跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 04:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉競文
研究生(外文):Liu Jing Wen
論文名稱:半導體製程元件品質改善之研究
論文名稱(外文):Investigation of semiconductor process for improving component quality
指導教授:李偉裕李偉裕引用關係
指導教授(外文):Wei-Yu Lee
口試委員:李昆益林晏瑞莊為群
口試委員(外文):Kun-Yi LeeLin,YenjueiWei-Ching Chuang
口試日期:2012-07-20
學位類別:碩士
校院名稱:中華科技大學
系所名稱:機電光工程研究所在職專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:90
中文關鍵詞:積體電路技術氧化層製程金屬導線製程
外文關鍵詞:Integrated circuit technologyoxide processAl interconnection process
相關次數:
  • 被引用被引用:2
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
積體電路製造技術的日新月異快速發展,隨著元件尺寸不斷縮小及功能需求不斷增加,對改善元件品質的研究方向顯得非常重要。而其中如何預防氧化層的擊穿現象及預防電遷移影響互連引線是改善元件品質為業界非常值得研究的重要課題。
在半導體製程中氧化層的製程技術的研究中,如何預防氧化層的缺陷對提升積體電路製造技術相當重要。本文研究氧化層的製程技術以及如何提高氧化層的品質。並提出目前常用於偵測氧化層品質的測試方法,針對這些測試方法的物理模型和失效機制進行分析。實驗部分分別從探討氧化層的生長、摻氮及清洗製程參數對氧化層品質的影響、進而對製程進行最佳化並提升氧化層的品質。
工業界在積體電路製造技術中常採用鋁銅合金作為金屬導線材料。因為鋁具有較低的電阻率並與矽晶片製程相容性佳,且生產成本相對較低較適合工業界生產需求;但其主要瓶頸是常遇到電遷移問題,所以研究鋁銅合金的金屬導線之電遷移技術並從改善製程中預防電遷移對提高積體電路製造技術相當重要。本文研究鋁銅合金金屬導線製程對鋁互連電遷移之間的相互關係,並通過實驗敘述製程參數變化對鋁互連線電遷移品質的影響最研究分析進而對製程進行最佳化並改善鋁互連線的電遷移品質。

The chip quality is the important topic of semiconductor industry along with the chip size reduction, and the oxide breakdown and the electro-migration phenomenon are both the major issue of IC quality.
Oxidation process is used in semiconductor industry. It is necessary to focus on oxide fabricating process due to the oxide breakdown will induce IC failure. So studying the process effects for improving oxide quality will provide solutions for industry. This thesis fan out the fabrication process effect on oxide, detail descried the method for improving the oxide quality. In the experimental part, the dissertation presented the influencing factors from different process, such as furnace and wet clean. And provide the method to improve oxide quality from process point of view. The improvement methods have applied in manufacture and gain the benefit already.
The Al-Cu interconnection is the most popular process when minimum characteristic dimension larger than 0.13μm. The reason to select AL because it has low resistance and can easily compatible with Si process, low cost is another benefit. But Al interconnect also suffer electro-migration issues. So studying the process effects on Al electro-migration problems and understands EM phenomena well, will provide solutions for industry. This thesis fan out the fabrication process effect on electro-migration, detail descried Al interconnection process, structures, and analysis the key point of Al deposition process, etch process, clean process. It summarized the existing theories and deduced the correlation between processes with electro-migration base on experiment result. In the experimental part, the dissertation presented the influencing factors from different process, such as CVD, etch, clean. And provide the method to improve electro-migration from process point of view. The improvement methods have applied in manufacture and gain the benefit already.

目錄
目次 i
表圖目錄 iii
第一章導論 1
1.1研究背景與動機 1
1.2論文架構及大綱 4
第二章氧化層品質評估 6
2.1氧化層製程介紹 6
2.2氧化層退化現象 15
2.3氧化層品質測試 16
第三章氧化層製程改進 29
3.1不同製程對氧化層品質之影響 29
3.2清洗製程對氧化層品質之影響 33
第四章鋁導線製程評估 45
4.1鋁導線製程介紹 43
4.2銅鋁合金導線品質研究 48
4.3電遷移理論研究…………………………………………………………..…..51
4.4鋁導線電遷移品質面臨之問題 55
第五章製程對電遷移之影響 58
5.1薄膜成長製程對金屬電遷移之影響 58
5.2蝕刻製程對金屬電遷移之影響 64
5.3清洗製程對金屬電遷移之影響 68
第六章結論 74
參考文獻 77



