跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 04:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁文瑝
研究生(外文):Wen Huang Liang
論文名稱:新型小面關節植入物的生物力學研究
論文名稱(外文):Biomechanical Study of A Newly Designed Facet Implant
指導教授:戴金龍戴金龍引用關係
指導教授(外文):C. L. Tai
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫療機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
論文頁數:141
中文關鍵詞:體外實驗小面關節脊椎融合脊椎穩定性
外文關鍵詞:In vitro testFacet jointSpinal fusionSpinal stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
提升小面關節的穩定性已逐漸廣泛應用於腰椎後位穩定手術。此技術所採行的策略乃是利用墊片植入小面關節或以骨釘將上、下小面關節鎖固。本研究目的是利用體外實驗方法,比較小面關節墊片(Facet spacer),小面關節骨釘,椎弓骨釘和脊突間固定器等四種不同固定裝置,應用於腰椎穩定手術後的力學穩定差異性。
採用單一活動單元豬腰椎取代人類真實腰椎,每一活動單元腰椎包含兩個鄰近椎體和一個椎間盤,利用材料試驗機進行體外力學測試。每一試件均清除小面關節周圍軟組織,但保留所有韌帶結構。經上述處理後之單一活動單元腰椎(未植入固定裝置腰椎),依前述不同固定裝置區分以下四組(每組六件):1) 小面關節墊片組,將兩個墊片分別植入兩側上、下小面關節間; 2) 小面關節骨釘組,將兩根骨釘分別鎖入兩側上、下小面關節間; 3) 椎弓骨釘組,將四支骨釘分別由兩側上、下椎弓鎖入,並輔以骨棒固定; 4) 脊突間固定器組,利用兩個固定板鎖固上、下後脊突。針對前述未植入固定裝置及四組植入不同固定裝置之單一活動單元腰椎,分別進行前彎、後仰、側彎及軸向扭轉等四種不同力學測試。測試過程中,同步記錄施加力矩、腰椎總位移、兩椎體間位移,兩椎體間旋轉角度等參數,借以比較前述四種不同固定裝置,應用於腰椎穩定手術後的力學穩定差異性。
結果顯示:植入脊突間固定器在前彎與後彎勁度值分別為4936.94±1842.15 N-mm/deg與4659.40±2095.91;椎弓骨釘在側向彎曲勁度值為2949.97±1197.17 N-mm/deg;軸向扭轉在植入小面關節骨釘勁度值為4821±1120.6 N-mm/deg;植入小面關節墊片神經孔面積平均增加7.06%。
結論:四種不同固定裝置(小面關節墊片、小面關節骨釘、椎弓骨釘、脊突間固定器)均能有效改善術後的脊椎力學穩定性。其中,小面關節骨釘提供較好的軸向扭轉穩定性;椎弓骨釘提供較好的側向彎曲穩定性;脊突間固定器提供較好的前彎與後彎穩定性;而小面關節墊片也提升後彎動作穩定性。此外,小面關節墊片能有效增加神經孔面積,有利於椎體減壓手術。
Facet stabilization is gaining popularity for lumbar posterior stability. The strategy behind this technique is to fuse the facet joints with intra-articular spacer or fix the superior and inferior facets with perforating screws. The purpose of this study was to compare the biomechanical properties of lumbar facet spacer, facet screws, pedicle screw and interspinous process fixator using an in vitro model.
Twenty-four motion units of porcine lumbar spine were studied using material testing machine. Each motion unit had two adjacent vertebrae and one intervertebral disc. Each specimen was tested un-instrumented and then followed by instrumentation with four different facet stabilization procedures. In Group I (facet spacer implantation), two facet spacers were inserted into the joint spaces of bilateral superior and inferior facets respectively. In Group II (facet screw fixation), two perforating screws were used to trans-fix the bilateral superior and inferior facets respectively. In Group III (pedicle screw fixation), four pedicle screws were used to implant the bilateral superior and inferior lamina respectively. In Group IV (interspinous process fixator), two plates were used to trans-fix the bilateral superior and inferiorspinous process respectively. Each group had 6 specimens. The tests included flexion (maximum 4000 N-mm), extension (maximum 6000 N-mm), lateral bending (maximum 6000 N-mm) and rotation (maximum 6000 N-mm). Parameters, including applied moment, displacement and angle deviation, were collected for analysis.
