跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/16 22:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙培均
研究生(外文):Pei Chun Chao
論文名稱:中文音形轉換之大腦機制:事件相關電位研究
論文名稱(外文):The Brain Mechanism of Phonology to Orthography Conversion in Chinese Character Processing: An Event-Related Potential Study
指導教授:孟令夫孟令夫引用關係
指導教授(外文):L. F. Meng
學位類別:碩士
校院名稱:長庚大學
系所名稱:職能治療學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
論文頁數:110
中文關鍵詞:聽寫歷程音形轉換音韻配對負波(PMN)事件相關電位(P2N170PMN & N400)
外文關鍵詞:Writing to dictationPhonology to orthography conversion (POC)Phonologically Mapping NegativityEvent-related potential (P2N170PMN & N400)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:459
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
背景與目的:中文字的發音並非由字內所有部件(component)和形素(logographeme)的發音所組成,因此無法由整字聲音(monosyllable)直接對應到所有部件的字形結構,使中文的音形轉換異於拼音文字轉換的過程。近年來,音形轉換的認知歷程開始受到關注,儘管許多研究已探討聽寫模型與臨床個案行為連結的相關議題,但少有大腦相關等研究來釐清中文音形轉換的運作機制。本研究利用高時間解析度的事件相關電位,在控制語意系統參與的影響下,探討聲韻直接轉成字形的大腦認知歷程,並與另兩種任務(聲韻處理及語意)比較於ERP的異同,以推導出音形轉換可能的運作機制。

方法:參與者為30位慣用右手的大學生,執行三種以聽覺刺激為主及代表不同中文字處理情境的任務:(1)音形轉換:判斷兩個中文字是否有相同的部件(radical);(2)聲韻處理:判斷兩個中文字的聲音是否相同;(3)語意:判斷兩個中文字的意思是否相關。以二因子相依樣本變異數分析,探討目標字出現後,N1、P2、N170、PMN及N400等波形成份的平均振幅於不同配對、任務及電極間的差異。

結果: 額中央葉區(F3,F4,F7,Fz,C3,C4,Cz)的N1及PMN於聲韻處理顯著大於音形轉換,但P200則是音形轉換顯著大於聲韻處理,並於聲韻處理與音形轉換有顯著組內差異(不同配對大於相同配對),而頂枕葉區(P3,P4,P7,P8,Pz)的N170於音形轉換亦顯著大於聲韻處理。額中央區(Fz,C3,C4,Cz)的N400於聲韻處理與語意皆有顯著組內差異,在相同配對中,語意顯著大於音形轉換,而在不同配對中,音形轉換顯著大於語意。

討論與結論:基於任務的需求,聲韻處理對於聲音刺激的注意力需多於音形轉換,故額中央葉區的N1顯著大於音形轉換。額中央葉區的P200與頂枕葉區N170於音形轉換顯著大於聲韻處理,與音形轉換歷程中,從聲韻轉換至字形及字形分析、空間分配和視覺印象等所可能運作的腦區相呼應。額中央葉區的PMN於聲韻處理顯著大於音形轉換,與聲韻分析歷程位於額中央區的結果相符。語意的N400有顯著組內差異符合語意衝突所引發的效應,相對下,顯著N400組內差異於音形轉換,可能是因為蘊含語意的參與或是字形的不一致所導致。但音形轉換與語意之間N400的比較於不同情境有所差異,區辨出兩種任務處理的認知歷程。由事件相關電位結果可推知中文音形轉換的認知歷程不同於聲韻處理及語意,中文音形轉換任務雖也會誘發明顯的N400,但尚無法明確分辨是字形或是語意系統的影響。

Unlike alphabetic scripts, such as English, the pronunciations of Chinese characters cannot directly convert to every form of logographemes or components. In recent years, researchers have become increasingly interested in the linguistic process of writing to dictation including linkages between cognitive processing of writing models and clinical behaviors; however, there were little evidence of brain correlates of the processing of phonology to orthography conversion (POC) in Chinese which could assist in establishing a foundation for assessment and intervention. The present study investigated the conversion from phonology to orthography in Chinese by controlling the influence of semantic system, and compared with different cognitive processes involving auditory analysis or the semantic system through event-related potential (ERP). Thirty healthy right-handed undergraduate students were recruited and executed the following prime (S1)-target (S2) tasks which represents different cognitive processing of Chinese spoken characters: (1) auditory analysis: judge whether both pronunciations of the characters are the similar; (2) PO: judge whether both right radicals of the characters are the similar, and (3) semantic condition: judge whether both spoken characters are related. The data showed PO elicited greater P200 amplitudes in the frontal-central regions and N170 amplitudes in the parietal-occipital regions while auditory analysis elicited greater PMN amplitudes in the frontal-central regions. These findings indicated the conversion from phonology to orthography and orthographic processing would be involved in spoken characters during PO whereas phonological processing involves in auditory analysis condition. Moreover, the N400 elicited by PO suggests that orthographic information or semantic system interferes with the spoken characters during PO. Additionally, the differences of N400 indicate distinct cognitive process between PO and semantic conditions. The data provide the new evidence about phonology to orthography conversion in Chinese characters which is different from the cognitive processes of phonology and semantic system.
