跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/16 09:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖培佑
研究生(外文):Pei You Liao
論文名稱:研究鐿鈦氧化層與鋱鈦氧化層作為感測膜於生物感測器的應用
論文名稱(外文):Development of ytterbium titanium oxide and terbium titanium oxide sensing membranes for biosensor applications
指導教授:潘同明林彥亨林彥亨引用關係
指導教授(外文):T. M. PanY. H. Lin
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
論文頁數:91
中文關鍵詞:感測器生物感測器鐿鈦氧化層鋱鈦氧化層
外文關鍵詞:sensorDNATbYb
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文我們討論以濺鍍機沉積出來的鐿鈦氧化物與鋱鈦氧化物做為EIS的離子感測膜。我們使用鐿靶材與鈦靶材一起利用濺鍍機沉積在P-type的Si晶片上並經由快速熱退火系統形成鐿鈦氧化層。並與鐿氧化物做比較,加入鈦可以形成更好的感測特性。經由實驗後我們發現經過900oC的回火溫度沉積出來的鐿鈦氧化物薄膜,會有較高的感測度和較低的時漂現象與遲滯現象。另外,我們在感測膜上面結合了一層生物分子感測膜,將此感測器應用在葡萄糖酵素檢測、與DNA的檢測。
由於現在臨床上用來檢測DNA的方法價錢極高且時間很久,往往都要超過一個星期的時間,而我們的DNA檢測速度十分的迅速,如果可以很精準的檢測出,準確度也夠高相信這對未來臨床上DNA檢測方面是一大幫助。而本論文我們做到的DNA感測器準確度已算相當的不錯,之後再做些改進與驗測,我相向先前提到的方法有可能實現。

This thesis, ytterbium titanium and terbium titanium oxide dielectric grown using reactive RF-sputtering was investigated as sensing membrane of pH-EIS structure. We use the ytterbium (terbium) target and titanium target with sputtering deposition in the p-type Si wafer, and the formation of ytterbium titanium oxide via rapid thermal annealing system. We found the optimum condition was that the annealing temperature was 900oC.It represent a larger sensitivity, lower drift rate, and smaller hysteresis width. Additionally, in order to avoid generation of hydration layer of the gate insulator and reduce the formation of ytterbium-silicate, we deposited titanium on ytterbium oxide sensing, membranes and samples was rapid thermal annealed in oxygen. We found that titanium-doping exhibits better sensing characteristics.
We combine a biomolecule layer to become biomolecule film/YbTixOy sensing membrane/p-Si EIS structure for glucose and DNA sensor applications and we hope them could be extended to bio-sensor application.
Due to the methods used to detect DNA in clinical Price high time for a long time, often have more than a week's time, our DNA detection rate is very rapid, can be very accurate detection accuracy is high enough to believe that this is the future of clinical DNA testing is a big help. In this paper, we do DNA Sensor accuracy is considered quite good, then do improve with experience measured opposite the previously mentioned methods are possible.

指導教授推薦書
口試委員會審定書
授權書
Acknowledgment i
Chinese Abstract ii
English Abstract iii
Contents iv
Table & Figures Captions vi
Chapter 1 Introduction
1.1 Background…………………………………….…..………1
1.2 EIS and ISFET……………………………………..………3
1.3 Structure and operation mechanism………………..……...3
1.3.1 EIS structure……………………………………..……3
1.3.2 pH-ISFET operation mechanism……………….…..…4
1.4 Site binding model…………………………………………5
1.5 Motivation…………………………………………………9
Chapter 2 Physical and Electrical Properties of YbTixOy /Si EIS structure
2.1 Introduction…………………………………………..…..15
2.1.1 YbTixOy gate dielectric………………………………15
2.1.2 RF Sputtering………………………………………..16
2.2 Experiments process……………………………………..16
2.3 Physical properties……………………………………….17
2.3.1 XRD of YbTixOy film analysis………………………17
2.3.2 XPS of YbTixOy film analysis……………………….18
2.3.3 AFM of YbTixOy film analysis………………………19
2.4 Sensing characteristics of EIS structure………………….20
2.4.1 Sensitivity of sensing membrane…………………….20
2.4.2 Drift of sensing membrane…………………………..22
2.4.3 Hysteresis of sensing membrane…………………….22
Chapter 3 YbTixOy/Si structures for biosensor applications
3.1 Introduction……………………………………………....35
3.1.1 ISFET-based biosensor………………………………35
3.1.2 The method of immobilization……………………....36
3.2 YbTixOy EIS based glucose biosensor……………………37
3.2.1 Introduction………………………………………….37
3.2.2 Experiment……………………………………….….38
3.2.2.1 Reagents…………………………………….…..38
3.2.2.2 Enzyme immobilization…………………….…..38
3.2.2.3 Experiment process……………………………..39
3.2.3 Result and discussion………………………………..39
3.3 YbTixOy EIS based DNA biosensor…………………...…40
3.3.1 Introduction…………………………………….……40
3.3.2 Experiment……………………………………….….40
3.3.2.1 Reagents………………………………………...40
3.3.2.2 DNA immobilization……………………………41
3.3.2.3 Experiment process……………………………..41
3.3.3 Result and discussion……………………………..…41
3.3.4 Further application…………………………………..42
3.3.4.1 Introduction……………………………………..42