表圖目錄

表3-1 污染源種類及其影響 33
表3-2 磷酸對於ONO結構中Nitride的影響 38
表3-3 7V閘氧化層預清洗分批實驗 41
表4-1 不同特徵尺寸下金屬線寬、厚度以及電流大小的關係 56
表5-1 金屬電遷移試驗結果 60
表5-2 不同金屬層生長條件清單 62
表5-3 原始灰化製程參數 67
表5-4 改進後灰化製程參數 67
表5-5 晶片表面沾汙種類與影響 69
表5-6 清洗條件(一)試驗結果 73
表5-7 清洗條件(二)試驗結果 74
圖2-1 氧化製程 6
圖2-2 氧化層生長過程示意圖 8
圖2-3 閘氧化層內的電荷分佈圖 11
圖2-4 MOS結構中可移動離子勢場的示意圖 12
圖2-5 0.18μm製程Mobile Ion測試的結果 13
圖2-6 元件老化前後的C-V曲線 14
圖2-7 較厚閘氧的Istress-V特性曲線 18
圖2-8 超薄氧化層的閘氧擊穿偵測方法 19
圖2-9 閘氧化層的導電機制 22
圖2-10 本征氧化層擊穿時導電通道示意圖 23
圖2-11 晶片級全自動測試機台示意圖 25
圖2-12 晶片級半自動測試機台示意圖 26
圖3-1 不同閘氧化層製程的閘氧擊穿時間 32
圖3-2 晶片清洗製程示意圖 35
圖3-3 ONO結構的剖面圖 36
圖3-4 ONO測試結構示意圖 37
圖3-5 分批實驗的Vramp測試 38
圖3-6 熱點位置的確定 39
圖3-7 物理失效分析 40
圖3-8 不同氧化層預清洗分批實驗的GOI_TDDB測試結果 42
圖3-9 不同氧化層預清洗分批實驗的TDDB測 42
圖3-10 測試結構示意圖 43
圖3-11 物理失效分析示意圖 43
圖4-1 鋁互連製程流程圖 47
圖4-2 鋁銅合金與純鋁電遷移測試評均失效時間累積分佈圖 48
圖4-3 鋁銅合金金屬側壁坑狀腐蝕圖 49
圖4-4 竹節結構示意圖 50
圖4-5 竹節結構與非竹節結構電遷移平均失效時間示意圖 50
圖4-6 電遷移示意圖 51
圖4-7 電遷移理論模型圖 52
圖4-8 電遷移產生圖 53
圖4-9 電遷移產生應力梯度圖 54
圖4-10(a) 最小特徵尺寸與電流密度關係 56
圖4-10 (b) 最小特徵尺寸與截面面積關係 56
圖5-1 金屬厚度與壽命關係圖(線寬=0.21um) 59
圖5-2 金屬厚度與壽命關係圖(線寬=2um) 60
圖5-3 不同金屬線寬與壽命關係圖 60
圖5-4 有無中間預熱步驟的晶格圖 61
圖5-5 不同金屬層生長條件電遷移測試結果表 62
圖5-6 不同金屬層生長條件電遷移測試樣品分佈圖 63
圖5-7 刻蝕製程示意圖 64
圖5-8不同灰化條件下金屬電遷移測試樣品失效分佈圖 67
圖5-9 晶片清洗製程示意圖 70
圖5-10 原電池反應示意圖 71
圖5-11 不同清洗條件下電遷移測試結果 73