Table of contents
論文指導教授推薦書
論文口試委員審定書
長庚大學授權書 iii
致謝 iv
中文摘要 v
Abstract viii
Table of Contents x
List of Figures xiii
List of Table xv
Introduction 1
Research Background Information 1
Research Purpose 3
Definitions of the Term 4
Literature Review 6
Phonology -Orthography Conversion within Functional Writing Models 6
Phonology-Orthography conversion within alphabetic
writing models 6
Phonology-orthography conversion within a non-alphabetic writing Model 9
Word Characteristics in Phonology - Orthography Conversion 10
Characteristics of alphabetic words 10
Characteristics of Chinese characters 10
Neural Correlates of Phonology- Orthography Conversion 12
Neuroimaging findings of phonology- orthography
conversion 12
Event-related potential of spoken word recognition 16
Research questions and hypotheses 20
Method 21
Research framework and method 21
Research framework 21
Definition of variables 22
Research method 23
Subjects 23
Population 23
Criteria 24
Materials and Apparatus 25
Assessment for screening 25
Character in tasks 27
Electrophysiological recording and capturing 30
Task and Procedures 32
Conditions 32
Procedure 32
Data analysis 34
Behavioral data 34
ERP data 34
Results 35
Demographic characteristics 35
Behavioral Data 35
ERP Data 36
N1 (90-150 ms) 37
P2 (150-250 ms) 39
N170 (150-300ms) 40
PMN (250-350 ms) 41
N400 (400-650 ms) 44
Discussion 48
The Effect of Auditory Selective Attention on N1 48
The Interaction between Phonology and Orthography in P2 49
Orthographic Processing in Spoken Character for N170 50
Phonological Discriminating in Spoken Character for PMN 51
Different Implications for N400 Effect 51
The correlation among N170, P2 and writing performances 52
Limitations of the Study 54
Recommendations for Future Research 55
Conclusion 56
References 57
Appendix 66
Appendix 1 Basic information questionnaires 66
Appendix 2 Handedness questionnaires 70
Appendix 3 Rey Complex Figure Test 71
Appendix 4 Writing for dictation 72
Appendix 5 Paired characters in each condition 73
Appendix 6 The characteristics of characters 74
Appendix 7 28 characters for read and dictation test of task 75
Appendix 8 A seven-point scale for the semantic association of semantically related and unrelated pairs 76
Appendix 9 Data Analysis (Data Referenced to FCz) 80
Appendix 10 ERP Data (Data Referenced to FCz) 82
Appendix 11 Discussion and Conclusion
(Data Referenced to FCz) 90

List of Figures
Figure 1 Schematic depiction of the cognitive architecture of the
spelling system 7
Figure 2 Schematic representation of the cognitive processes
underlying writing 8
Figure 3 Cognitive model of spelling and writing 8
Figure 4 Model of reading and writing development in Chinese 9
Figure 5 Anatomically based neuropsychological model of writing
and spelling 12
Figure 6 Designs for spelling and reading experiments 14
Figure 7 The research framework of this study 21
Figure 8 The distributions of electoral sites 30
Figure 9 Paradigms of the Phonology to orthography conversion (A), auditory analysis (B) and semantic conditions (C) 33
Figure 10 The Head view of grand average of ERPs in auditory
analysis (blue line), PO (red line) and semantic conditions (green line) for congruous trials 38
Figure 11 The Head view of grand average of ERPs in auditory
analysis (blue line), PO (red line) and semantic conditions
