跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 09:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱麗玲
研究生(外文):Chu Li Ling
論文名稱:可撓曲有機電激發光二極體元件固定彎曲及 多次撓曲在大氣及水氧環境中元件結構變化之研究
論文名稱(外文):Characteristics of Decay and Water Proof for Multi-Flexible Organic Light-Emitting Device
指導教授:林晏瑞林晏瑞引用關係
口試委員:莊為群林晏瑞林坤成
口試日期:2012-07-20
學位類別:碩士
校院名稱:中華科技大學
系所名稱:機電光工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:60
中文關鍵詞:OLED彎曲的曲率半徑
外文關鍵詞:OLEDbendingradius of curvature
相關次數:
  • 被引用被引用:0
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
摘要

  本論文研究重點,可撓曲式有機電激發光二極體元件(Flexible Organic Light-Emitting Device, 以下稱FOLED) 在多種固定彎曲及多次撓曲不同測試下,可撓曲式有機電激發光二極體元件狀態的劣化與機制變化。
  FOLED 元件為工業技術研究院顯示中心提供. 元件結構順序為軟性聚醯亞胺 (PI) 塑膠基板/ ITO(100nm) / NPB / 3%EB515(藍光)1.5%EG51(綠光):EB47(40nm) / Alq3(15nm) / LiF(1.2nm) / Al(120nm)/ 軟性聚醯亞胺 (PI) 塑膠基板。計畫項目是「軟性 OLED元件劣化機制以及高效率OLED cell結構設計與驗證 98-S-C40」。
  研究分三種狀態進行:
第一狀態,FOLED 元件在各種曲率半徑固定撓曲,分別在大氣環境與氮氣環境下,做對照組實驗,觀察水氧對FOLED 元件劣化狀況。
  第二狀態,FOLED 元件在各種曲率半徑反覆進行 0 次至 5000次撓曲,分別在大氣環境與氮氣環境下,做對照組實驗,觀察水氧對FOLED 元件之影響,紀錄元件反覆撓曲的變化狀況。
第三狀態,FOLED 元件在水中進行 0 次至 5000次撓曲,紀錄反覆撓曲的變化狀態,測試元件在設計結構上的阻水抗水程度。

Abstract

In this research, we had tested by different damage testing for Flexible Organic Light-Emitting Devices (FOLED) to explore the devices under the conditions and the mechanism of the degradation. We have demonstrated the electrical, optical, and lifetime performances of flexible OLED upon continuously mechanical bending. Leakage current increased then decreased, together with luminance reduction then recovery.

Flexible organic light-emitting device was fabricated by Industrial Technology Research Institute (ITRI), the structure of the devices : NPB / 3%EB515:EB47(40nm) / Alq3(15nm) / LiF(1.2nm) / Al(120nm), fabrication on PI plastic substrate Although those defects did affect the electrical and optical characteristics, there has little effect on storage lifetime performances.
.
In the first part of this thesis, we used different radius of curvatures to fix flexible organic light-emitting device ,to observe the degradation conditions and the atmospheric environment in the control group with a nitrogen atmosphere to do experiments, observe the environment on the device of water and oxygen.

The second part , we used different radius of curvatures to cyclic bending test on a flexible organic light-emitting device for 0~5000 times. Observation of flexural failure impact on the device, the same atmosphere and nitrogen atmosphere has also made the control group.

Finally, we used the device into the water and tested the bending in the water, and observed the water-blocking in the water level of resistance to water. It resulted from micro-short-circuit due to the density increase of microcrack at first stage. further bending, the width and depth of microcracks increased, which resulted in micro-open-circuits.

目 次

Abstract....................................................................................................................i
摘要….....................................................................................................................ii
目 次......................................................................................................................iii
圖目錄.....................................................................................................................v
符號目次................................................................................................................ix


第一章 緒論………………………………………….………………………...…1
1.1 有機發光二極體元件……...…………………….…………………………1
1.1.1 前言……………………………….…...……..…………….…….………1
1.1.2 OLED原理…………………………….……………………..………….3
1.2 可撓曲式有機發光二極體元件…...........................................................…7
1.2.1 OLED概述………………………………………………….….…………7
1.2.2 FOLED 原理與特性….……………………...…….…….….…………8
1.2.3 FOLED 材料特性….………………………...………..….….…………9
1.2.4 FOLED 製程….………..………………….……...………..….………10
1.3 研究動機………………..………….……….……….………...…..………13