3.3.4.2 Reagents………………………………………..42
3.3.4.3 DNA immobilization…………………………...42
3.3.4.4 Experiment process…………………………….43
3.3.4.5 Result and discussion…………………………..43
3.3.4.6 Reagent………………………………………....44
3.3.4.7 Biomolecule immobilization…………………...44
3.3.4.8 Experiment process…………………………….44
3.3.4.9 Results and discussions…………………….…..45
Chapter 4 Physical and Electrical Properties of TbTixOy /Si EIS structure
4.1 Introduction…………………………………………..…..50
4.1.1 YbTixOy gate dielectric………………………………50
4.1.2 RF Sputtering………………………………………..51
4.2 Experiments process……………………………………..51
4.3 Physical properties……………………………………….52
4.3.1 XRD of YbTixOy film analysis………………………52
4.3.2 AFM of TbTixOy film analysis………………………53
4.4 Sensing characteristics of EIS structure………………….54
4.4.1 Sensitivity of sensing membrane…………………….54
4.4.2 Drift of sensing membrane…………………………..55
4.4.3 Hysteresis of sensing membrane…………………….56
Chapter 5 Conclusions and Future works
5.1 Conclusions……………………………………………..68
5.2 Future works…………………………………………….68
References………………………………………………………… 70


Table & Figure Captions

Chapter 1
Fig. 1-1 The picture shows the Schematic cross-section of the ISFET
Fig. 1-2 Comparison of EIS and ISFET structures
Fig. 1-3 Basic and multi-phase diagram of EIS structure
Fig.1-4 Typical C-V curves for electrolyte-SiO2-Si EIS structure. Silicon dioxide thickness is 560Å on a (100) 10Ω-cm p-type
Fig.1-5 Schematic representation of the site-binding model
Fig. 1-6 Experimental results of the surface potential ( ) on the SiO2 surface, using the theoretical parameters pHpzc=2.2, β=0.14, pKa=5.7, pKb=1.3, Ns=5×1014cm-2 and CDL=20uF/cm-2
Fig. 1-7 Experimental results of the threshold voltage variation of the Al2O3 gate ISFET, using the theoretical parameters pHpzc=8, β=4.8, pKa=10, pKb=-6, Ns=8×1014cm-2 and CDL=20uF/cm-2

Chapter 2
Fig. 2-1 Schematic of the self-designed RF sputtering system
Table. 2-1 Deposition conditions of YbTixOy thin film using RF sputtering system
Fig. 2-2 EIS structure with YbTixOy sensing membrane
Fig. 2-3 Flow chart of YbTixOy EIS process
Fig. 2-4 XRD analysis of YbTixOy films before and after different annealing temperatures
Fig. 2-5 XPS spectra of the corresponding (a) Yb 4d, (b) Ti 2p, (c) O 1s energy levels of YbTixOy sensing film annealed at various temperatures
Fig. 2-6 3x3μm AFM surface image of YbTixOy film without as-dep RTA (Rrms=0.505 nm)
Fig. 2-7 3x3μm AFM surface image of YbTixOy film with 500oC RTA (Rrms=0.333 nm)
Fig. 2-8 3x3μm AFM surface image of YbTixOy film with 700oC RTA (Rrms=0.347 nm)
Fig. 2-9 3x3μm AFM surface image of YbTixOy film with 900oC RTA (Rrms=0.550 nm)
Fig. 2-10 Surface roughness of YbTixOy sensing membrane with different RTA conditions
Fig. 2-11 C-V curves of YbTixOy EIS RTA at 900°C for all standard pH buffer solutions
Fig. 2-12 Extracted response voltages for varied pH with fitting the sensitivity and linearity at an annealing condition of 900oC
Fig. 2-13 Sensitivity of YbTixOy layer on various temperatures of RTA treatment
Fig. 2-14 Drift rates of YbTixOy layer after RTA at different temperatures
Table. 2-2 Drift rates of YbTixOy thin film after different RTA temperatures
Fig. 2-15 Sensitivity and drift of YbTixOy layer after annealing various temperatures
Fig. 2-16 Hysteresis voltages of YbTixOy EIS devices with different annealing temperatures during the pH loop 7→4→7→10→7
Fig. 2-17 Sensitivity of YbTixOy layer on various temperatures of RTA treatment
Table. 2-3 Hysteresis of YbTixOy thin film after different RTA temperatures