(green line) for incongruous trials 38
Figure 12 The grand averaged waveform for congruous trials between auditory analysis and PO condition 46
Figure 13 The grand averaged waveform for incongruous trials between auditory analysis and PO condition 47
Figure 14 The Head view of grand average of ERPs in auditory analysis (blue line), PO (red line) and semantic conditions (green line) in prime characters (data referenced to FCz) 83
Figure 15 The Head view of grand average of ERPs in auditory analysis (blue line), PO (red line) and semantic conditions (green line) in Target characters (data referenced to FCz) 83
Figure 16 The grand averaged waveform of sixteen channels in target characters for congruous trials in three conditions (data referenced to FCz) 88
Figure 17 The grand averaged waveform of sixteen channels in target characters for incongruous trials in three conditions (data referenced to FCz) 89

Abrams, M.H (2005). A glossary of literary terms /(8th ed.). Boston: Thomson, Wadsworth.
Alain, C., & Arnott, S. R. (2000). Selectively attending to auditory objects. Frontiers in Bioscience, 5, D202-212.
Barnea, A., & Breznitz, Z. (1998). Phonological and Orthographic Processing of Hebrew Words: Electrophysiological Aspects. Journal of Genetic Psychology, 159(4), 492-504.
Bentin, S., Mouchetant-Rostaing, Y., Giard, M. H., Echallier, J. F., & Pernier, J. (1999). ERP manifestations of processing printed words at different psycholinguistic levels: Time course and scalp distribution. Journal of Cognitive Neuroscience, 11(3), 235-260.
Booth, J. R., Cho, S., Burman, D. D., & Bitan, T. (2007). Neural correlates of mapping from phonology to orthography in children performing an auditory spelling task. Developmental Science, 10(4), 441-451.
Cao, F., Khalid, K., Lee, R., Brennan, C., Yang, Y., Li, K., et al. (2011). Development of brain networks involved in spoken word processing of Mandarin Chinese. NeuroImage, 57(3), 750-759.
Caplan, D. (1993). Language: Structure, processing, and disorders. Cambridge, MA: MIT Press.
Chen, X., & Kao, H. S. R.. (2002). Visual-spatial properties and orthographic processing of Chinese characters. In H. S. R., Kao, C. K. Leong, & D-G. Gao (Eds.), Cognitive Neuroscience Studies of the Chinese language (pp. 176–194). Hong Kong: University of Press.
Coch, D., Sanders, L. D., & Neville, H. J. (2005). An event-related potential study of selective auditory attention in children and adults. Journal of Cognitive Neuroscience, 17(4), 605-622.
Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108(1), 204-256.
Connolly, J. F., & Phillips, N. A. (1994). Event-related potential components reflect phonological and semantic processing of the terminal word of spoken sentences. Journal of Cognitive Neuroscience, 6(3), 256-266.
Connolly, J. F., Service, E., D'Arcy, R. C. N., Kujala, A., & Alho, K. (2001). Phonological aspects of word recognition as revealed by high-resolution spatio-temporal brain mapping. NeuroReport, 12(2), 237-243.
Coxhead, P. (2012, May 1). Re: A glossary of linaueatic terms [Online forum comment]. Retrieved from http: // www. cs.bham.ac.uk /~ pxc/nlp/nlpgloss.html#g-entries
Crowley, K. E., & Colrain, I. M. (2004). A review of the evidence for P2 being an independent component process: Age, sleep and modality. Clinical Neurophysiology, 115(4), 732-744.
