跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/29 13:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張義德
研究生(外文):E-TE CHANG
論文名稱:機車ABS韌體迴路模擬與機台測試
論文名稱(外文):ABS Firmware-in-the-Loop Simulation and Platform Testing for Motorcycle
指導教授:蔡樸生
指導教授(外文):Tsai Pu-Sheng
口試委員:陳珍源蔡樸生宋真坦
口試委員(外文):Jen-Yang ChenTsai Pu-ShengDavid Jen-Tan Sung
口試日期:2012-07-21
學位類別:碩士
校院名稱:中華科技大學
系所名稱:電子工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:65
中文關鍵詞:防滑煞車系統ABS控制器ABS信號模擬器霍爾感測器滑差
外文關鍵詞:Anti-skid brake systemABS controllerABS signal simulatorHall detecting deviceslip
相關次數:
  • 被引用被引用:2
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
為了實現ABS控制器軟硬體設計,並且順利完成機車之安裝與測試,本文完成一套「ABS韌體迴路動態模擬系統」取代實際機車的行車測試,以方便實驗室內各種模組之功能驗證。本系統概分為主電腦核心單元、ABS信號模擬器以及ABS控制器。主電腦核心單元內建機車運動的數學模型,一方面接收ABS控制器所傳送過來控制命令,透過電腦模擬的過程計算出目前機車的動態行為,並且將車輪轉速及車體速度傳送給ABS信號模擬器。信號模擬器在模擬電子感測器所送出來的信號,其中霍爾感測器負責偵測車輪轉速,送出方波信號。對地雷達感測器負責偵測車體速度,送出類比電壓訊號。ABS控制器負責接收上述信號,並執行滑差控制器演算法,將最後所得到的控制命令回傳至主電腦核心單元,構成一套韌體迴路動態模擬系統。採用本系統可成功取代機車的行車測試,針對不同路面、載重、車速對防鎖死剎車系統的影響作深入探討。本論文的第二部份是在實驗室建立一套「ABS動態模擬機台」,它是由上下兩只飛輪密合連接所架構而成。下面的飛輪由一顆變頻馬達所驅動,所感測到的轉速代表車體速度。下飛輪的轉動可以帶動上飛輪旋轉,箝在上飛輪的電子轉速感測器所送出來的信號代表車輪速度。此外,本機台的硬體部份還包括煞車把手、煞車總泵、液壓煞車模組、油壓馬達與煞車卡鉗。當騎士按下手煞車握把,煞車油經管路流向車輪煞車卡鉗,卡鉗油壓不斷地增加夾緊來令片達到煞車目的。倘若上飛輪趨向鎖死,ABS控制器發生作用,送出信號驅動電磁閥,將高壓油壓力釋放,放鬆卡鉗,避免車輪鎖死。由實驗結果顯示,本文所設計的機台配合自行研發的ABS控制器確實可讓上飛輪完成一煞一放的動作,達到機車防滑煞車系統的目的。
In order to realize the software and hardware designs of the ABS controller to complete the installment and the experiment smoothly in the motorcycles, this research has completed a set system, the ABS firmware circuit dynamic analogous system, to substitute the actual driving test. This system, divided into main computer core unit, ABS signal simulator and ABS controller, is convenient to experiment all kinds of module functions in the laboratory. The motorcycle dynamic mathematical model built-in the main computer core unit can get the control commands transmitted by the ABS controller and calculate the dynamic condition from the process in the computer simulation, and then transmits the speeds of the wheels and the motorcycle to the ABS signal simulator, which simulates the signals from the electric detecting device, in which Hall detecting device detects the wheel rotational speed and sends out the square-wave signal; the ground radar senses the speed of the motorcycle and sends out the analogy voltage signal. The ABS controller is responsible to receive the signals above and calculates the slippery differences. The outcomes of the process will transmit back to the core unit of the main computer to form a set of firmware circuit dynamic analogous system. This system can explore, discuss and replace the authentic