|
[1] P. Bergveld, “Development of an ion-sensitive solid state device for neurophysiological measurement,” IEEE Trans. Biomed. Eng., vol. 17, pp. 70–71, 1970. [2] D. E. Yates, S. Levine and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” J. Chem. Soc., Faraday trans., vol. 70, pp. 1807, 1974. [3] W. M. Siu and R. S. C. Cobbold, “Basic properties of the electrolyte-SiO2-Si system: Physical and theoretical aspects,” IEEE Trans. Electron Devices, vol. 26, pp. 1805, 1979. [4] A. Merlos and E. Cabruja, “New technology for easy and fully IC-compatible fabrication of backside-contacted ISFETs,” Sensors and Actuators B, vol. 24, pp. 228-231, 1995. [5] L. Bousse, “The chemical sensitivity of electrolyte/insulator/ semiconductor structures”, Ph.D. Thesis, Enschede, 1982. [6] Garde, J. Alderman and W. lane, “Development of a pH-sensitivity ISFET suitable for fabrication in a volume production environment,” Sensors and Actuators B, vol. 26-27, pp. 341-344, 1995. [7] J.L. Diot, J. Joseph, J.R. Martin and P. Clechet, “pH dependence of the Si/SiO2 interface state density for EOS systems,” J. Electroanal. Chem., vol. 193, pp. 75-88, 1985. [8] A. Fog, R.P. Buck, “Electronic semiconducting oxides as pH sensors,” Sensors and Actuators B, vol. 5, pp. 137–146, 1984. [9] P. Bergveled and A. Sibbald, “Analytical and biomedical applications of ion-sensitive field-effect transistors,” Elsevier Science Publishing Company Inc., New York, 1988. [10] L. K. Meixner and S. Koch, “Simulation of ISFET operation based on the site-binding model,” Sensors and Actuators B, vol. 6, pp. 315-318, 1992. [11] L. Bousse, H.H. Van Den Vlekkert and N.F. De Rooij, “Hysteresis in Al2O3 gate ISFETs,” Sensors and Actuators B, vol. Ⅱ, pp. 103-110, 1990. [12] A. Merlos and E. Cabruja, “New technology for easy and fully IC-compatible fabrication of backside-contacted ISFETs,” Sensors and Actuators B, vol. 24, pp. 228-231, 1995. [13] A. S. Poghossian, “The super-nernstian pH sensitivity of Ta2O5 gate ISFETs,” Sensors and Actuators B, vol. 7, no. 1-3, pp. 367-370, Mar. 1992. [14] H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Influence of isothermal annealing on tin oxide thin film for pH-ISFET sensor,” Sensors and Actuators B, vol. 65, no. 1, pp. 23-25, Jun. 2000. [15] T. M. Pan, M. D. Huang, C. W. Lin, M. H. Wu, “Development of high-k HoTiO3 sensing membrane for pH detection and glucose biosensing,” Sensors and Actuators B, vol. 144, pp. 139-145, 2010. [16] T. M. Pan, M. D. Huang, W. Y. Lin, M. H. Wu, “A urea biosensor based on pH-sensitive Sm2TiO5 electrolyte-insulator-semiconductor,” Analytica Chimica Acta, vol. 669, pp. 68-74, 2010. [17] C. S. Lai, C. M. Yang and T. F. Lu, “pH sensitivity improvement on 8 nm thick hafnium oxide by post deposition annealing,” Electrochem. Solid-State Lett., vol. 9, no. 9, pp. 90-92, Jan. 2006. [18] L. B. Chang, H. H. Ko, Y. L. Lee, C. S. Lai and C. Y. Wang, “The electrical and pH sensitive characteristics of thermal Gd2O3/SiO2-stacked oxide capacitors,” J. Electrochem. Soc., vol. 153, no. 4, pp. 330-332, Fed. 2006. [19] S. M. SZE, Physic of Semiconductor Devices, 2nd Edition, Central Book Company, Taipei, Taiwan, 1985. [20] E. H. Nicollian and J. R. Brews, MOS(Metal Oxide Semiconductor) Physics and Technology, John Wiley & Sons, Singapore. [21] J. C. Chou and C. N. Hsiao, “Drift behavior of ISFETs with a-Si:H-SiO2 gate insulator”, Mater. Chem. Phys., vol. 63, no. 3, pp. [22] S. Caras and J. Janata, “Field effect transistors sensitive to penicillin,” Anal. Chem., vol. 52, no. 12, pp. 1935–1937, Oct. 1980. [23] J. F. Kennedy and J. M. S. Cabral, in: H.J. Rehm, G. Reed (Eds.), Biotechnology, 7a, VCH Publishers, Germany, pp. 349–404, 1987. [24] J. H. T. Luong, A. Mulchandani, and G. G. Guilbault, “Developments and applications of biosensors,” Trends Biotechnol., vol. 6, no. 12, pp. 310–316, Dec. 1988. [25] T. Togawa, T. Tamura and P. A. Oberg, “Biomedical Transducers and Instruments,” CRC Press, New York, May 1997. [26] M. Singh, N. Verma, A. K. Grag and N. Redhu, ”Urea biosensor,” Sensors and Actuators B, vol. 134, pp. 345-351, Apr. 2008. [27] M. S. Doscher and F. M. Richards, “The activity of an enzyme in the crystalline state,” J. Biol. Chem., vol. 238, no. 7, pp.2399-2406, Jul. 1963. [28] J. F. Kennedy and J. M. S. Cabral, in: H.J. Rehm, G. Reed (Eds.), Biotechnology, 7a, VCH Publishers, Germany, pp. 349–404, 1987. [29] J. H. T. Luong, A. Mulchandani, and G. G. Guilbault, “Developments and applications of biosensors,” Trends Biotechnol., vol. 6, no. 12, pp. 310–316, Dec. 1988. [30] R. A. Messing, “Adsorption and inorganic bridge formations,” Methods in Enzymology, vol. 44, no. C, pp. 148-169, 1976. [31] J. Woodward, “Immobilized enzymes: adsorption and covalent coupling,” Immobilized Cells and Enzymes: A Practical Approach, IRL, Oxford, UK, pp. 3-17, 1985. [32] K. F. O’Driscoll, “Techniques of enzyme entrapment in gels,” Methods in Enzymol., vol. 44, no. C, pp. 169-183, 1976. [33] S.V. Dzyadevych, A. P. Soldatkin, A. V. El’skaya, C. Martelet and N. Jaffrezic-Renault, “Enzyme biosensors based on ion-selective field-effect transistor,” Anal. Chem., vol. 568, no. 1-2, pp. 248-258, May 2006.
|