跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 17:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊文宏
研究生(外文):Yang, Wun-Hong
論文名稱:奈米粒子疊層組裝薄膜應用於平板型迴路式熱管之研究
論文名稱(外文):Study Of Flat Loop Heat Pipe Capillary Structure Using Layer-By-Layer Assembly Of Nanopraticulate Thin Film
指導教授:吳聖俊
指導教授(外文):Wu, Shen-Chun
口試委員:陳正興顏順昌吳聖俊
口試委員(外文):Chen, Jeng-HsinYen, Shun-ChangWu, Shen-Chun
口試日期:2012-07-10
學位類別:碩士
校院名稱:中華科技大學
系所名稱:飛機系統工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:48
中文關鍵詞:迴路式熱管平板型蒸發器疊層組裝親疏水性
外文關鍵詞:Loop heat pipePlate evaporatorLayer-by-layer assemblyHydrophobic hydrophilic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
迴路式熱管(LHP)具有高熱傳量、低熱組、無需額外提供能源、傳輸距離限制較長等優勢,已成功應用在衛星熱控等領域。目前LHP的研究問題集中在蒸發器中的毛細結構,毛細結構表面改質可能提供更好的蒸發效益,因此本文之目的即利用表面改質技術並探討其提升LHP性能的可能性。
本文希望能夠有效克服迴路式熱管隨著熱通量上升毛細結構表面的蒸氣持續增加,最後結合成為蒸氣膜,其蒸氣膜會使得迴路式熱管中毛細結構表面熱阻上升性能受到限制。本文將利用不鏽鋼平板進行改質以觀察其對冷凝和蒸發之影響,因表面改質後的親水設計,有助於表面液膜延展性提升,有利於蒸發可以克服並延緩氣膜的產生提高熱傳性能,本研究將二氧化矽(SiO2)之奈米粒子疊層組裝表面改質之技術建立在不鏽鋼平板上做親水表面改質,利用表面結構的改變可產生不同的接觸角,而改質結果的接觸角可由未改質的70°變為親水12°與文獻中改質層數不同,在20層時較文獻不鏽鋼的22°提升近一倍,疏水為110°之結果,文獻中為104°,顯示成功建立表面改質技術,且技術能力不落人後。接著進行蒸發以及冷凝的測試,發現親水表面的接觸角使蒸發效益提升約為一倍,同時親水表面有助於增強冷凝的潛力。
迴路式熱管方面,製做出之最佳瓦數為250W,最低總熱阻為0.25K/W,功率密度可達20W/cm2,毛細結構參數為孔隙率70%,並確認蒸發器與冷凝器之熱傳行為,建立表面改質技術應用於迴路式熱管中極具潛力。

The loop heat pipe (LHP) with high heat transfer capacity, low thermal resistance, no extra energy, transmission, long distance limitations, and other advantages, has been successfully applied in the field of satellite thermal control. LHP's research concentrated in the evaporator capillary structure, the capillary structure of surface modification may provide better evaporation efficiency. The purpose of this paper is that the use of surface modification technology and to explore the possibility to enhance the LHP performance.
This article hopes to overcome the loop heat pipe continued to increase with the heat flux increased the capillary structure of the surface of the steam. Finally, a vapor film, and its vapor film makes the rise of the capillary structure of the surface thermal resistance in the loop heat pipe performance is restricted. This article will use the stainless steel plate modified to observe the influence of condensation and evaporation, due to the hydrophilic surface modification design, contribute to the surface of liquid film ductility enhance. Conducive to evaporation can be overcome and delay gas film heat transfer performance, this study, silicon dioxide (SiO2) nanoparticles laminated assembly of surface modification technology to build the hydrophilic surface modification of stainless steel plate, Changes in surface structure may have a different contact angle, and modified the results of contact angle by 70° unmodified into a hydrophilic 12° with the modified layers in the literature, 22° 20 layers when compared with the literature of stainless steel increase nearly doubled, hydrophobic 110°, 104° in the literature. Show successfully established surface modification technology, and technical capabilities do not fall behind. Followed by evaporation and condensation test and found that the hydrophilic surface of the contact angle evaporation improvement in efficiency was approximately doubled, while the hydrophilic surface helps to strengthen the potential for condensation.
Loop heat pipe system to make the best wattage is 250W, the minimum total thermal resistance for the 0.25K / W, the power density of up to 20W/cm2 wick structure parameters for the porosity of 70%, and confirm the evaporator and condenser heat transfer behavior, the establishment of the surface modification technology is great potential for a loop heat pipe.

誌謝 i
摘要 ii
ABSTRACT iii
目次 v
表目錄 viii
圖目錄 ix
符號 xi
第一章 緒論 1
第一節、前言 1
第二節、研究動機 3
1-2.1迴路式熱管發展 3
1-2.2平板迴路式熱管操作原理 4
1-2.3表面濕潤性 6
第三節、文獻回顧 9
1-3.1 接觸角對熱傳性能之影響 9
1-3.2 疊層組裝發之發展 12
第四節、研究目的 15
第二章 實驗設計與製造 16
第一節、奈米粒子疊層組裝 16
2-1.1奈米粒子薄膜親水改質 16
2-1.2 奈米粒子薄膜疏水改質 18
第二節、奈米粒子薄膜製備 20
2-2.1 藥品 20
2-1.2 儀器與設備 21
第三章 實驗設備與方法 23
第一節、冷態測試 23
第二節、平板迴路式熱管系統 24
3-2.1工質選擇 25
3-2.2毛細結構材料選擇 28
3-2.3毛細結構製造 29
3-2.4平板迴路式熱管熱測試 30
3-2.5 迴路式熱管測試設備 33
3.3 誤差分析 34
第四章 結果與討論 36
4-1 水的接觸角變化 36
4-2.1 親疏水性丙酮蒸發行為 42
4-2.1 親疏水性表面乙醇蒸發行為 44
4-2.2 親疏水性冷凝行為 46
4-3迴路式熱管熱傳性能結果 47
第五章 結論 49
參考文獻 50
附錄A 53
熱電偶K-type 校正曲線圖 53

