跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/01 09:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡益榮
研究生(外文):Tsai,Yi Rong
論文名稱:光子晶體邏輯元件設計與分析
論文名稱(外文):Design And Analysis Of Photonic Crystal Optical Logic Elements
指導教授:李昆益李昆益引用關係
指導教授(外文):Kun-Yi Lee
口試委員:李偉裕莊為群林晏瑞
口試委員(外文):Wei-Yu LeeWei-Ching ChuangYen-Juei Lin
口試日期:2012-07-20
學位類別:碩士
校院名稱:中華科技大學
系所名稱:機電光工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:48
中文關鍵詞:光邏輯光子晶體
外文關鍵詞:optical logicphotonic crystal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出配合數值分析與軟體模擬,並採用布拉格反射效應及電磁波傳播原理,待設計出光子晶體最佳化之結構參數,並以光子晶體來設計數位邏輯光路等光學元件,且此具有低光耗損和結構微小化之優點。
研究中的光子晶體製程光邏輯閘之元件是以矽為圓柱,設計光積體電路系統加以借由光子晶體結構製程光波導亦能進行光能量傳輸,且可製作出幾微米高的光子晶體柱方便量測,過程中結合布拉格反射定律(Bragg’s law)及有限時域差分法(Finite-Difference Time-Domain)等數值分析,加以設計晶格週期及半徑參數,製造出奈米結構排列的光子晶體(Photonic Crystal),模擬設計出光學邏輯閘等光學元件,證實在入射波長為1.55μm亦有極高的傳輸效率。

This thesis is put forward with the numerical analysis and software simulation, and using the Bragg reflection effects and electromagnetic wave propagation principle, be design a photonic crystal the best of the participate in number, and photonic crystals to design digital logic light road and other optical components, and this has a lowlight wear and tear and structural advantages of miniaturization.
The photonic crystal structure of the system in the study process optical logic gate of the components based on silicon cylindrical design of optical integrated circuits to be by Chengguang Boguided by the photonic crystal structure of the system also light energy transmission, and can produce a few microns-meter-high photonic crystal column to facilitate the measurement process, combined with the Prague law of reflection ( the Bragg's law ) and FDTD (Finite-difference, Time-domain) and other numerical analysis, to design the periodic lattice and the radius parameters, manufacture nanostructures arranged photon crystal (Photoniccrystal), analog design, optical logic gates and optical coponen tssuch as, confirmed the incident wavelength of 1.55μm also very high transmission efficiency.

目錄

中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vi
一、 序論 1
1.1 簡介 1
1.2 光子晶體的歷史 1
1.3 研究動機與目的 3
1.4 本文架構 4
二、 光子晶體基本概念 5
2.1光子晶體基本概念 5
2.2 能帶結構 6
2.3 布里淵區 7
2.4 布拉格定理 8
2.5 波動方程式 8
2.6 邊界條件 10
2.7 傳統介電質波導基本原理介紹 10
2.8 介電質柱波導的架構與特性 12
三、 數值計算方法 15
3.1 有限時域差分法(Finite-Difference Time-Domain method ) 15
3.1.1 馬克斯威爾方程式及其FDTD 形式 16
3.1.2 二維FDTD 形式 18
3.1.3 邊界條件 21
3.1.4 入射波源 22
3.2 平面波展開法(Plane wave expansion method) 22
四、 光子晶體之分析與應用 25
4.1 光子晶體波導 25
4.2 光子晶體的異常折射行為 27
4.3 用光子晶體設計光學邏輯閘 27
4.4.1 反閘 ( NOT Gate ) 27
4.4.2 反及閘 ( NAND Gate ) 30
4.4.3 反或閘 ( NOR Gate ) 33
4.4.4 反互斥或閘 ( XNOR ) 36
五、 結論及未來工作 37
參考文獻 39

