|
[1] R. R. Schaller , “Moore's law: past, present and future”, IEEE Spectrum, 34 (6), pp. 52-59, 1997. [2] S. W. Ryu, M. Yoo, D. Choi, S. Cha, and J. G. Jeong, “Data Retention Characteristics for Gate Oxide Schemes in Sub - 50nm Saddle-Fin Transisto Dynamic-Random-Access-Memor Technology”, Japanese Journal of Applied Physics, 50 04DD01, pp. 1-4, 2011. [3] B. Jacob, S. W. Ng, D. T. Wang and S. Rodriguez, “DRAM Device Organization: Basic Circuits and Architecture”, Memory Systems, pp. 353-376, 2008. [4] J. Y. Kim, C. S. Lee, S. E. Kim, I. B. Chung, Y. M. Choi, B. J. Park, J. W. Lee, D. I. Kim, Y. S. Hwang, D. S. Hwang, H. K. Hwang, J. M. Park, D. H. Kim, N. J. Kang, M. H. Cho, M. Y. Jeong, H. J. Kim, J. N. Han, S. Y. Kim, B. Y. Nam, H. S. Park, S. H. Chung, J. H. Lee, J. S. Park, H. S. Kim, Y. J. Park, and K. Kim, “The breakthrough in data retention time of DRAM using recess-channel-array transistor (RCAT) for 88 nm feature size and beyond” , VLSI Symp. Tech. Dig., pp. 11-12, 2003. [5] J. Y. Kim, H. J. Oh, D. S. Woo, Y. S. Lee, D. H. Kim, S. E. Kim, G. W. Ha, H. J. Kim, N. J. Kang, J. M. Park, Y. S. Hwang, D. I. Kim, B. J. Park, M. Huh, B. H. Lee, S. B. Kim, M. H. Cho, M. Y. Jung, Y. I. Kim, C. Jin, D. W. Shin, M. S. Shim, C. S. Lee, W. S. Lee, J. C. Park, G. Y. Jin, Y. J. Park and K. Kim, “S-RCAT (Sphere- shaped- Recess- Channel- Array Transistor) Technology for 70nm DRAM feature size and beyond”, VLSI Symp. Tech. Dig., art. no. 1469201, pp. 34-35, 70 2005. [6] S. W. Chung, S. D. Lee, S. A. Jang, M. S. Yoo, K. O. Kim, C. O. Chung, S. Y. Cho, H. J. Cho, L. H. Lee, S. H. Hwang, J. S. Kim, B. H. Lee, H. G. Yoon, H. S. Park, S. J. Baek, Y. S. Cho, N. J. Kwak, H. C. Sohn, S. C. Moon, K. D. Yoo, J. G. Jeong, J. W. Kim, S. J. Hong and S. W. Park, “Highly scalable saddle-fin (S-Fin) transistor for sub 50 nm DRAM technology”, VLSI Symp. Tech. Dig., pp. 147-148, 2003. [7] D. H. Lee, B. C. Lee, I. S. Jung, T. J. Kim, Y. H. Son, S. G. Lee, Y. P. Kim, S. Choi, U. I. Chung and J. T. Moon, ”Fin-Channel-Array Transistor (FCAT) Featuring Sub-70nm Low Power and High Performance DRAM”, IEDM Technical Dig., pp. 407-410, 2003. [8] C. Lee, J. M. Yoon, C. H. Lee, J. C. Park, T. Y. Kim, H. S. Kang, S. K. Sung, E. S. Cho, H. J. Cho, Y. J. Ahn, D. Park, K. Kim, and B. I. Ryu, “Enhanced data retention of damascene-finFET DRAM with local channel implantation and fin surface orientation engineering”, IEDM Technical Dig., pp. 61-64, 2004. [9] M. J. Lee, J. H. Cho, S. D. Lee, J. H. Ahn, J. W. Kim, S. W. Park, Y. J. Park, and H. S. Min, “Partial SOI Type Isolation for Improvement of DRAM Cell Transistor Characteristics”, IEEE Electron Device Letters, 26 (5), pp. 332-334, 2005. [10] M. J. Lee, C. K. Baek, S. Jin, I. Y. Chung, Y. J. Park and, H. S. Min, ”A new recessed FinFET with R-shaped side channel (RFinFET) for DRAM cell applications”, Proc. IEEE Silicon Nanoelectronics Workshop, pp. 147-148, 2006. [11] L. Chang, Y. K. Choi, D. Ha, P. Ranade, S. Xiong, J. Bokor, C. Hu, 71 and T. J. King, “Extremely Scaled Silicon Nano-CMOS Devices”, Proceedings of the IEEE, 91 (11), pp. 1860-1872, 2003. [12] B. Yu, H. Wang, A. Joshi, Q. Xiang, E. Ibok and M. R. Lin, ”15nm gate length planar CMOS transistor”, IEDM Technical Dig., pp. 937-939, 2001. [13] T. Ghani, K. Mistry, P. Packan, S. Thompson, M. Stettler, S. Tyagi and M. Bohr, “Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors”, VLSI Symp. Tech. Dig., pp. 174-175, 2000. [14] H. Kim, K. Kim, T. K. Oh, S. Y. Cha, S. J. Hong, S. W. Park, and H. Shin, “RTS-like Fluctuation in Gate Induced Drain Leakage Current of Saddle-Fin Type DRAM Cell Transistor”, IEDM Technical Dig., pp. 271-274, 2009. [15] H. W. Chen, C. H. Liu, S. Y. Chen, Y. W. Liao, H. W. Hsu, H. S. Huang, and L. W. Cheng, “The Influence of La and Zr Doping on TDDB Characteristics of HfO2 Thin Films”, Solid State Devices and Materials, pp. 201-202, 2010. [16] Wolf, “The Silicon Processing for the VLSI Era”, Vol.3, Lattice, 1995. [17] D. K. Schroder, “Negative bias temperature instability: What do we understand?”, Microelectronics Reliability, 47(6), pp. 841-852, 2007. [18] S. J. Lin, C. S. Lai, Y. J. Chen, S. T. Chen, C. C. Hsu, B. Huang, G. Chuang, N. T. Shih, C. Y. Lee, and P. I. Lee, “Gate-Induced Drain Leakage (GIDL) Improvement or Millisecond Flash Anneal (MFLA) in RAM Application”, IEEE TED, 56 (8), pp. 1608-1617, 2009. 