In Group IV (interspinous process fixator), the stiffness of flexion and extension was 4936.94±1842.15 N-mm/deg and 4659.40±2095.91 N-mm/deg; in Group III (pedicle screw fixation), the stiffness of bending was 2949.97±1197.17 N-mm/deg; in Group II (facet screw), the stiffness of rotation was 4821±1120.6 N-mm/deg. An average increase of 7.06% in foramen area was found for facet spacer implantation, which may be beneficial for spinal decompression surgery.
In conclusions, the results indicate, regardless of implant types, implantation of various implants (facet spacer, facet screw, pedicle screw or interspinous process fixator) improve the postoperative stability of spinal construct. Facet screw fixation provided better stabilization in rotation, and pedicle screw fixation provided better stabilization in lateral bending, and interspinous process fixator provided better stabilization in flexion and extension, while facet spacer implantation provided stabilization in extension. Implantation of facet spacer increases the foramen area, which is beneficial for spinal decompression surgery.
目錄
指導教授推薦書
口試委員會審定書
授權書
致謝i
中文摘要ii
英文摘要iv
目錄vi
圖目錄x
表目錄xvii
第一章 緒論1
1.1 前言1
1.2 研究背景3
1.3 研究動機4
1.4 研究目的5
第二章 文獻回顧6
2.1 脊椎結構與功能6
2.1.1 脊椎解剖構造簡介6
2.1.2 脊椎功能簡介8
2.1.3 腰椎椎體的生物力學特性9
2.1.4 腰椎椎間盤的生物力學特性10
2.1.5 腰椎小面關節之構造與生物力學特性11
2.1.6 腰椎周圍韌帶之生物力學特性15
2.2 脊椎疾病與臨床診療方式17
2.2.1 脊椎的病變17
2.2.2 脊椎病變治療的方式20
2.2.3 脊椎固定器的介紹23
第三章 研究方法33
3.1 研究流程33
3.2 研究材料與設備36
3.2.1 脊椎植入物元件36
3.2.2 豬隻脊椎38
3.2.3 壓克力快速成型膠40
3.2.4 材料試驗機41
3.2.5 位移量測器43
3.2.6 夾具設計45
3.3 研究試樣準備50
3.4 實驗方法58
3.4.1 前彎測試59
3.4.2 後彎測試60
3.4.3 側向彎曲測試60
3.4.4 軸向扭轉測試61
3.4.5 彎曲力矩之理論計算61
3.4.6 勁度之理論計算63
3.5 數據紀錄及分析63
3.6 神經孔面積量測64
3.7 生物統計法64
第四章 結果65
4.1 前導實驗65
4.2 脊椎單一活動單元前彎之比較71
4.3 脊椎單一活動單元後彎之比較77
4.4 脊椎單一活動單元側向彎曲之比較83
4.5 脊椎單一活動單元軸向扭轉之比較87
4.6 植入小面關節墊片神經孔洞面積變化90
第五章 討論92
5.1 勁度與椎間盤間位移之比較92
5.2 植入小面關節墊片對脊椎活動單元影響94
5.3 植入小面關節骨釘對脊椎活動單元影響95
5.4 植入椎弓骨釘對脊椎活動單元影響96
5.5 植入脊突間固定器對脊椎活動單元影響97
5.6 植入不同植入物的生物力學比較99
5.7 植入小面關節墊片對神經孔面積增加量之探討104
5.8 本研究的限制105
第六章 結論106
參考文獻107
附錄112

圖目錄
圖1-1 (A)正常椎孔結構; (B)為椎孔狹窄示意圖 2
圖2-1 脊椎解剖構造 (A)前視; (B)側視7
圖2-2 脊椎運動模式8
圖2-3 椎體與椎弓10
圖2-4 椎間盤11
圖2-5 脊椎小面關節接觸面之方向 (A.頸椎 B.胸椎 C.腰椎) 13
圖2-6 頸椎至腰椎各椎節活動度14
圖2-7 小面關節之解剖圖14
圖2-8 腰椎韌帶之解剖圖16
圖2-9 腰椎小面關節增生18
圖2-10 黃韌帶增厚情形18
圖2-11 骨刺生成情形19
圖2-12 老化所引起椎間盤退化和損傷可能是引起背痛的來源19
圖2-13 機械性過度負荷導致椎間盤退化和損傷可能是引起背痛的來源20
圖2-14 三種不同骨螺釘固定方式之脊椎融合手術:A. 小面關節骨釘固定 (Translaminar facet screw fixation);B. 小面關節骨釘 (Transfacet pedicle screw fixation);C. 傳統椎弓骨釘固定 (Traditional pedicle screw)24