D'Arcy, R. C. N., Connolly, J. F., & Crocker, S. F. (2000). Latency shifts in the N2b component track phonological deviations in spoken words. Clinical Neurophysiology, 111(1), 40-44.
Dehaene, S., Le Clec'H, G., Poline, J. B., Le Bihan, D., & Cohen, L. (2002). The visual word form area: A prelexical representation of visual words in the fusiform gyrus. NeuroReport, 13(3), 321-325.
Desroches, A. S., Newman, R. L., & Joanisse, M. F. (2009). Investigating the time course of spoken word recognition: Electrophysiological evidence for the influences of phonological similarity. Journal of Cognitive Neuroscience, 21(10), 1893-1906.
Hagoort, P., & Brown, C. M. (2000). ERP effects of listening to speech: Semantic ERP effects. Neuropsychologia, 38(11), 1518-1530.
Han, Z., & Bi, Y. (2009). Oral spelling and writing in a logographic language: Insights from a Chinese dysgraphic individual. Brain and Language, 110(1), 23-28.
Han, Z., Zhang, Y., Shu, H., & Bi, Y. (2007). The orthographic buffer in writing Chinese characters: Evidence from a dysgraphic patient. Cognitive Neuropsychology, 24(4), 431-450.
Henry, M., Beeson, P., Stark, A., & Rapcsak, S. (2007). The role of left perisylvian cortical regions in spelling☆. Brain and Language, 100(1), 44-52.
Hillis, A. E. (Ed.). (2002). The Handbook of Adult Language Disorders:Integrating Conitive Neuropsychology, Neurology, and Rehabiliation. NY: Psychology Press Ltd.
Hillis, A. E. (2008). Cognitive processes underlying reading and writing and their neural substrates. Neuropsychology and behavioral neurology, 88, 311-322.
Holcomb, P. J., & Neville, H. J. (1991). Natural speech processing: An analysis using event-related brain potentials. Psychobiology, 19(4), 286-300.
Huang, K. (2004). Electrophysiological correlates of grapheme-phoneme conversion. Neuroscience Letters, 366(3), 254-258.
Klingebiel K., & Weekes B. S. 2008. Developmental Dyslexia in Chinese: Behavioral, Genetic and Neuropsychological Issues. In S. P. Law, B. Weeks & A. Wong (Eds.), Language Disorders in Speakers of Chinese (pp.138-168). Clevedon, UK: Multilingual Matters
Kramer, A. F., & Donchin, E. (1987). Brain Potentials as Indices of Orthographic and Phonological Interaction During Word Matching. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(1), 76-86.
Kutas, M., & Van Petten, C. K. (1994). Psycholinguistics electrified:Event-related brain potential investigations. In M. A. Gernsbacher (Ed.), Handbook of psycholinguistics (pp. 83–143). San Diego, CA: Academic Press, Inc.
Law, S.-P., & Or, B. (2001). A Case Study of Acquired Dyslexia and Dysgraphia in Cantonese: Evidence for Nonsemantic Pathways for Reading and Writing Chinese. Cognitive Neuropsychology, 18(8), 729-748.
Law, S.-P., Yeung, O., Wong, W., & Chiu, K. (2005). Processing of semantic radicals in writing Chinese characters: Data from a Chinese dysgraphic patient. Cognitive Neuropsychology, 22(7), 885-903.
Lee, C. Y., Tsai, J. L., Chan, W. H., Hsu, C. H., Hung, D. L., & Tzeng, O. J. L. (2007). Temporal dynamics of the consistency effect in reading Chinese: An event-related potentials study. NeuroReport, 18(2), 147-151.
Lin, S. E., Chen, H. C., Zhao, J., Li, S., He, S., & Weng, X. C. (2011). Left-lateralized N170 response to unpronounceable pseudo but not false Chinese characters-the key role of orthography. Neuroscience, 190, 200-206.
Liu, C., Zhang, W. T., Tang, Y. Y., Mai, X. Q., Chen, H. C., Tardif, T., et al. (2008). The Visual Word Form Area: Evidence from an fMRI study of implicit processing of Chinese characters. NeuroImage, 40(3), 1350-1361.