motorcycle driving tests, which are influenced by the different roads, loads, and the effects of Anti-lock Braking System caused by the speed. In the second part of the thesis is to build a set of 「ABS dynamic simulation platform」in the laboratory. The system consists of two flywheels, upper one and lower one. The latter, driven by a variable-frequency motor, can detect the rotation speed, which represents the speed of the motorcycle. The rotation of the lower flywheel makes the upper one revolve. The signals from the speed sensory on the upper flywheel are the speed of the motorcycle. The hardware of the system includes braking handlebars, a braking pump, a hydraulic braking mold, an oil pressure motor, and a braking caliper. The rider presses down the handbrake, which makes the brake fluid flow to the braking caliper on the wheel. The oil pressure in the caliper squeezes unceasingly the brake pads to stop the motorcycle. If the upper flywheel inclines to deadlock, the ABS sensor will work and send signals to the electric valve to release the high-pressured oil in the caliper, which will avoid the wheel deadlocking. The result demonstrated in the experimental reveals the design of the machine coordinated the ABS controller, researched and developed by myself, can make the upper flywheel tighten and lessen accurately to achieve the goal of anti-lock breaking.
Abstract i
摘 要 iii
目 次 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
第一節 研究動機 1
第二節 文獻回顧 3
壹、ABS油壓迴路驅動方式 3
貳、ABS控制器設計 4
參、ABS動態模擬機台架構 6
第三節 論文架構 8
第二章 簡化機車運動模型 10
第一節 機車數學模型 10
第二節 輪胎數學模型 12
第三節 防滑煞車系統數學模型 14
第三章 ABS韌體迴路模擬架構 16
第一節 主控電腦 --- GUI整合視窗測試 17
第二節 ABS信號模擬器--- ATmega162 19
第三節 ABS控制器設計--- PIC18F452 21
第四章 ABS模擬平台之建立 25
第一節 ABS測試機台架構之描述 26
第二節 電子轉速感測器之應用 29
壹、磁環之構造 31
貳、感應原理 31
參、輸出信號實測波形 34
第三節 信號整形電路之設計 34
第四節 電磁閥控制電路 38
第五節 主控核心晶片 39
第五章 實驗結果與功能測試 40
第一節 軔體迴路模擬測試 40
壹、滑差控制器 42
貳、P-R法則控制器 44
第二節 ABS模擬機台功能測試 48
壹、ABS煞放功能測試 49
貳、滑差控制器在模擬機台之響應 52
參、實驗機台之特性與限制 54
第六章 結論與未來研究方向 56
第一節 結論 56
第二節 未來研究方向 57
參考文獻 59
作者簡介 62

[1]公路法第四章第六十三條第五項,車輛安全檢測基準四十三之一、防鎖死煞車系統,自一0二年一月一日起實施。
[2]宋真堯,四輪汽車載具之循跡防滑系統設計,行政院國家科學委員會專題研究計畫成果報告,1996。
[3]李彥廷,"容積式ABS防滑控制煞車系統分析與設計"。中華科技大學電子工程研究所碩士論文,2010。
[4]邱建誠,"YAMAHA YP250重機車ABS防滑控制煞車統動態設計模擬與資料分析"。中華科技大學電子工程研究所碩士班,碩士論文,2010。
[5]陸振原,"機車液壓防鎖死煞車模組設計與系統控制之研究"。國立成功大學機械工程研究所,博士論文,2005。
[6]許廷暘,"機車液壓防鎖死煞車模組設計與系統控制之研究"。國立成功大學機械工程研究所碩士論文,2009。
[7]張瑞宗,"模糊脈寬調變控制液壓防鎖死煞車系統之研究"。國立成功大學機械工程研究所碩士論文,2000。
[8]陳喜棠,馬志欽,"百器構造圖解"。財團法人徐氏基金會,民國 87年。
[9]楊易昇,"機車防鎖死煞車系統之控制與實作"。大葉大學機械工程研究所,碩士論文,2000。
[10]Chr. Von Holst and H. Göhlich," The system tractor – ture under the influence of tractor development," Vehicle System dynamics, Vol. 27, pp. 330-334, 1997.