圖2-15 三種不同骨螺釘固定方式之脊椎融合手術: (A)椎籠 + 小面關節骨釘 (Cage + Translaminar screws (TS, Mathys)); (B)椎籠 + 腰椎小面關節骨釘 (Cage + Lumbar facet interference screws (LFIS, Mathys)); (C)椎籠 + 椎弓骨釘 (Cage + Pedicle screw (USS, Mathys)) 24
圖2-16 椎弓骨螺釘 (左)水平固定法 (右)對角固定法之三維有限元素模型26
圖2-17 勾桿系統後方內固定26
圖2-18 椎弓骨釘系統後方內固定27
圖2-19 Coflex脊突間植入物29
圖2-20 Diam脊突間植入物30
圖2-21 第二代Wallis 脊突間植入物30
圖2-22 X-stop脊突間植入物31
圖2-23 各種椎間融合器 (A)SynCage-Open (Synthes Spine, Inc., Mathys Medical Ltd., Bettlach, Switzerland); (B)O.I.C. (Stryker Spine, Mahwah, New Jersey, USA); (C)AVS-TL (Stryker Spine, Mahwah, New Jersey, USA)31
圖3-1實驗流程架構圖33
圖3-2 小面關節墊片植入單一活動單元之脊椎 (A)實際照片;及 (B)X光照片34
圖3-3 小面關節骨釘植入單一活動單元之脊椎 (A)實際照片;及 (B)X光照片34
圖3-4 椎弓骨釘植入單一活動單元之脊椎 (A)實際照片;及 (B)X光照片35
圖3-5 脊突間固定器植入單一活動單元之脊椎 (A)實際照片;及 (B)X光照片35
圖3-6 小面關節墊片三方向特徵圖 (I-Lock, Paonan Corp., Taiwan)36
圖3-7 小面關節墊片3D示意圖 36
圖3-8 小面關節骨釘37
圖3-9 椎弓骨釘系統 (A) 椎弓骨釘;(B)骨棒37
圖3-10 脊突間固定器 (A)固定板;(B)脊突間墊片37
圖3-11 豬脊椎39
圖3-12 工業用固化膠40
圖3-13 MTS雙軸材料試驗機42
圖3-14 力傳感器42
圖3-15 位移量測器43
圖3-16 位移量測器-架設於活動單元椎體前緣,測量受力時椎間盤間距變化圖44
圖3-17 萬向夾具45
圖3-18 脊椎活動單元之下夾具工程圖46
圖3-19 脊椎活動單元之下夾具3D示意圖46
圖3-20 將豬之脊椎固定之下夾具圖46
圖3-21 脊椎活動單元之上夾具工程圖47
圖3-22 脊椎活動單元之上夾具3D示意圖47
圖3-23 將豬之脊椎固定之上夾具圖48
圖3-24 彎曲測試夾具安裝圖48
圖3-25 脊椎活動單元之扭轉測試夾具3D示意圖49
圖3-26 軸向扭轉測試夾具圖49
圖3-27 軸向扭轉測試夾具安裝圖50
圖3-28 (A)新鮮豬骨; (B) 單一脊椎活動單元51
圖3-29 脊椎固定於平板與對正於中心之裝置圖52
圖3-30 上夾具與下夾具呈水平狀態圖52
圖3-31 後彎測試夾具安裝圖53
圖3-32 軸向扭轉測試試樣安裝圖54
圖3-33 器械裝置圖55
圖3-34 植入小面關節墊片實際圖56
圖3-35 植入小面關節骨釘實際圖56
圖3-36 植入椎弓骨釘實際圖57
圖3-37 脊突間固定器實際圖57
圖3-38 測試實驗架構示意圖。施力桿置於脊椎試件100 mm,並施以軸向力62
圖3-39 小面關節墊片植入單一活動單元椎體之X-ray照片 (A)植入前;(B)植入後64
圖4-1 施予軸向壓力0~40N進行前彎測試 66
圖4-2 施予軸向壓力0~60N進行後彎測試 66
圖4-3 施予軸向壓力0~30N進行側向彎曲測試67
圖4-4 施予軸向扭轉0~6000N-mm進行扭轉測試67
圖4-5 植入小面關節墊片進行靜態前彎破壞測試68
圖4-6 植入小面關節墊片進行靜態後彎破壞測試69
圖4-7 植入小面關節墊片進行靜態側向彎曲破壞測試69
圖4-8 植入小面關節墊片進行軸向扭轉破壞測試70
圖4-9 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜態前彎動作之位移-力量曲線比較圖73
圖4-10 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜態前彎勁度比較73
圖4-11 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜態前彎椎間盤間位移之比較75
圖4-12 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜態後彎動作之位移-力量曲線比較圖79
圖4-13 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜態後彎勁度比較79
圖4-14 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜態後彎椎間盤間位移之比較81
圖4-15 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜態側向彎曲之位移-力量曲線比較圖85
圖4-16 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜態側向彎曲勁度之比較85
圖4-17 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器軸向扭轉之位移-力量曲線比較圖89
圖4-18 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器軸向扭轉勁度之比較89