Chapter 3
Fig. 3-1 Classification of transducers
Table 3-1 Methods of immobilization of the biological component
Fig. 3- 2 The C-V curves of YbTixOy-Si EIS structure for different glucose concentration
Fig. 3-3 Sensitivity and linearity of YbTixOy-Si EIS structure for different glucose concentration
Fig. 3-4 The C-V curves of YbTixOy-Si EIS structure for different DNA reaction
Fig. 3-5 Linearity of YbTixOy-Si EIS structure ssDNA immobilized for different cDNA concentration annealed
Fig. 3- 6 The C-V curves of YbTixOy-Si EIS structure for different DNA reaction
Fig. 3-7 The C-V curves of YbTixOy-Si EIS structure for different DNA reaction
Chapter 4
Fig. 4-1 Schematic of the self-designed RF sputtering system
Table. 4-1 Deposition conditions of TbTixOy thin film using RF sputtering system
Fig. 4-2 EIS structure with TbTixOy sensing membrane
Fig. 4-3 Flow chart of TbTixOy EIS process
Fig. 4-4 XRD analysis of TbTixOy films before and after different annealing temperatures
Fig. 4-5 3x3µm AFM surface image of TbTixOy film without as-dep RTA (Rrms=0.806 nm)
Fig. 4-6 3x3µm AFM surface image of TbTixOy film with 700oC RTA (Rrms=0.889 nm)
Fig. 4-7 3x3µm AFM surface image of TbTixOy film with 800oC RTA (Rrms=0.869 nm)
Fig. 4-8 3x3µm AFM surface image of TbTixOy film with 900oC RTA (Rrms=0.938 nm)
Fig. 4-9 Surface roughness of TbTixOy sensing membrane with different RTA conditions
Fig. 4-10 C-V curves of TbTixOy EIS RTA at 900°C for all standard pH buffer solutions
Fig. 4-11 Extracted response voltages for varied pH with fitting the sensitivity and linearity at an annealing condition of 900oC
Fig. 4-12 Sensitivity of TbTixOy layer on various temperatures of RTA treatment
Fig. 4-13 Drift rates of TbTixOy layer after RTA at different temperatures
Table. 4-2 Drift rates of TbTixOy thin film after different RTA temperatures
Fig. 4-14 Sensitivity and drift of TbTixOy layer after annealing various temperatures
Fig. 4-15 Hysteresis voltages of TbTixOy EIS devices with different annealing temperatures during the pH loop 7→4→7→10→7
Fig. 4-16 Sensitivity of TbTixOy layer on various temperatures of RTA treatment
Table. 4-3 Hysteresis of TbTixOy thin film after different RTA temperatures
[1] P. Bergveld, “Development of an ion-sensitive solid state device for neurophysiological measurement,” IEEE Trans. Biomed. Eng., vol. 17, pp. 70–71, 1970.
[2] D. E. Yates, S. Levine and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” J. Chem. Soc., Faraday trans., vol. 70, pp. 1807, 1974.
[3] W. M. Siu and R. S. C. Cobbold, “Basic properties of the electrolyte-SiO2-Si system: Physical and theoretical aspects,” IEEE Trans. Electron Devices, vol. 26, pp. 1805, 1979.
[4] A. Merlos and E. Cabruja, “New technology for easy and fully IC-compatible fabrication of backside-contacted ISFETs,” Sensors and Actuators B, vol. 24, pp. 228-231, 1995.
[5] L. Bousse, “The chemical sensitivity of electrolyte/insulator/ semiconductor structures”, Ph.D. Thesis, Enschede, 1982.
[6] Garde, J. Alderman and W. lane, “Development of a pH-sensitivity ISFET suitable for fabrication in a volume production environment,” Sensors and Actuators B, vol. 26-27, pp. 341-344, 1995.
[7] J.L. Diot, J. Joseph, J.R. Martin and P. Clechet, “pH dependence of the Si/SiO2 interface state density for EOS systems,” J. Electroanal. Chem., vol. 193, pp. 75-88, 1985.
[8] A. Fog, R.P. Buck, “Electronic semiconducting oxides as pH sensors,” Sensors and Actuators B, vol. 5, pp. 137–146, 1984.
[9] P. Bergveled and A. Sibbald, “Analytical and biomedical applications of ion-sensitive field-effect transistors,” Elsevier Science Publishing Company Inc., New York, 1988.