第二章 實驗與量測……………………………….…………..…….....……..14
2.1 FOLED量測系統與方法……………………………….………………14
2.1.1 FOLED元件設計與結構……..…………………….……..………….14
2.1.2 FOLED量測設備……………….…………..………....…………….23
2.2.3 FOLED量測作法…….……………………………...……...……….28
2.2 FOLED固定在多種曲率半徑撓曲曲測試…...……..……….……….31
2.2.1 前言……………………………..………….……………….….….…31
2.2.2 FOLED元件大氣環境測試情況………………..………….…….…31
2.2.3 FOLED氮氣環境測試情況………………..……………….……….37
2.3 FOLED元件多次多種曲率撓曲測試……..…………….…...………41
2.3.1 前言…………………………..……………………………..….…….41
2.3.2 FOLED元件大氣環境在多次反覆撓曲測試……………..……….41
2.3.3 FOLED元件氮氣環境多次反覆撓曲測試………………..……….46
2.4 FOLED元件水中固定撓曲測試………..……...………….….……..51
2.5 FOLED元件各層結構表面之觀察………...………………………..52

第三章 實驗結果與討論………………………………………………….57
3.1 設計與製程對元件劣化之影響……...……………..….………….57
3.2 水氧環境對FOLED元件劣化之影響…………………………….57
3.3 撓曲對FOLED元件劣化之影響…….………………...………….58

