(3.227.235.183) 您好!臺灣時間:2021/04/14 18:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐仁宏
研究生(外文):Ren-Horng Hsu
論文名稱:微波無電極硫燈製作與發光特性之研究
論文名稱(外文):Study of Fabrication of Microwave Electrodeless Sulfur Lamp and Luminance Characterization
指導教授:馬廣仁
指導教授(外文):Kung-Jen Ma
學位類別:碩士
校院名稱:中華大學
系所名稱:機械工程學系碩士在職專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:60
中文關鍵詞:微波無電極硫燈輝度相關色溫CIE色度圖
外文關鍵詞:microwave electrodeless Sulfur Lampluminancecorrelated color temperatureCIE Chromaticity Diagram
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
微波硫燈也稱硫燈是一種全光譜無電極燈,是將石英泡殼內的發光物質(硫粉),利用磁控管發射的微波,使它產生連續光譜,微波無電極燈具有高光效、長壽命(60000小時)、演色性好、無汞污染、良好的光通量維持率,可發射出與太陽光近似之光譜,微波硫燈的輸入功率較大,非常適用於大範圍室外照明、植物工廠或太陽光模擬器等多種用途。
本研究是對於開發微波無電極硫燈,進行重要製程參數研究,瞭解其對光源性能的影響。研究內容分兩部份進行實驗,第一部份實驗為研製微波硫燈燈泡,並由微波電源供應器點亮光源,經由光譜分析儀量測出光源之光譜分佈及與標準太陽光之比對其特性。第二部份實驗是探討主要製程參數包含製作微波硫燈時所使用的硫充填量、惰性氣體之充填量,與微波電源供應器之功率等參數對微波硫燈之發光輝度、相關色溫等性能的影響。
第一部份實驗結果顯示,所研製之微波無電極硫燈經光譜分佈量測後,觀察到在400 nm ~ 1100 nm是具有一全光域之連續光譜,但是在純硫燈泡之光譜中,發現在700 nm ~ 1100 nm紅光到紅外線區段比例偏低,當提高硫充填量與微量金屬鹵化物後之微波燈泡後可大幅提高紅光到紅外線區段之分佈比例。
第二部份在製程參數研究結果顯示,硫充填量會對微波硫燈之光譜分佈產生變化,並與輝度對相關色溫二者都會有明顯之改變。同時惰性氣體充填量也對微波硫燈的輝度及色溫之變化仍有微幅之影響。最後也發現微波無電極硫燈之發光輝度會隨輸入功率之增加會產生很大之變化,結果顯示從800 W增加到1200 W之輝度可大幅增加,輝度提升比例約達170 %。
在本研究中微波無電極硫燈中對含硫充填量與輸入功率之綜合效果,結果顯示從可從800 W之1201 cd/m2提高到1200 W之2812 cd/m2,輝度提升率可達230 %,此結果值得進一步改良與探討。

Microwave Sulfur Lamp is known as an electrodeless lamp with full spectrum that is very close to that of the sun light. The Sulfur within the quartz bulb was excited by the microwave emitted from the magnetron. The microwave electrodeless Sulfur lamp features high luminous efficiency, long life time (60000 hours), good color rendering, Mercury pollution free, and good light maintenance factor . With the higher power input, the microwave electrodeless Sulfur lamp is appropriate for open area outdoors lighting, plant factory, and sun lighting simulator.

In this study, the major fabricating parameters of the microwave electrodeless Sulfur lamp have been studied and evaluated their effects to the lighting performance. The study consists two parts: the first part is fabricating a microwave electrodeless Sulfur bulb, which is powered by a microwaved power supply. The spectral distribution of the bulb was examined by Spectrometer and compared to that of the sun light. The second part is to the interactions between the brightness, color temperature, and other performance of the bulb and the fabricating parameters such as: the filling volume of Sulfur, the filling volume of Inert gas, the power of the microwaved power supply.

The results from first part had shown that the fabricated microwave electrodeless Sulfur lamp has a continuous spectrum between 400 nm to 1100 nm. However, the spectrum of a pure Sulfur lamp has lower intensity between 700 nm to 1100nm, i.e. while increasing the filling volume of Sulfur and trace metal halides during the fabrication, the intensity of the microwave bulb is increased dramatically from red to the infrared region of the spectrum.

From the results from the second part, it is found that the filling volume of the Sulfur will give raise to the changes of spectral distribution, brightness, and color temperature of the bulb. Meanwhile, the inert gas also has shown the slight effects on the brightness, and color temperature of the bulb. It is also found that the more rapid change of the brightness of the bulb would be corresponded to the larger input power. With the input power from 800W to 1200W, the brightness of the bulb would increase about 170%.

