跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 17:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張文聰
研究生(外文):Chang wen tsung
論文名稱:奈米金觸媒導入氣流導板應用於一氧化碳防毒面罩之研究
論文名稱(外文):The Study of Commercial Carbon Monoxide Safety Mask with Nano-Gold Catalyst Induced Airflow Lamina
指導教授:楊宏宇楊宏宇引用關係
指導教授(外文):Horng-Yu Yang
口試委員:雷明遠吳旻謙
口試委員(外文):Lei Ming YuanWu Min Qian 
口試日期:2012-06-26
學位類別:碩士
校院名稱:中華科技大學
系所名稱:土木防災工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:75
中文關鍵詞:一氧化碳氣流導板防煙面罩奈米金觸媒
外文關鍵詞:Carbon MonoxideAirflow LaminaSafety MaskNano-Gold Catalyst
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究擬在探討如何將奈米金觸媒導入氣流導板,應用於防毒面罩過濾材料上,用以開發商業化去除一氧化碳防毒面罩,以氣流導板結合奈米金觸媒製備程序為主,並同時討論使用自製氯化金酸來降低觸媒成本的可能性,以及奈米金觸媒製備的方法與效果,不但可製造出成本低廉、催化活性效果較好,而且具有柔軟性及強拉力特性的防毒面罩,進而可達到不易受水氣影響而去除一氧化碳的能力,及具備有方便攜帶、易於收藏與商業競爭力等特點,最後討論利用氣流導板改良有毒氣體在防毒面罩內的流場分佈,以減少觸媒使用量增加過濾效果達到最佳的過濾防毒效果。
由研究結果顯示,利用自製氯化金酸作為金源可製備出具高催化活性之奈米金/二氧化鈦粉體觸媒,在25℃,110ml/min空氣流速與1vol%CO的反應條件下,觸媒可維持完全轉化至少達50分鐘,且該觸媒之金成本約為使用市售氯化金酸觸媒之金成本的五分之一。本研究已研發出在使用自製氯化金酸的條件下,最適當含奈米金之二氧化鈦粉體製備程序。
其次,研究結果歸納出在批次生產下之最適化製程:即以250 ml的製備容器內置7.5×10-3M金溶液對應10克二氧化鈦粉體為基準等比例放大,在室溫下進行全部製備程序,並可使用普通濾紙進行過濾步驟,而製備容器的材質則可選用玻璃或是PP材質,如此便在批次生產下製備得合乎反應活性規範之含奈米金顆粒之二氧化鈦粉體觸媒,並可提高單位體積下的觸媒產量。
研究結果顯示導入氣流導板後可有效的控制氣體在防毒面罩中的流場分佈,使氣流不直接破出過濾體能降低觸媒使用量,並增加毒性氣體的過濾效果,同時將可避免在使用一氧化碳防毒面罩時,可能產生的高溫直接灼傷口鼻之問題,該氣流導板設計並以獲得美國發明專利。

This study intends to explore how to introduce the airflow lamina into the nano-gold catalyst used in gas mask filter material, and develop for removing carbon monoxide with commercialization gas mask. By applying airflow lamina into nano-gold catalysts which is made from homemade gold chloride acid and optimized preparation procedure, one can obtain not only low-cost, better catalytic activity, but also soft and strong tensile material for gas mask. Moreover, the material will also be water-vapor-resisted during carbon monoxide removing reaction, and have a portable and easy collection for commercial competitiveness. Finally, how would airflow lamina improve the flow pattern of the toxic gases in the gas mask and reduce the catalysts used amount would be discussed also.
The results show that the nano-gold catalysts made by homemade chloroauric acid would be able to 100% convert carbon monoxide to carbon dioxide for 50 minutes within reaction condition of 25℃, 110ml/min air flow rate and 1vol% CO in inlet gas. Meanwhile, with using homemade chloroauric acid, the cost of the nano-gold catalysts is only about one fifth of the one using commercial chloroauric acid. A optimized preparation procedure for nano-gold/titania catalysts by homemade chloroauric acid was developed and presented in this study.
For the manufacturing nano-gold catalyst supporting on the titanium dioxide powder, one optimum preparation process was developed from this research, which is preparing 7.5×10-3 M gold solution with 10 g titanium dioxide powder in a 250 ml glass or PP container, operating at room temperature and filtrating with regular filter paper. One can follow this process and scale it up to obtain high catalytic activity for CO oxidation nano-gold catalyst supporting on the titanium dioxide powder.
By implementing an improved structure of respirator filter, airflow is created with increasing area and time for gas to contact the filter for improved smoke and toxicity filtration effects. Moreover, the temperature of the airflow after passing through safety mask can control in qualified spec and prevent the possibility of causing burn with using the gas mask. The airflow lamina has already obtained U.S. patent.