第四章 結論……………………………………………………………….59

第五章 參考文獻………………………………………………………….61



圖目錄
圖1.1:OLED元件常見基本結構………………………………..………….3
圖1.2:OLED能階圖………………………………………….……………..4
圖1.3:玻璃與PET塑膠基板上OLED元件操作壽命比較[10]…............9
圖1.4:PEN film基板表面經過表面處理前(左)、後(右)之表面
情況比較圖[8]………………………………………………………11
圖1.5:OLED元件電極撓曲前(左)、後(右)之表面型態[15]……...11
圖1.6:下發光、上發光OLED元件結構之示意圖[16]…….………….…12
圖2.1.:ITRI藍光元件LB01~04不同摻雜濃度與膜層厚度結構
示意圖………………………………………………………….….15
圖2.2:LB01~04之電流電壓密度圖……………………..…………..….15
圖2.3:LB01~04之電壓亮度密度圖……………..…………….………16
圖2.4:LB01~04之電流效率圖………………………………….……..16
圖2.5:LB01~04之色座標變化圖……………………..…………..……17
圖2.6:LB01~04在100 mA/cm2下之電激發光頻譜圖..…………....….18
圖2.7:ITRI綠光元件G02~G04不同摻雜濃度與膜層厚度結構示
意圖………….………………………………………….………....19
圖2.8:G02~G04之電流電壓密度圖……………………………...…...19
圖2.9:G02~G04之電流效率密度圖……………………………..…..20
圖2.10:G02~G04之色座標圖………………………………...…...……21
圖2.11:G02~04之電激發光頻譜圖……….….…………………..….21
圖2.12:FOLED 元件實品圖……….………………………………….22
圖2.13:F OLED 元件實品背面圖………….……….…………..…….22
圖2.14:Konica Minolta CS-1000……………….…….………..……….23
圖2.15 Konica Minolta CS-1000量測實圖.……………………………....24
圖2.16 Keithley 2400………...……….……………….…………………..24
圖2.17 TOPCON輝度計BM-9….………………………………………...25
圖2.18 Olympus Optical Microscope MX40………...…………………....26
圖2.19 Mbraun Labstar 手套箱…………………………………………..26
圖2.20 Mbraun Labstar 手套箱內部環境標示圖………………………..27
圖2.21 Ricoh GR Digital II 在手套箱內拍攝照片實況…………………27
圖2.22 FOLED元件ITO薄膜上外接導電銅膠帶………………………..29
圖2.23 FOLED元件ITO薄膜上外接導電銅膠帶(正面) ………………...29
圖2.24 FOLED元件上視圖(紅色區域為發光部份)、(黃色區域為電極)….30
圖2.25 FOLED元件背面貼上真空膠帶固定電極……………………….….30
圖2.26藍光 E5元件固定撓曲於30mm圓柱之點亮圖………………….…..31
圖2.27 使用CS-1000拍攝未剝離玻璃基板之藍光E5元件狀態圖…..…32
圖2.28藍光E5元件未剝離玻璃基板之JV特性…………………….……32
圖2.29 藍光E5元件未剝離玻璃基板之BV特性………….……… …….33
圖2.30使用CS-1000拍攝已剝離玻璃基板之藍光E5元件……...………33
圖2.31藍光 E5元件已剝離玻璃基板之JV特性. ………………..………34
圖2.32藍光E5元件固定撓曲4小時之IV變化……………..…….……….35
圖2.33藍光 E5元件固定撓曲4小時之JV變化…….……………….……..35
圖2.34 藍光E5固定撓曲於30mm圓柱每間隔20分鐘持續13次之觀察..36
圖2.35 藍光C3元件平置時之IV.……………………………..……………..38
圖2.36 藍光C3元件撓曲在30mm圓柱體期間測量之IV………………….38
圖2.37 藍光C3元件在充氮手套箱內固定撓曲於30mm圓柱體之觀察…..39
圖2.38 藍光C3元件固定撓曲於6mm圓柱體之點亮圖………….….……..39
圖2.39 藍光C3元件撓曲於6mm半徑圓柱體期間之IV圖………….……..40
圖2.40 藍光C3元件在充氮手套箱內固定撓曲於6mm半徑圓柱之觀察.....40
圖2.41 綠光F5元件多次撓曲在14mm圓柱體上之撓曲圖……………........42
圖2.42 綠光F5元件多次撓曲在14mm圓柱體上之亮度隨撓曲次數增加之
亮度變化圖..…………………………..…….……………….….….…....42
圖2.43 綠光F5元件多次撓曲在14mm圓柱體上之LV圖……….………….43
圖2.44 綠光F5元件多次撓曲在14mm圓柱體上之IV圖……….….……….43
圖2.45 綠光F5元件多次撓曲在14mm圓柱體上之JV圖…………...………44
圖2.46 綠光F5元件多次撓曲在14mm圓柱體上之實拍圖…………………..45
圖2.47綠光C4元件在充氮手套箱內4mm之圓柱體上多次反覆撓曲
的撓曲圖………………………………………………………………….46
圖2.48綠光C4元件在充氮手套箱內4mm之圓柱體上之亮度隨撓曲
次數增加之變化圖……………………………………….……………....46
圖2.49 綠光C4元件在充氮手套箱內4mm之圓柱體上多次反覆撓曲
之IV圖…………………………………………………………..……....47
圖2.50綠光C4元件在充氮手套箱內4mm之圓柱體上多次反覆撓曲
之JV圖……..……………………………………………….…….……..48
圖2.51 綠光C4元件在充氮手套箱內4mm之圓柱體上多次反覆撓曲
之LV圖…………………………….…………………………………….49
圖2.52 綠光C4元件在充氮手套箱內4mm圓柱體上多次反覆撓曲之實拍圖....50
圖2.53 可撓曲式OLED元件水中點亮(藍)撓曲彎折實況圖….………………51
圖2.54 可撓曲式OLED元件水中點亮(藍)固定式撓曲在30mm圓柱體
之實況圖……………………………………………………………….......52
圖2.55 僅有ITO薄膜及PI基板之ITO/PI元件實品圖............................................53
圖2.56 ITO/PI元件ITO區域撓曲時之電阻變化圖........................................53
圖2.57 區域左下的ITO與PI交界,ITO長條裂痕,PI大面積裂痕
圖2.57-1 PI與ITO之界面 (左為ITO,右為PI) ..........................................54
圖2.58 PI與ITO之界面 (左下為ITO,右上為PI) .....................................55
圖2.59 PI區域上充滿微線型裂痕....................................................................55
圖2.60 ITO區域表面的巨型裂痕.....................................................................56
圖2.61 ITO區域表面不規則巨型的裂痕..........................................................56
圖2.62 2010.11.9 ITO/PI元件撓曲5000次後之表面
















符號目錄
LD …………………………………………………………機子擴散長度
ηext ……………………………………….………………外部量子效率
ηint ………………………………………………………..內部量子效率
ηA ……………………………………………………..……….吸收效率
ηED ………………………………………………..………激子擴散效率
ηCT …………………………………………………..……電荷轉移效率
ηCC…………………………………………………...……電荷收集效率
RS………………………………………………………..………串聯電阻
RSH…………………………………………………………...….並聯電阻
JS…………………………………………. 二極體的逆向飽和電流密度
n…………………………………………………...….二極體的理想因數
kB……………………………………………………………..波茲曼常數
T………………………………………………………………………溫度
q…………………………………………………………………單位電荷
Jph……………………………………………………….….光生電流密度
A……………………………………………......………….主動區域面積
VOC………………………………….………………...…………開路電壓
JSC………………………………………………….…….. 短路電流密度
S(λ)………………………………………………….入射光的分光照度
h……………………………………………………………..普朗克常數
c……………………………………………………..……………….光速
λ…………………………………………………………….入射光波長
FF……………………………….………………………………填充因數
ηP………………………………………………………….功率轉換效率
P0……………………………………………………..….入射光功率密度
n1(λ) ……………………………………...…………入射介質的折射率
n2(λ) ………………………………………..……….折射介質的折射率
θ1……………………………………………………...…………..入射角
θ2………………………………………………………………….折射角
θC(λ)…………………………………………………….……….臨界角