[10] L. K. Meixner and S. Koch, “Simulation of ISFET operation based on the site-binding model,” Sensors and Actuators B, vol. 6, pp. 315-318, 1992.
[11] L. Bousse, H.H. Van Den Vlekkert and N.F. De Rooij, “Hysteresis in Al2O3 gate ISFETs,” Sensors and Actuators B, vol. Ⅱ, pp. 103-110, 1990.
[12] A. Merlos and E. Cabruja, “New technology for easy and fully IC-compatible fabrication of backside-contacted ISFETs,” Sensors and Actuators B, vol. 24, pp. 228-231, 1995.
[13] A. S. Poghossian, “The super-nernstian pH sensitivity of Ta2O5 gate ISFETs,” Sensors and Actuators B, vol. 7, no. 1-3, pp. 367-370, Mar. 1992.
[14] H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Influence of isothermal annealing on tin oxide thin film for pH-ISFET sensor,” Sensors and Actuators B, vol. 65, no. 1, pp. 23-25, Jun. 2000.
[15] T. M. Pan, M. D. Huang, C. W. Lin, M. H. Wu, “Development of high-k HoTiO3 sensing membrane for pH detection and glucose biosensing,” Sensors and Actuators B, vol. 144, pp. 139-145, 2010.
[16] T. M. Pan, M. D. Huang, W. Y. Lin, M. H. Wu, “A urea biosensor based on pH-sensitive Sm2TiO5 electrolyte-insulator-semiconductor,” Analytica Chimica Acta, vol. 669, pp. 68-74, 2010.
[17] C. S. Lai, C. M. Yang and T. F. Lu, “pH sensitivity improvement on 8 nm thick hafnium oxide by post deposition annealing,” Electrochem. Solid-State Lett., vol. 9, no. 9, pp. 90-92, Jan. 2006.
[18] L. B. Chang, H. H. Ko, Y. L. Lee, C. S. Lai and C. Y. Wang, “The electrical and pH sensitive characteristics of thermal Gd2O3/SiO2-stacked oxide capacitors,” J. Electrochem. Soc., vol. 153, no. 4, pp. 330-332, Fed. 2006.
[19] S. M. SZE, Physic of Semiconductor Devices, 2nd Edition, Central Book Company, Taipei, Taiwan, 1985.
[20] E. H. Nicollian and J. R. Brews, MOS(Metal Oxide Semiconductor) Physics and Technology, John Wiley & Sons, Singapore.
[21] J. C. Chou and C. N. Hsiao, “Drift behavior of ISFETs with a-Si:H-SiO2 gate insulator”, Mater. Chem. Phys., vol. 63, no. 3, pp.
[22] S. Caras and J. Janata, “Field effect transistors sensitive to penicillin,” Anal. Chem., vol. 52, no. 12, pp. 1935–1937, Oct. 1980.
[23] J. F. Kennedy and J. M. S. Cabral, in: H.J. Rehm, G. Reed (Eds.), Biotechnology, 7a, VCH Publishers, Germany, pp. 349–404, 1987.
[24] J. H. T. Luong, A. Mulchandani, and G. G. Guilbault, “Developments and applications of biosensors,” Trends Biotechnol., vol. 6, no. 12, pp. 310–316, Dec. 1988.
[25] T. Togawa, T. Tamura and P. A. Oberg, “Biomedical Transducers and Instruments,” CRC Press, New York, May 1997.
[26] M. Singh, N. Verma, A. K. Grag and N. Redhu, ”Urea biosensor,” Sensors and Actuators B, vol. 134, pp. 345-351, Apr. 2008.
[27] M. S. Doscher and F. M. Richards, “The activity of an enzyme in the crystalline state,” J. Biol. Chem., vol. 238, no. 7, pp.2399-2406, Jul. 1963.
[28] J. F. Kennedy and J. M. S. Cabral, in: H.J. Rehm, G. Reed (Eds.), Biotechnology, 7a, VCH Publishers, Germany, pp. 349–404, 1987.
[29] J. H. T. Luong, A. Mulchandani, and G. G. Guilbault, “Developments and applications of biosensors,” Trends Biotechnol., vol. 6, no. 12, pp. 310–316, Dec. 1988.
[30] R. A. Messing, “Adsorption and inorganic bridge formations,” Methods in Enzymology, vol. 44, no. C, pp. 148-169, 1976.
[31] J. Woodward, “Immobilized enzymes: adsorption and covalent coupling,” Immobilized Cells and Enzymes: A Practical Approach, IRL, Oxford, UK, pp. 3-17, 1985.
[32] K. F. O’Driscoll, “Techniques of enzyme entrapment in gels,” Methods in Enzymol., vol. 44, no. C, pp. 169-183, 1976.
[33] S.V. Dzyadevych, A. P. Soldatkin, A. V. El’skaya, C. Martelet and N. Jaffrezic-Renault, “Enzyme biosensors based on ion-selective field-effect transistor,” Anal. Chem., vol. 568, no. 1-2, pp. 248-258, May 2006.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