[1]Philip Hill, Carl R Peterson, Carl Pererson, “Evaporation/ boiling
Phenomena on Thin Capillary Wick,” Mechanics and Thermodynamics of Propulsion 1992.
[2]North, M. T., Sarraf, D. B., Rosenfeld, J. H., Maidanik, Y. F., and Vershinin, S.,“High Heat Flux Loop Heat Pipes,” Proceedings of the 6th European Symposium on Space Environmental Control Systems, Noordwijk, The Netherlands, pp. 371–376, 1997.
[3]Hoang, T. T., O'Connell, T. A., Ku, J., Butler, C. D., and Swanson, T. D., “Miniature Loop Heat Pipes for Electronic Cooling”, International Electronic Packaging Technical Conference and Exhibition. Vol. 2, pp. 517-525, 2003.
[4] Maydanik, Y. F., Vershinin, S. V., Korukov, M. A., and Ochterbeck, J. M.,
“Miniature Loop Heat Pipes–A Promising Means for Cooling Electronics,” IEEE Transactions on Components and Packaging Technologies, Vol. 28, No. 2, pp. 290–296, 2005.
[5]Liao, Q. and Zhao, T. S., “Evaporative Heat Transfer in a Capillary StructureHeated by a Grooved Block,” Journal of Thermophysics and Heat Transfer, Vol. 13, No. 1, pp. 126–133, 1999.
[6] William Thielicke, own work, Hamburg, Germany.
Web site: http://wthielicke.gmxhome.de/bionik/indexuk.htm
[7] E. Forrest, E. Willianson, J. Buongiorno, L.W. Hu, M. Rubner, R. Cohen, (2009), "Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coating, " Int. J. Heat Mass Transfer, Vol. 53, Issues 1-3, pp. 58-67, 2010.
[8]H.T. Phan, N. Caney, P. Marty, S. Colasson, J. Gavillet, "Surface wettability controlled by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism, " I. J. Heat and Mass transfer, Vol. 52, pp. 5459–5471, 2009.
[9]Jeong, Y. H.; Sarwar, M. S.; Chang, S. H. "Flow boiling CHF enhancement with surfactant solutions under atmospheric pressure," Int. J. Heat Mass Transfer, Vol. 51, pp. 1913–1919, 2008.
[10]S.J. Kim, I.C. Bang, J. Buongiorno, L.W. Hu, "Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux," Int. J. Heat Mass Transfer, Vol. 50, pp. 4105–4116, 2007.
[11]S.M. Kwark, R. Kumar, G. Moreno, J. Yoo, S.M. You, "Pool boiling characteristics of low concentration nanofluids, " Int. J. Heat Mass Transfer, Vol. 53, pp. 972-981, 2010.
[12]Chen-Kang Huang, Chih-Wei Lee, Chung-Kai Wang, "Boiling enhancement by TiO2 nanoparticle deposition, "Int. J. Heat Mass Transfer Vol.54, 4895-4903, 2011.
[13]C.H. Wang, V.K. Dhir, "Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface," J. Heat Transfer, Vol. 115, pp. 659-669, 1993.
[14]A. Bani Kananeh, M.H. Rausch, A.P. Froba, A. Leipertz, "Experimental study of dropwise condensation on plasma-ion implanted stainless steel tubes," Int. J.Heat Mass Transfer Vol.49, 5018–5026, 2006.
[15]Mitzi, D.B., "Thin-film deposition of organic-inorganic hybrid materials," Chemistry of Materials, Vol. 13, pp. 3283-3298, 2001.
[16]Lvov, Y.; Ariga, K.; Onda, M.; Ichinose, I.; Kunitake, T, "Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions," Langmuir, Vol. 13, pp. 6195-6203, 1997.
[17]Kovtyukhova, N.; Martin, B. R.; Mbindyo, J. K. N.; Smith, P. A.; Razavi, B.; Mayer, T. S.; Mallouk, T. E. J., "Layer-by-Layer Assembly of Rectifying Junctions in and on Metal Nanowires, " Phys. Chem. B , Vol. 105, pp. 8762-8769, 2001.
[18]Cebeci, F. Cü .; Wu, Z.; Zhai, L.; Cohen, R. E.; Rubner, M. F., "Nanoporosity-Driven Superhydrophilicity: A Means to Create Multifuncional Antifogging Coatings," Langmuir, Vol. 22, pp. 2856-2862, 2006.
[19]J. Bravo, L. Zhai, Z. Wu, R. E. Cohen and M. F. Rubner, "Transparent Superhydrophobic Films Based on Silica Nanoparticles," Langmuir, Vol. 23, pp. 7293–7298, 2007.
[20] Tracey, V. A., “Pressing and Sintering of Nickel Powders,” The International
Journal of Powder Metallurgy & Powder Technology, Vol. 20, No. 4, pp.
281–285,1984.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top