第五章 參考文獻

[1]Cheng-Che Lee, Chih-Hung Hsiao, Kuen-Cherng Lin, Jiun-Haw Lee, and Shu-Tang Yeh , " Electrical, Optical, and Storage Lifetime Characteristics of Flexible OLED upon Cyclic Bending Test", Taiwan Display Conference (TDC). 2010
[2]Cheng-Che Lee, Kuen-Cherng Lin, ,Wei-Yu Lee,Jiun-Haw Lee, Chin-Yu Chang ,and Shu-Tang Yeh, "Indium Tin Oxide on Flexible OLED due Bending Test," 2010 Optics and Photonics (OPT).
[3]Cheng-Che Lee, Kuen-Cherng Lin, ,Wei-Yu Lee,Jiun-Haw Lee, Chin-Yu Chang ,and Shu-Tang Yeh, " Water Proof of Flexible OLED due Bending Test," 2010 Optics and Photonics (OPT).
[4]Cheng-Che Lee, Kuen-Cherng Lin, Li-Ling Chu ,Wei-Yu Lee, Kun-Yi Lee, Jiun-Haw Lee, Chin-Yu Chang , and Shu-Tang Yeh, " Surface Cracks of Flexible Substratefor Flexible Organic Light-Emitting Devices,"2010 5th Application and Development of Electrical Technology Conference in Vanung University.
[5]Cheng-Che Lee, Kuen-Cherng Lin, Li-Ling Chu ,Wei-Yu Lee, Kun-Yi Lee, Jiun-Haw Lee ,Chin-Yu Chang , and Shu-Tang Yeh, "Electrical, Optical, and ITO Characteristics of Flexible OLED Display," 2011 Society for Information Display (SID), Los Angeles, California USA.
[6]Kun-Yi Lee, Cheng-Che Lee, Kuen-Cherng Lin, Jong-Woei Whang3, Lin-Ling Chu , Hsin-Che Lee, Yen-Juei Lin , Jiun-Haw Lee, Chin-Yu,Chang, Shu-Tang Yeh , and Wei-yu Lee,”Flexible characteristics of novel OLED Materials, “Advanced Materials Research,2011,(EI)
[7]Sony’s world’s first 16.7 million color flexible OLED, 100 cd/m2 brightness, 1,000:1 contrast ratio and 0.3mm thickness of the panel.,CES,2007
[8]Samsung Electronics, Flexible OLED Display, CES,2011
[9]J. S. Lewis, and M. S. Weaver, IEEE J. Select. Top. Quantum Electron., 10, 45, 2004.
[10]W. A. MacDonald, Mater. Chem., 14, 4, 2004.
[11]P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. K. Shi, M. Hall, E. Mast, C. Bonham, W. Bennet, and M. B. Sullivan, Displays 22, 65, 2001.
[12]M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, Appl. Phys. Lett., 81, 2929, 2002.
[13]J. Lewis, “Material challenge for flexible organic devices”, Materials Today, 9, 38 (2006)
[14]K. A. Sierros, N. J. Morris, K. Ramji, and D. Cairns, “Stress-corrosion cracking of indium tin oxide coated polyethylene terephthalate for flexible optoelectronic devices”, Thin Solid Films, 517, 2590 (2009)
[15]T. Li, Z. Huang, Z. Suo, S. P. Lacour, and S. Wagner, “Stretchability of thin metal films on elastomer substrate”, Appl. Phys. Lett., 85, 3435 (2004)
[16]L. Duan, S. Liu, D. Zhang, J. Qiao, G. Dong, L.Wang and Y. Qiu, J. Phys. D: Appl. Phys., 42, 075103, 2009.
[17]C. C. Wu, S. D. Theiss, G. Gu, M. H. Lu, J. C. Sturm, S. Wagner, and S. R. Forrest, IEEE Electron Dev. Lett., 18, 609, 1997.
[18]H. Cho, C. Yun, J.-W. Park and S. Yoo, “Highly flexible organic light-emitting diodes based on Zns/Ag/WO3 multilayer transparent electrodes”, Org. Electron., 10, 1663 (2009)
[19]Kazuhiro NODA, Hirotoshi SATO, Hisao ITAYA and Minoru YAMADA, “Characterization of Sn-doped In2O3 Film on Roll-to-Roll Flexible Plastic Substrate Prepared by DC Magnetron Sputtering”, Jpn. J. Appl. Phys.,42,217 (2003)