圖4-19 植入小面關節墊片神經孔面積變化91
圖5-1 未植入與不同植入物於椎體間勁度之比較92
圖5-2 未植入與不同植入物於椎間盤間位移之比較93
圖5-3 未植入與植入小面關節墊片於椎體間勁度百分比95
圖5-4 未植入與植入小面關節骨釘於椎體間勁度百分比96
圖5-5 未植入與植入椎弓骨釘於椎體間勁度百分比97
圖5-6 未植入與植入脊突間固定器於椎體間勁度百分比98
圖5-7 在前彎動作中,以椎體間未植入為基準去比較植入不同植入後勁度之百分比99
圖5-8 在後彎動作中,以椎體間未植入為基準去比較植入不同植入後勁度之百分比101
圖5-9 在側向彎曲中,以椎體間未植入為基準去比較植入不同植入後勁度之百分比102
圖5-10 在軸向扭轉中,以椎體間未植入為基準去比較植入不同植入後勁度之百分比103
圖5-11 植入小面關節墊片神經孔面積變化104

表目錄
表4-1 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜態前彎動作位移數據72
表4-2 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜態前彎動作之椎間盤間位移數據74
表4-3 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜態前彎動作P值, (*)表示p < 0.05在統計學上有顯著差異75
表4-4 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜態前彎動作椎間盤間位移P值, (*)表示p < 0.05在統計學上有顯著差異76
表4-5 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜態後彎動作數據78
表4-6 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜態後彎動作之椎間盤間位移數據80
表4-7 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜態後彎動作P值, (*)表示p < 0.05在統計學上有顯著差異81
表4-8 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜態後彎動作椎間盤間位移P值, (*)表示p < 0.05在統計學上有顯著差異82
表4-9 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜態側向彎曲動作數據84
表4-10 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜側向彎曲P值, (*)表示p < 0.05在統計學上有顯著差異86
表4-11 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜態軸向扭轉數據88
表4-12 未植入、植入小面關節墊片、小面關節骨釘、椎弓骨釘與脊突間固定器靜軸向扭轉P值, (*)表示p < 0.05在統計學上有顯著差異90
表4-13 未植入與植入小面關節墊片神經孔面積91
[1] 中華民國內政部戶政司. http://www.moi.gov.tw/chi/chi_news/news_detail.aspx?sn=6353&type_code=01&search_unit=025&pages=0.
[2] 仁愛醫療財團法人.
[3] Kosaka H, Sairyo K, Biyani A, Leaman D, Yeasting R, Higashino K, et al. Pathomechanism of loss of elasticity and hypertrophy of lumbar ligamentum flavum in elderly patients with lumbar spinal canal stenosis. Spine. 2007;32:2805-11.
[4] Jarmundowicz W, Haftek J. [Neurogenic intermittent claudication]. Neurol Neurochir Pol. 1984;18:493-7.
[5] Goulet JA, Senunas LE, DeSilva GL, Greenfield ML. Autogenous iliac crest bone graft. Complications and functional assessment. Clinical orthopaedics and related research. 1997:76-81.
[6] Nakamura H, Yamano Y, Seki M, Konishi S. Use of folded vascularized rib graft in anterior fusion after treatment of thoracic and upper lumbar lesions. Neurosurgery. 2001;94:323-7.
[7] 張俊詳等譯. James Watkins,肌肉骨骼系統解剖學:構造與功能. 合記圖書民國九十五年.
[8] 林自勇, 鄧志娟, 陳瑩玲等譯. Martini, Bartholomew, Essentials of Anatomy & Physiology: 全威圖書; 民國九十二年.
[9] R. P, R原著 P, 藍琴臺, 戴安修, 張宏名翻譯. 《彩色解剖學圖譜》. 合記圖書民國八十七年.