Liu, Y., Perfetti, C. A., & Hart, L. (2003). ERP Evidence for the Time Course of Graphic, Phonological, and Semantic Information in Chinese Meaning and Pronunciation Decisions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(6), 1231-1247.
Liu, Y., Shu, H., & Wei, J. (2006). Spoken word recognition in context: Evidence from Chinese ERP analyses. Brain and Language, 96(1), 37-48.
Lu, Q., Tang, Y. Y., Zhou, L., & Yu, Q. (2011). The different time courses of reading different levels of Chinese characters: An ERP study. Neuroscience Letters, 498(3), 194-198.
Mado Proverbio, A. (2003). Time course of brain activation during graphemic/phonologic processing in reading: An ERP study. Brain and Language, 87(3), 412-420.
Kutas, M., & Van Petten, C. K. (1994). Psycholinguistics electrified:Event-related brain potential investigations. In M. A. Gernsbacher (Ed.), Handbook of psycholinguistics (pp. 83–143). San Diego, CA: Academic Press, Inc.
Martin, B.A., Tremblay, K.L., & Stapells, D.R. (2007). Chapter 23. Principles and Applications of Cortical Auditory Evoked Potentials. In J. Eggermont, M. Don, & R. Burkard (Eds.), Auditory evoked potentials. Philadelphia, PA: Lippincott, Williams and Wilkins.
Maurer, U., Brandeis, D., & McCandliss, B. D. (2005). Fast, visual specialization for reading in English revealed by the topography of the N170 ERP response. Behavioral and Brain Functions, 1.
Michie, P. T., Bearpark, H. M., Crawford, J. M., & Glue, L. C. T. (1990). The nature of selective attention effects on auditory event-related potentials. Biological Psychology, 30(3), 219-250.
Michie, P. T., Solowij, N., Crawford, J. M., & Glue, L. C. (1993). The effects of between-source discriminability on attended and unattended auditory ERPs. Psychophysiology, 30(2), 205-220.
Näätänen, R., & Michie, P. T. (1979). Early selective-attention effects on the evoked potential: A critical review and reinterpretation. Biological Psychology, 8(2), 81-136.
Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 24(4), 375-425.
Nadeau, S. E., Rothi, L. J. G., & Crosson, B. (Eds.). (2000). Aphasia and Language: Theory to Practice. NY: Guilford Publications,Inc.
Nakamura, K., Honda, M., Hirano, S., Oga, T., Sawamoto, N., Hanakawa, T., et al. (2002). Modulation of the visual word retrieval system in writing: A functional MRI study on the Japanese orthographies. Journal of Cognitive Neuroscience, 14(1), 104-115.
Newman, R. L., & Connolly, J. F. (2009). Electrophysiological markers of pre-lexical speech processing: Evidence for bottom-up and top-down effects on spoken word processing. Biological Psychology, 80(1), 114-121.
Newman, R. L., Connolly, J. F., Service, E., & McIvor, K. (2003). Influence of phonological expectations during a phoneme deletion task: Evidence from event-related brain potentials. Psychophysiology, 40(4), 640-647.
Patel, S. H., & Azzam, P. N. (2005). Characterization of N200 and P300: Selected studies of the Event-Related Potential. International Journal of Medical Sciences, 2(4), 147-154.
Pattamadilok, C., Perre, L., Dufau, S., & Ziegler, J. C. (2009). On-line orthographic influences on spoken language in a semantic task. Journal of Cognitive Neuroscience, 21(1), 169-179.
Perre, L., Midgley, K., & Ziegler, J. C. (2009). When beef primes reef more than leaf: Orthographic information affects phonological priming in spoken word recognition. Psychophysiology, 46(4), 739-746.
Perre, L., Pattamadilok, C., Montant, M., & Ziegler, J. C. (2009). Orthographic effects in spoken language: On-line activation or phonological restructuring? Brain Research, 1275(C), 73-80.
Philipose, L. E., Gottesman, R. F., Newhart, M., Kleinman, J. T., Herskovits, E. H., Pawlak, M. A., et al. (2007). Neural regions essential for reading and spelling of words and pseudowords. Annals of Neurology, 62(5), 481-492.