[1] E. Yablonovitch,“Inhibited Spontaneous Emission in Solid-State Physics and Electronics,”Phys. Rev. Lett. 58, 2059 (1987).
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[3] Yaw-Dong Wu and Tien-Tsorng Shih, “New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer”, Optical Society of America, Vol. 16, No. 1 (2008).
[4] Babak Memarzadeh Isfahani, Tahereh Ahamdi Tameh, Nosrat Granpayeh, Ali Reza Maleki Javan,“All-optical NOR gate based on nonlinear photonic crystal microring resonators”, Optical Society of America, Vol. 26, No. 5 (2009).
[5] H.-F. Yau, H.-Y. Lee, N.-J. Cheng,“Incoherent all-optical NAND-, NOR-, and XOR-gate using photorefractive fanning effect”, Springer-Verlag. Phys. B 68, 1055–1059 (1999).
[6] Katsuml Nakatsuhara, Seok-Hwan Jeong, Yukio Tsukishima and Tstsuya Mizumoto,“Demonstration of all-optical AND operation in a GaInAsp waveguide”, 0-7803-5661-I69 9 / 1999 IEEE.
[7] Jibo Bai, Junqin Wang, Junzhen Jiang, Xiyao Chen, Hui Li, Yishen Qiu, Zexuan Qiang1,“Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator”, Optical Society of America, Vol. 48, No. 36 (2009)
[8] A. Blanco, E. Chomski, S. Grabtchak et al., “large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5micrometres”, Nature 405, 437 (2000).
[9] S. Y. Lin, J. G. Fleming, D. L. Hetherington et al., “A threedimensional photonic crystal operating at infrared wavelengths” ,Nature 394, 261 (1998).
[10] C. Kittel, Introduction to Solid State Physics, 8th Ed., John Wiley & Sons, USA, (2005).
[11] J. D. Jackson, Classical electrodynamics 3rd, John Wiley&Sons, New York, (1999).
[12] M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation through a 120o sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76,952 (2000).
[13] A. Talneau, L.Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55μm,” Appl. Phys. Lett. 80, 547 (2002).
[14] A. Chutinan, M. Okano, S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698 (2002).
[15] Amnon Yariv, Yong Xu, Reginal K. Lee, and Axel Scherer, “Coupled-resnator optical waveguide: a proposal and analysis”, Opt. Lett. 24,711(1999)
[16] K. M. Ho, C. T. Chan and C. M. Soukoulis, “Existence of photonic gap in periodic dielectric structures,” Physical Review Letters, Vol.65, pp.3152-3155 (1990).
[17] K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Physical Review Letters, Vol.65, pp.2646-2649 (1990).
[18] Z. Zhang and S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations,” Physical Review Letters, Vol.65, pp.2650-2653 (1990).
[19]A. Taflove, Computational Electrodynamics, Artech House, Boston, (1995).
[20] S.-T. Chu and S. K. Chaudhuri, “A finite-difference time-domain method for the design and analysis of guided-wave optical structures,” Journal of Lightwave Technology, Vol.7, pp.2033-2038 (1989).
[21] C. T. Chan, Q. L. Yu and K. M. Ho, “Order-N spectral method for electromagnetic waves, ” Physical Review B, Vol.51, pp.16635-16642 (1995).
[22] L. Shen, S. He and S. Xiao, “A finite-difference eigenvalue algorithm for calculating the band structure of a photonic crystal,” Computer Physics Communications, Vol.143, pp.213-221 (2002).
[23] S. Yamada, Y. Watanable, Y. Katayama and J. B. Cole, “Simulation of optical pulse propagation in a two-dimensional photonic crystal waveguide using a high accuracy finite-difference time-domain algorithm,” Journal of Applied Physics, Vol.93, pp.1859-1864 (2003).
[24] J. Yonekura, M. Ikeda and T. Baba, “Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,” Journal of Lightwave Technology, Vol.17, pp.1500-1508 (1999).
[25] J. P. Berenger, Journal of Comp. Phys. 114, 185, 1994.
[26] G.. Mur, IEEE Trans. Electro. Compat. 23, 377, 1981.
[27] R. L. Higdon, Mathematics of Computation, 47, 437, 1986.
[28] Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, Science Sinica, Series A, 27,1063, 1984.
[29] A. Taflove, Computational Electrodynamics, Artech House, Boston, (1995).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top