[10] MR A. Atlas of anatomy. Williams&Wilkins1991.
[11] Ti-Sheng Chang, Cheng C-W, Wang C-S, Chen HY, Chang J-H. A new multi-directional tester for the evaluation of spinal biomechanics. Med and Biological Engineering. 2008;29:7-13.
[12] Kettler A, Schmoelz W, Kast E, Gottwald M, Claes L, Wilke HJ. In vitro stabilizing effect of a transforaminal compared with two posterior lumbar interbody fusion cages. Spine. 2005;30:E665-70.
[13] 陳振昇. 腰椎融合手術的生物力學分析. 國立陽明大學醫學工程研究所博士論文. 2001.
[14] MM WIAaP. Clinical Biomechanics of the spine: Lippincott Company; 1978.
[15] Adams MA, Hutton WC. The mechanical function of the lumbar apophyseal joints. Spine. 1983;8:327-30.
[16] KH Y, AI K. Mechanism of facet load transmission as a hypothesis for low-back pain. Spine. 1984;9:557-65.
[17] M N, VH F. Basic biomechanics of the musculoskeletal system. Third ed. Philadelphia: Lippincott Williams & Wilkins2001.
[18] Anthony, Schnuerer, Julio Gallego MD. Cristie Manuel,Anatomy of the Spine & Related Structures. Christie Manual.
[19] Hibbs RA. An operation for progressive spinal deformities: a preliminary report of three cases from the service of the orthopaedic hospital. 1911. Clinical orthopaedics and related research. 2007;460:17-20.
[20] Macnab I, Dall D. The blood supply of the lumbar spine and its application to the technique of intertransverse lumbar fusion. The Journal of bone and joint surgery British volume. 1971;53:628-38.
[21] Lai P-L, Chen L-H, Niu C-C, Fu T-S, Chen W-J. Relation Between Laminectomy and Development of Adjacent Segment Instability After Lumbar Fusion With Pedicle Fixation. Spine. 2004;29:2527-32.
[22] Tai CL, Hsieh PH, Chen WP, Chen LH, Chen WJ, Lai PL. Biomechanical comparison of lumbar spine instability between laminectomy and bilateral laminotomy for spinal stenosis syndrome - an experimental study in porcine model. BMC musculoskeletal disorders. 2008;9:84.
[23] M K, BW C, JC S, JA G, G S, K K, et al. Does spinal instrumentation influence the healing process of posterolateral spinal fusion? An in vivo animal model. The spine journal : official journal of the North American Spine Society. 1999;24:1058-65.
[24] Stauffer RN, Coventry MB. Anterior interbody lumbar spine fusion. Analysis of Mayo Clinic series. The Journal of bone and joint surgery American volume. 1972;54:756-68.
[25] Dennis S, Watkins R, Landaker S, Dillin W, Springer D. Comparison of disc space heights after anterior lumbar interbody fusion. Spine. 1989;14:876-8.
[26] Aepli M, Mannion AF, Grob D. Translaminar Screw Fixation of the Lumbar Spine. Spine. 2009;34:pp1492-8.
[27] Ferrara LA, Secor JL, Jin B-h, Wakefield A, Inceoglu S, Benzel EC. A Biomechanical Comparison of Facet Screw Fixation and Pedicle Screw Fixation. Spine. 2003;28:1226-34.
[28] Kandziora F, Schleicher P, Scholz M, Pflugmacher R, Eindorf T, Haas NP, et al. Biomechanical Testing of the Lumbar Facet Interference Screw. Spine. 2005;30:E34-E0.
[29] Lim TH, An HS, Hong JH, Ahn JY, You JW, Eck J, et al. Biomechanical evaluation of anterior and posterior fixations in an unstable calf spine model. Spine. 1997;22:261-6.
[30] Lim TH, Kim JG, Fujiwara A, Yoon TT, Lee SC, Ha JW, et al. Biomechanical evaluation of diagonal fixation in pedicle screw instrumentation. Spine. 2001;26:2498-503.
[31] Serin E, Karakurt L, Yilmaz E, Belhan O, Varol T. Effects of two-levels, four-levels, and four-levels plus offset-hook posterior fixation techniques on protecting the surgical correction of unstable thoracolumbar vertebral fractures: a clinical study. European Journal of Orthopaedic Surgery & Traumatology. 2004;14:1-6.