With the obtained results, it is possible to optimize the filling volume of the Sulfur and the input power, the brightness of the microwave electrodeless Sulfur lamp is able to be increased up to 230%, from 1201cd/m2 800W to 2812 cd/m2 1200W. The further studies will be carried on.

摘要 ***************************************(2)
ABSTRACT ************************************(3)
目錄 ***************************************(5)
誌謝 ***************************************(7)
表目錄 *************************************(8)
圖目錄 *************************************(9)
第一章 前言 *********************************(11)
第二章 文獻回顧 *******************************(12)
2-1 微波硫燈之發展 ******************************(12)
2-2 微波無電極燈之工作機制 **************************(13)
2-3 分子光譜理論之分子能級結構 ***********************(13)
2-4 分子的帶狀光譜 ******************************(14)
2-5 微波機制之應用 *****************************(15)
第三章 實驗方法與設備 ***************************(19)
3-1 實驗流程 ********************************(19)
3-2 實驗材料選用 ******************************(21)
3-2-1石英材料與燈泡加工 ***************************(21)
3-2-2 燈泡填充材料 ******************************(22)
3-2-3 燈泡真空抽氣封合 ****************************(23)
3-3 實驗設備 ********************************(25)
3-3-1 微波供應器 ********************************(25)
3-3-2 分光輻射儀(Spectroradiometer) *********************(27)
3-3-3光源分光輻射計(Spectroradiometer)特性量測 ***************(30)
第4章 結果與討論 ********************************(32)
4-1充入硫及鹵化物在置入光譜量測系統之性能分析 ****************(32)
4-2不同之硫含量對光源性能之影響分析 *********************(36)
4-2-1 不同之硫含量對色溫關係 *************************(36)
4-2-2 不同之硫含量對輝度關係 *************************(36)
4-3不同之充入壓力對光源性能之影響分析 **********************(41)
4-3-1不同之充入壓力對輝度關係 ************************(41)
4-3-2 不同之充入對色溫關係 **************************(41)
4-4不同之輸入功率對光源性能之影響分析 *********************(46)
4-4-1不同之輸入功率對色溫關係 ************************(46)
4-4-2不同之輸入功率對輝度關係 ************************(46)
第五章 結 論 **********************************(57)
第六章 後續研究方向 *******************************(59)
參考文獻 ************************************(60)

[1] Burge Rohert , First Impresslons of the New Suifur ,Newsgroups: Sci. astro. Amatenr,1994.10
[2] A.H. Childs and W.G. Schrenk, “Some characteristics of low pressure, sulfur, microwave-excited, electrodeless discharge lamps”, Applied Spectroscopy, vol. 30, No. 5, pp. 507-509, 1976.
[3] K.J.N. Badura and J.T. Verdeyen, "Radiative Efficiencies of Radio Frequency Sulfur Discharges", IEEE J. of Quantum Electronics, vol. QE-21, No. 7, pp. 748-750, Jul. 1985.
[4] James T. Dolon, Frederick; Michael G. Ury, Bethesda; Charles H.Wood, Rockville,all of Md. “LAMP INCLUDING SULFUR”Apr.4,1995
[5] James T. Dolon, Frederick; Michael G. Ury, Bethesda; Charles H.Wood, Rockville,all of Md. “SULFUR/SELENIUM LAMP WITH IMPROVED CHARACTERISTICS”Feb.2,1999
[6] Youngzhang Leng and Donald A. MacLennan, “Sulfur Lamp With CaBr2 Additive for Enhanced Plant Growth”, NASA Tech Briefs issue, July 2000
[7] 陳大華,“微波硫燈的研究” 復旦大學電光源研究所 200433
[8] 陳大華,“新穎高效節能微波硫燈”復旦大學電光源研究所 200433
[9] 蔡傳新、楊捷、陳大華、張詢,“高壓放電光譜機理研判及其應用”復旦大學電光源研究所 200433
[10] Johnston, Colin William;“Transport and equilibrium in molecular plasmas: the sulfur lamp”, Eindhoven University of Technology, The Netherlands, 2003
[11] Roya Mirhosseini1; Martin F. Schubert; Sameer Chhajed1; Jaehee Cho1; Jong Kyu Kim1; and
E. Fred Schubert,“Improved color rendering and luminous efficacy in phosphor-converted white light-emitting diodes by use of dual-blue emitting active regions” Optical Society of America, 2009
[12] http://www.plasma-i.com/index.html
[13] K.J.N. Badura and J.T. Verdeyen, IEEE J. of Quantum Electronics, vol. QE-21, No. 7, July 1985.
[14] M.Siminovitch, C.Gould and Erik Page, Lighting Systems Research Group, Lawrence Berkeley National Laboratory, USA

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