Portney, Leslie Gross, and Watkins, Mary P. (2009). Foundations of clinical research(3rd ed.). Upper Saddle River, N.J.: Pearson/Prentice Hall.
Purcell, J. J., Napoliello, E. M., & Eden, G. F. (2011). A combined fMRI study of typed spelling and reading. NeuroImage, 55(2), 750-762.
Qi, G. Q., Li, X., Yan, T., Wu, J., & Guo, Q. (2010). Different occipito-temporal activations in Chinese literate and illiterate subjects during Chinese character processing.
Rapcsak, S. Z., & Beeson, P. M. (2000) Agraphia. In S. E., Nadeau, L. J. G., Rothi, & B. Crosson (EDs.), Aphaisa and Language : Theory to practice (pp. 109-131). New York: The Guilford Press.
Rapp, B., & Caramazza, A. (1997). From Graphemes to Abstract Letter Shapes: Levels of Representation in Written Spelling. Journal of Experimental Psychology: Human Perception and Performance, 23(4), 1130-1152.
Raymer, M. A., & Rothi, L. J. G. (2000) The semantic system. In S. E., Nadeau, L. J. G., Rothi, & B. Crosson (EDs.), Aphaisa and Language : Theory to practice (pp. 109-131). New York: The Guilford Press.
Roeltgen, D. P. (2003). Agraphia. In K. M. Knneth & E. Valenstein (Eds.), Clinical neuropsychology (pp. 126-145). New York: Oxford University Press.
Sakurai, Y., Mimura, I., & Mannen, T. (2008). Agraphia for kanji resulting from a left posterior middle temporal gyrus lesion. Behavioural Neurology, 19(3), 93-106.
Sakurai, Y., Matsumura, K., Iwatsubo, T., & Momose, T. (1997). Frontal pure agraphia for kanji or kana: Dissociation between morphology and phonology. Neurology, 49(4), 946-952.
Schmalzl, L., & Nickels, L. (2006). Treatment of irregular word spelling in acquired dysgraphia: Selective benefit from visual mnemonics. Neuropsychological Rehabilitation, 16(1), 1-37.
Simon, G., Bernard, C., Lalonde, R., & Rebai, M. (2006). Orthographic transparency and grapheme–phoneme conversion: An ERP study in Arabic and French readers. Brain Research, 1104(1), 141-152.
Simon, G., Petit, L., Bernard, C., & Rebaï, M. (2007). N170 ERPs could represent a logographic processing strategy in visual word recognition. Behavioral and Brain Functions, 3.
Sugihara, G., Kaminaga, T., & Sugishita, M. (2006). Interindividual uniformity and variety of the “Writing center”: A functional MRI study. NeuroImage, 32(4), 1837-1849.
Van Den Brink, D., Brown, C. M., & Hagoort, P. (2001). Electrophysiological evidence for early contextual influences during spoken-word recognition: N200 versus N400 effects. Journal of Cognitive Neuroscience, 13(7), 967-985.
Wambacq, I. J. A., & Jerger, J. F. (2004). Processing of affective prosody and lexical-semantics in spoken utterances as differentiated by event-related potentials. Cognitive Brain Research, 20(3), 427-437.
Weekes, B., Yin, W., Su, I., & Chen, M. (2006). The cognitive neuropsychology of reading and writing in Chinese. Language and linguistics, 7(3), 595-617.
Weekes, B. S., & Robinson, G. (1997). Semantic anomia without surface dyslexia. Aphasiology, 11(8), 813-825.
Woods, D. L. (1995). The component structure of the N1 wave of the human auditory evoked potential. Electroencephalography and clinical neurophysiology. Supplement, 44, 102-109.
Zhang, Q., Zhang, J. X., & Kong, L. (2009). An ERP study on the time course of phonological and semantic activation in Chinese word recognition. International Journal of Psychophysiology, 73(3), 235-245.
Zhao, J., Guo, J., Zhou, F., & Shu, H. (2011). Time course of Chinese monosyllabic spoken word recognition: Evidence from ERP analyses. Neuropsychologia.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top