[20]Konstantinos A. Sierros , Nicholas J. Morris, Karpagavalli Ramji, Darran R. Cairns, “Stress–corrosion cracking of indium tin oxide coated polyethylene terephthalate for flexible optoelectronic devices”, Thin Solid Films,517,2590 (2009)
[21]Takayuki UCHIDA, Shingo KANETA, Masahiro ICHIHARA, Masao OHTSUKA, Toshio OTOMO1 and Daniel R. MARX, “Flexible Transparent Organic Light Emitting Devices on Plastic Films with Alkali Metal Doping as Electron Injection Layer”, Jpn. J. Appl. Phys,.44,9 (2005)
[22]Y.G. Seol , N.-E. Lee, S.H. Park, J.Y. Bae, “Improvement of mechanical and electrical stabilities of flexible organic thin film transistor by using adhesive organic interlayer”, Organic Electronics, 9 , 413 (2008)
[23]Mark Dai Joong Aucha,, Ong Kian Soob, Guenther Ewaldb, Chua Soo-Jina, “Ultrathin glass for flexible OLED application,”, Thin Solid Films,417,47 (2002)
[24]Po-Ching Kao, Sheng-Yuan Chu, Member, IEEE, Te-Yi Chen, Chuan-Yi Zhan, Franklin-C. Hong, Chiao-Yang Chang, Lien-Chung Hsu, Wen-Chang Liao, and Min-Hsiung Hon, “Fabrication of Large-Scaled Organic Light Emitting Devices on the Flexible Substrates Using Low-Pressure Imprinting Lithography”. IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 52, NO. 8 ( 2005)
[25]Hyunsu Cho, Changhun Yun, Jae-Woo Park, Seunghyup Yoo, “Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes.”, Organic Electronics,10,1163 (2009)
[26]Chien-Jung Chiang, Chris Winscom, Steve Bull, Andy Monkman, “Mechanical modeling of flexible OLED devices”, Organic Electronics,10,1268 (2009)
[27]Chang-Yen Wu, Meng-Huan Ho, Shang-Yu Su, Chin H. Chen, “Flexible inverted bottom-emitting organic light-emitting devices with a semi-transparent metal-assisted electron-injection layer,”, Journal of the SID, 18,1, 2010
[28]TAEHYOUNG ZYUNG, SEONG HYUN KIM, HYE YONG CHU, JUNG HUN LEE, SANG CHUL LIM, JEONG-IK LEE, AND JIYOUNG OH, “Flexible Organic LED and Organic Thin-Film Transistor,”, PROCEEDINGS OF THE IEEE, VOL. 93, NO. 7, 2005
[29]S. W. Chen, C. H. Wang, and J. Hwang, “Flexible organic thin film transistors with self-assembled benzimidazole copper complex as gate insulator,” APPLIED PHYSICS LETTERS 94, 243303,2009
[30]Do-Yeol Yoon, Tae-Yong Kim, Dae-Gyu Moon, “Flexible top emission organic light-emitting devices using sputter-deposited Ni films on copy paper substrates,”, Current Applied Physics ,10,135,2010
[31]Malte C. Gather, Sebastian Köber, Susanne Heun, and Klaus Meerholz, “Improving the lifetime of white polymeric organic light-emitting diodes,”, JOURNAL OF APPLIED PHYSICS ,106, 024506 ,2009
[32]C. Pearson,D. H. Cadd, M. C. Petty, and Y. L. Hua, “Effect of dye concentrations in blended-layer white organic light-emitting devices based on phosphorescent dyes,”, JOURNAL OF APPLIED PHYSICS, 106, 064516 ,2009
[33]Yoko Okahisa, Ayako Yoshida, Satoshi Miyaguchi, Hiroyuki Yano,“Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays,”, Composites Science and Technology, 69, 1958,(2009)
[34]Gi-Seok Heo, Yuji Matsumoto, In-Gi Gim, Hyun-Kee Lee, Jong-Woon Park , Tae-Won Kima, “Transparent conducting amorphous Zn_In_Sn_O anode for flexible organic light-emitting diodes,”, Solid State Communications ,150, 223 (2010)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top