifier," in IEEE Custom Integrated Circuits Conf., 2004, pp.557-560. [27] K. W. Eccleston and O. Kyaw, "Analysis and design of class-B dual fed distributed power amplifiers," in IEE Proc.-Microw. Antennas Propag.vol. 151, no. 2, April 2004, pp. 104-108. [28] C. S. Aitchison, "The intrinsic noise figure of the MESFET distributed amplifier," IEEE Trans. Microw. Theory Tech., vol. MTT-33, no. 6, pp. 460-466, Jun. 1985. [29] X. Guan and C. Nguyen, "Low-Power-Consumption and High-GainCMOS Distributed Amplifier Using Cascade of Inductively Coupled Common-Source Gain Cells for UWB Systems," IEEE Trans. Microw. Theory Tech., vol. 54, no. 8, pp. 3278-3283, Aug. 2004. [30] G. Gonzalez, Microwave transistor amplifiers: analysis and design, 2 ed. Upper Saddle River, New Jersey: Prentice Hall, 1996. [31] Bameri, H., Hakimi, A., Movahhedi, M., & Abdollahi, H. (2010, 11-13 May 2010). “A DC to 20 GHz ultra-broadband high-gain-linear distributed power amplifier with 19.5% drain efficiency.” Paper presented at the Electrical Engineering (ICEE), 2010 18th Iranian Conference on. [32] P. Heydari, “Design and analysis of a performance-optimized CMOS UWB distributed LNA,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1892–1905, Sep. 2007. [33] J. C. Chien and L. H. Lu, “40-Gb/s high-gain distributed amplifiers with cascaded gain stages in 0.18
|