[1] K. F. Schuegraf and C. Hu, “Hole injection SiO breakdown model for very low voltage lifetime extrapolation,” IEEE Trans. Electron Devices,vol. 41, pp. 761-767, May 1994.
[2] K. Eriguchi,Y. Harada, and M. Niwa, “Influence of 1 nm-thick structural "strained-layer" near SiO /Si interface on sub-4 nm-thick gate oxide reliability,” in IEEE IEDM Tech. Dig., 1998, pp. 176–179,May 1996.
[3] H. Eyring, D. Henderson, B. Stover, and E. Eyring, Statistical Mechanics and Dynamics. New York: Wiley, 1964.
[4] W. Jin, R. K. Kalia, and P. Vashishta, “Structural transformation in densified silica glass: A molecular-dynamics study,” Phys. Rev. B, vol. 50,pp. 118–131, July 1994.
[5] J. W. McPherson and H. C. Mogul, “Disturbed bonding states in SiO2
thin-films and their impact on time-dependent dielectric breakdown,” in IEEE Proc. Int. Reliability Physics Symp., 1998, pp. 47–56.
[6] Joint Electron Device Engineering Council,JESD35,Procedure for wafer-level testing of Thin Dielectrics, 6-10,2001.
[7] J. W. McPherson, “Stress dependent activation energy,” in IEEE Proc. Int. Reliability Physics Symp., 1986, pp. 12–18.
[8] D.-B. Kao, J. P. McVittie, W. D. Nix, and K. C. Saraswat, “Two-dimensional thermal oxidation of silicon. II: Modeling stress effects in wet oxides,” IEEE Trans. Electron Devices, vol. 35, pp. 25–37, Jan. 1988.
[9] K. Taniguchi, M. Tanaka, and C. Hamaguchi, “Density relaxation of silicon dioxide on (100) silicon during thermal annealing,” J. Appl. Phys., vol. 67, pp. 2195–2198, Mar. 1990.
[10] G. Lupke et al., “Thermally induced stress relaxation of silicon dioxide on vicinal Si(111) studied with surface nonlinear-optical techniques,” in Proc.Conf. Nonlinear Optics: Materials, Fundamentals and Applications, Waikoloa, HI, USA, July 25–29, 1994, pp. 89–91.
[11] H.Haddara and S.Cristoloveanu, “Two-dimensional modeling of locally damaged short-channel MOSFETS’s operating in the linear region,”IEEE Transactions on Electron Devices, 1987, v 34, pp.378-385.
[12] Kangguo Cheng, et al, “Hot-carrier-induced oxide charge trapping and interface trap creation in metal-oxide-semiconductor devices studied by hydrogen/deuterium isotope effect,” Applied physics letters, 2001, vol-78, No.13, pp1882-1884.
[13] Kangguo Cheng, et al, “Seperation of hot-carrier-induced interface trap creation and oxide charge trapping in PMOSFETs studied by hydrogen/deuterium isotope effect,” IEEE Trans. Electron Devices Letters, 2001, vol. EDL-22, pp.188-190.
[14] B S Doyle,M Bourcerue,C bergonzoni,R Benecchi, A Bravis, K R Mistry, A Boudou. The gengeration and characterization of electron and hole trap created by hole injection during low gate voltage hot-carrier stressing of n-MOS transistors. IEEE Trans. Eletron Devices, 1990, vol.37,pp.1869-1876.
[15] D.Esseni, et al., "On Interface and Oxide Degradation in VLSI MOSFETs-Part I: Deuterium effect in CHE Stress Regime," IEEE Trans. Electron Devices, Feb. 2002, vol.49, pp.247-253.
[16] E. Takeda and N. Suzuki, "An empirical model for device degradation due to hot-carrier injection," IEEE, Electron Device Lett., 1983, pp. 111-113.
[17] R. Ghodsi, Y-T Yeow, C. H. Ling, and M. K. Alam, “Arriving at a unified model for hot-carrier degradation in MOSFET’s through gate-to-drain capacitance measurement,” IEEE, ED-41 (12), 1994, pp. 2423-2429.
[18] M.P.Pagey, et al., “A hydrogen-transport-based interface trap generation model for hot carrier reliability prediction,” IEEE electron device lett. Vol.22, pp.290-292, 2001.
[19] J.Maserjian, and N.Zamani, “Observation of positively charged state generation near the Si/SiO2 interface during fowler-Nordheim tunneling,” J.Vac. Sci. Technol., 1982, vol.20, pp.743-746.
[20] R.Rofan, and C.Hu, “stress-induced oxide leakage,” IEEE Electron device letters, 1991, vol.12,pp.632-634.
[21] P.Olivio, T.Nguyen, and B.Ricco, “High field induced degradation in ultra-thin SiO2 films,” IEEE Trans. Electron devices, 1988, vol.35, pp.2259-2265.
[22] M.Yuichiro, et al., "Suppression of Stress-Induced Leakage current after Fowler-Nordeim stressing by Deuteriun Pyrogenic Oxideation and Deuterated Poly-Si Deposition", IEEE Trans. Electron Devices, July 2002, vol.49, pp.1192-1197.
[23] Hua Younan, A Study on Discolored Bondpads& Galvanic Corrosion, The Proceedings from the 24h International Symposium for Testing and Failure Analysis, 1998,pp.269~272
[24] Hua Younan, A Study on Al Bondpad Grain Boundaries and Galvanic Corrosion in Wafer Fabrication, ICSE2004 Proc. 2004,pp.315~326

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top