[32] Shih-Tien Wang M, Ma H-L, Liu C-L, Yu W-K, Chang M-C, Chen T-H. Is Fusion Necessary for Surgically Treated Burst Fractures of the Thoracolumbar and Lumbar Spine A Prospective, Randomized Study. Spine. 2006;31:2646-52.
[33] Dickman CA, Martin A Y, C.Lu HT, Melkerson MN. Surgical treatment alternatives for fixation of unstable fractures of the thoracic and lumbar spine: a meta-analysis. Spine. 1994;19:2266S-73S.
[34] Cordista A, Conrad B, Horodyski M, Walters S, Rechtine G. Biomechanical evaluation of pedicle screws versus pedicle and laminar hooks in the thoracic spine. The spine journal : official journal of the North American Spine Society. 2006;6:444-9.
[35] An HS, Singh K, Vaccaro AR, Wang G, Yoshida H, Eck J, et al. Biomechanical evaluation of contemporary posterior spinal internal fixation configurations in an unstable burst-fracture calf spine model: special references of hook configurations and pedicle screws. Spine. 2004;29:257-62.
[36] Barr SJ, Schuette AM, Emans JB. Lumbar pedicle screws versus hooks. Results in double major curves in adolescent idiopathic scoliosis. Spine. 1997;22:1369-79.
[37] Coe JD, Warden KE, Herzig MA, McAfee PC. Influence of bone mineral density on the fixation of thoracolumbar implants. A comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine. 1990;15:902-7.
[38] Steffee AD, Biscup RS, Sitkowski DJ. Segmental spine plates with pedicle screw fixation. A new internal fixation device for disorders of the lumbar and thoracolumbar spine. Clinical orthopaedics and related research. 1986:45-53.
[39] Khoueir P, Kim KA, Wang MY. Classification of posterior dynamic stabilization devices. Neurosurgical focus. 2007;22:E3.
[40] Samani J. Study of a Semi-Rigid Interspinous U Fixation System. Spinal Sugary,Child Orthopaedics. 2000;1707.
[41] Christie SD, Song JK, Fessler RG. Dynamic interspinous process technology. Spine. 2005;30:S73-8.
[42] McAfee PC. Interbody fusion cages in reconstructive operations on the spine. The Journal of bone and joint surgery American volume. 1999;81:859-80.
[43] 涂漢欽. 基礎化學民國九十三年.
[44] Anekstein Y, Brosh T, Mirovsky Y. Intermediate screws in short segment pedicular fixation for thoracic and lumbar fractures: a biomechanical study. Journal of spinal disorders & techniques. 2007;20:72-7.
[45] Biomechanical Evaluation of Contemporary Posterior Spinal Internal Fixation Configurations in an Unstable Burst-fracture Calf Spine Model.
[46] Wilke HJ, Drumm J, Haussler K, Mack C, Steudel WI, Kettler A. Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2008;17:1049-56.
[47] Hart R, Hettwer W, Liu Q, Prem S. Mechanical stiffness of segmental versus nonsegmental pedicle screw constructs: the effect of cross-links. Spine. 2006;31:E35-8.
[48] Chen HH, Wang WK, Li KC, Chen TH. Biomechanical effects of the body augmenter for reconstruction of the vertebral body. Spine. 2004;29:E382-7.
[49] Shono Y, McAfee PC, Cunningham BW. Experimental study of thoracolumbar burst fractures. A radiographic and biomechanical analysis of anterior and posterior instrumentation systems. Spine. 1994;19:1711-22.
[50] Phillips FM, Cunningham B, Carandang G, Ghanayem AJ, Voronov L, Havey RM, et al. Effect of supplemental translaminar facet screw fixation on the stability of stand-alone anterior lumbar interbody fusion cages under physiologic compressive preloads. Spine. 2004;29:1731-6.
[51] Shim CS, Lee SH, Jung B, Sivasabaapathi P, Park SH, Shin SW. Fluoroscopically assisted percutaneous translaminar facet screw fixation following anterior lumbar interbody fusion: technical report. Spine. 2005;30:838-43.
[52] Jutte PC, Castelein RM. Complications of pedicle screws in lumbar and lumbosacral fusions in 105 consecutive primary operations. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2002;11:594-8.
[53] Herkowitz HN, Kurz LT. Degenerative lumbar spondylolisthesis with spinal stenosis. A prospective study comparing decompression with decompression and intertransverse process arthrodesis. The Journal of bone and joint surgery American volume. 1991;73:802-8.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top