[11]C. K. Chen and J. D. Wu," Development of fuzzy controlled ABS systems for motorcycles," International Journal of Vehicle Design, Vol. 34, No. 1, pp. 84-100, 2004.
[12]C. M. Lin and C. F. Hsu," Self-learning fuzzy sliding-mode control for antilock braking systems," Transactions on Control Systems Technology, Vol. 11, No. 2, pp. 273-278, 2003.
[13]C. Y. Edge, C. Y. Kuo, and P. L. Sun," Conjugate boundary method for control law design of anti-skid brake systems," Int. J. of Vehicle Design, Vol. 11, No. 1, pp. 40-63, 1990.
[14]G. Roll, H. F. Ohm, and B. Hauser," Anti-lock control system for motorcycles", U.S. Patent No. 5344220, 1994.
[15]H. Dugoff, P. S. Fancher and L. Segel," An analysis of tire traction properties and their influence on vehicle dynamics performance," SAE Paper No. 700377, 1970.
[16]H. S. Tan, M. Tomizuka," Discrete time controller design fir robust vehicle traction," IEEE Control Systems Magazine, pp. 107-113 Apr.1990.
[17]H. B. Pacejka and E. Bakker," The magic formula tyre model," Vehicle System Dynamics, Vol. 21, pp. 1-18, 1993.
[18]H. B. Pacejka and I. J. M. Besselink," Magic formula tyre model with Transient properties,”Vehicle System Dynamics, Vol. 27, pp. 234-249, 1997.
[19]J. L. Harned, L. E. Johnston and G. Scharpf," Measurement of tire brake force characteristic as related to wheel slip (antilock) control system design," SAE Paper 690214, 1969.
[20]J. R. Layne, K. M. Passino, S. Yurkovich," Fuzzy control for antiskid braking system," IEEE Transaction on Control systems technology, Vol. 1 No. 2 June, 1993.
[21]J. Pickenhahn, A. Weidele, and M. Fischer," Method of anti-lock braking of a motorcycle and of determining the coefficient of adhesion," U.S. Patent No. 5244259, 1993.
[22]K. Guo and Q. Liu," Modeling and simulation of non-steady state cornering properties and identification of structure parameters of tyre," Vehicle System Dynamics, Vol. 27, pp. 80-93, 1997.
[23]Microchip," PIC16F452 Data Sheet," http://www.microchip.com.
[24]R. Limpert, Motor vehicle accident reconstruction and cause analysis, Charlottesville, Virginia, 1994.
[25]R. R. Guntur and H. Ouwerkerk," Adaptive brake control system," Proceedings of the Institution of Mechanical Engineering, Vol. 186, No. 68/72, pp. 855-880, 1972.
[26]R. R. Guntur and H. Ouwerkerk," Laboratory testing of anti-skid devices," Journal of Automotive Engineering, Institution of Mechanical Engineering, pp. 22-25, 1973.
[27]S. G. Choi and D. W. Cho," Design of nonlinear sliding mode controller with pulse width modulation for vehicle slip ratio control," Vehicle System Dynamics, Vol. 36, No. 1, pp. 57-72, 2001.
[28]W. Takeshi and T. Kazuhiko," Brake assembly for a motorcycle", U.S. Patent No. 6273523, 2001.
[29]W. Y. Wang, K. C. Hsu, T. T. Lee and G. M. Chen," Robust sliding mode-like fuzzy logic control for anti-lock braking systems with uncertainties and Disturbances," International Conference on Machine Learning and Cybernetics, Vol. 1, pp. 633-638, 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top