目錄 I
摘要 III
ABSTRACT III
表目錄 VII
圖目錄 VIII

第一章 緒論 - 1 -
1.1 研究動機 - 1 -
1.2 研究目的 - 2 -
1.3 研究步驟 - 2 -
第二章 文獻回顧 - 3 -
2.1 一氧化碳 - 3 -
2.2 奈米金觸媒 - 5 -
2.2.1 奈米金觸媒製備方式 - 5 -
2.2.2 影響奈米金觸媒活性的因素 - 8 -
2.3 活性衰退 - 11 -
2.4 一氧化碳防毒面罩規範 - EN403 - 12 -
第三章 研究方法 - 17 -
3.1 觸媒製備 - 17 -
3.2 特性鑑定 - 19 -
3.3 觸媒活性量測系統 - 21 -
第四章 奈米金觸媒應用於一氧化碳防毒面罩之探討 - 25 -
4.1 含奈米金觸媒防毒面罩去除一氧化碳材料之探討 - 25 -
4.1.1 實驗步驟 - 26 -
4.1.2 奈米金/二氧化鈦粉體觸媒材料之成本與催化活性探討 - 26 -
4.1.3 結論 - 44 -
4.2 奈米金/二氧化鈦粉體觸媒批次生產最適製程探討 - 45 -
4.2.1 奈米金二氧化鈦粉體觸媒批次生產最適製程之探討 - 45 -
4.2.3 結論 - 56 -
4.3 防毒面罩熱力學分析與流場設計 - 58 -
4.3.1 反應熱與溫度變化 - 59 -
4.3.2 氣流導板 - 65 -
第五章 結論與建議 - 70 -
參考文獻 - 72 -


R. Prasod, L. A. Kennedy and E. Ruckentstein, Catal. Rev.-Sci. Eng., 26(1), p.1 (1984)
Y-F. Yu Yao, J. Catal., 87, p.152 (1984)
M. Sheintuch, J. Schmidt and Y. Lecthman, Appl. Catal., 49, p.55(1989)
M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Catal. Lett., p.405 (1987)
M. Haruta and H. Sano, Jpn. KoKao Tokyo Koho Jp 60, 238, p.146 (1985)
M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal., 115, p.301 (1989)
M. Haruta, S. Tsubota, T. Kobayashi, H. Kabeyama, M. J. Genet, and B. Delmon, J. Catal., 144, p.175 (1993)
Y. Iizuka, H. Fujiki, N. Yamada, T. Chijiiwa, S. Arai, S. Tsubota and M. Haruta, Catal. Today, 36, p.115 (1997)
M. Haruta, T. Takase, T. Kobayashi and S. Tsubotam, in “Catalytic Science and Technology, Vol. 1”(S. Yoshiha, N. Takezawa and T. Ono, Eds.), p.331, Kodansha, Tokyo, 1991
E. D. Park and J. S. Lee, J. Catal., 186, p.1 (1999)
J. N. Lin, J. H. Chen, C. Y. Hsiao, Y. M. Kang and B. Z. Wan, Appl. Catal. B, 36, p.19 (2002)
林俊男﹐“奈米金顆粒的開發與在燃燒催化上的應用”, 國立台灣大學化學工程學研究所博士學位論文 (2002)
S. Galvagno and G. Parravano, J. Catal., 55, p.178 (1978)
A. Sermon, G. C. Bond and P. B. Wells, J. Chem. Soc., Faraday Trans., 78, p.385 (1979)
K. Blick, T. D. Mitrelias, J. S. J. Hargreaves, G. J. Hutchings, R. W. Joyner, C. J. Kiely and F. E. Wagner, Catal. Lett., 50, p.21 (1998)
S. D. Lin, M. Bollinger and M. A. Vannice, Catal. Lett., 17, p.245 (1993)
S. Tsubota, D. A. H. Cunningham, Y. Bando and M. Haruta, in : G. Poncelet et al., Eds., Preparation of Catalysts VI, Elsevier Science B. V., p.227, 1995
Y. Borensztein, L. Delannoy, A. Djedidi, R. G. Barrera and C. Louis, J. Phys. Chem. C, 114, p.9008 (2010)
A. Karpenko, R. Leppelt, V. Plzak and R.J. Behm, J. Catal., 252, p.231 (2007)
Jun Wang, Vincent F. Kispersky, W. Nicholas Delgass, Fabio H. Ribeiro, J. Catal., 289, p.171 (2012)
M.C. Raphulu, J. McPherson, E. van der Lingen, J.A. Anderson and M.S. Scurrell3, Gold Bulletin, 43, 1 (2010)
R. Zanella and C. Louis, Catalysis Today, 107–108, p.768 (2005)
Y.M. Kang and B.-Z. Wan, Appl. Catal. A, 128, p.53 (1995)
Y.M. Kang and B.-Z. Wan, Catal. Today, 26, p.59 (1995)
Y.M. Kang and B.-Z. Wan, Catal. Today, 35, p.379 (1997)
J.-N. Lin, J.H. Chen, C.Y. Hsiao, Y.M. Kang and B.-Z. Wan, Appl. Catal. B, 36, p.19 (2002)
J.-N. Lin and B.-Z. Wan, Appl. Catal. B, 41, p.83 (2003)
G. Srinivas, J. Wright, C.-S. Bai, and R. Cook, Studies in Surface Science and Catalysis, 101, p.427 (1996)
M. Hauta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon, J. Catal., 114, p.175 (1993)
陳皇甫﹐“製備含奈米金觸媒之一氧化碳防毒面罩材料”, 國立台灣大學化學工程學研究所碩士學位論文 (2002)
J. N. Lin, J. H. Chen, C.Y. Hsiao, Y. M. Kang and B. Z. Wan, Appl. Catal. B, 36, p.19 (2002)
S. Tanabe, and H. Matsumoto, Chem. Lett., p.539 (1989)
US Patent 6742518 B2

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top