72 [19] T. Hamamoto, S. Sugiura, and S. Sawada, “On the Retention Time Distribution of Dynamic Random Access Memory (DRAM)”, IEDM Technical Dig., pp. 1300-1309, 1998. [20] S. H. Lo, D. A. Buchanan and Y. Taur, “Quantum-Mechanical Modeling of Electron Tunneling Current from the Inversion Layer of Ultra-Thin-Oxide nMOSFET’s”, IEEE Electron Device Letters, 18, pp. 209-211, 1997. [21] O. Atsushi, ”Improvement of SiO2 / Si interface flatness by post - oxidation anneal”, IEEE Electrochemical Society, 138 (3), pp. 807- 810, 1991. [22] M. Chang, J. Lin, S. N. Shih, T. C. Wu, B. Huang, J. Yang, and P. I. Lee, “Impact of Gate-Induced Drain Leakage on Retention Time Distribution of 256 Mbit DRAM With Negative Wordline Bias”, IEDM Technical Dig., pp. 1036-1041, 2003. [23] J. Adkisson, R. Divakaruni and J. Slinkman, “Charge Pumping for DRAM Retention Diagnostic”, International Integrated Reliability Workshop Final Report, pp. 97-102, 1997. [24] M. Cho, M. Aoulaiche, R. Degraeve, C. Ortolland, T. Kauerauf, B. Kaczer, P. Rousse, T. Y. Hoffmann, and G. Groeseneken, “Interface/Bulk Trap Recovery After Submelt Laser Anneal and the Impact to NBTI Reliability”, IEEE Electron Device Letters, 31(6), pp. 606-608, 2010. [25] E. Takeda, C. Y. Yang and M. H. Akemi, “Hot-Carrier Effects in MOS Devices”, Academic Press, 1995. [26] N. S. Kim, I. G. Kim, J. H. Choy and J. S. Park, “Impact of 73 Polymetal Gate Etch Post-Cleaning on Data Retention Time in Sub-micron DRAM Cells”, Appl. Phys., Vol. 4, pp. 2385-2389, 2002. [27] C. T. Liu, E. J. Lloyd, Y. Ma, M. Du, R. L. Opila, and S. J. Hillenius, “High Performance 0.2 um CMOS with 25 A Gate Oxide Grown on Nitrogen Implanted Si Substrate”, IEDM Technical Dig., pp.499, 1996. [28] H. S. Chang and H. Hwang, “Enhancement of Data Retention Time for 512-Mb DRAMs Using High-Pressure Deuterium Annealing”, IEDM Technical Dig., pp. 3599-3601, 2008. [29] L. C. Hsia, T. Chang, S. J. Chang, D. Fan, H. Y. Wei, and J. Jan, “Effects of Hydrogen Annealing on Data Retention Time for High Density DRAMs”, VLSI Symp. Tech. Dig., pp. 142-147, 1997. [30] A. Weber, A. Birner and W. Krautschneider, “DRAM retention tail improvement by trap passivation”, Solid-State Electronics, pp. 1534-1539, 2007. [31] K. Ohyu, T. Umeda, K. Okonogi, S. Tsukada, M. Hidaka, S. Fujieda, and Y. Mochizuki, “Quantitative identification for the physical origin of variable retention time: A vacancy-oxygen complex defect model”, IEDM Technical Dig., art. no. 4154211, pp. 1-4, 2006. [32] C. C. Huang, “A study of Fluorine and Nitrogen on Ultra-Thin Gate Oxide Reliability”, Journal of the American Chemical Society, 114 (8), pp. 2806-2810, 1992. [33] T. B. Hook, E. Adler, F. Guarin, J. Lukaitis, N. Rovedo, and K. Schruefer, “The Effects of Fluorine on Parametrics and Reliability in 74 a 0.18 um 3.5/6.8 nm Dual Gate Oxide CMOS Technology”, IEDM Technical Dig., pp. 1346-1353, 2001. [34] N. Kasai, P. J. Wright and K. C. Saraswat, “Hot- Carrier- Degradation Characteristics for Fluorine- Incorporated nMOSFET’s”, IEDM Technical Dig., pp. 1426-1431, 1990. [35] Y. Nishioka, K. Ohyu, Y. Ohji, N. Natuaki, K. Mukai, and T. P. Ma, “Hot-Electron Hardened Si-Gate MOSFET Utilizing F Implantation”, IEEE Electron Device Letters, pp. 141-143, 1989.
|