跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 04:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴昱綦
研究生(外文):Lai, YuChi
論文名稱:基因轉殖植物密閉溫室濾網選用最佳化研究
論文名稱(外文):Study on Optimal Filter Selection of Sealed Greenhouse for Transgenic Plants
指導教授:戴聿彤戴聿彤引用關係
指導教授(外文):Dai, YuTung
口試委員:吳佩芝莊侑哲戴聿彤
口試委員(外文):Wu, PeiChihJuang, YowJerDai, YuTung
口試日期:2012-06-15
學位類別:碩士
校院名稱:長榮大學
系所名稱:職業安全與衛生學系碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:63
中文關鍵詞:密閉溫室隔離過濾
外文關鍵詞:GreenhouseIsolationFiltration
相關次數:
  • 被引用被引用:2
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:1
為了避免基因轉殖植物花粉自田間試驗設施外流,密閉溫室在整體的規劃上除了同時應具有高度結構氣密性、區域性負壓設計外,更需要通風換氣系統過濾設置以及搭配選用適當等級濾網,始能達到防止花粉外洩,並兼顧節能效果。本研究將以不同粒徑大小的植物花粉,針對不同等級濾網進行過濾效果與壓損測試,以提供不同基因轉殖植物之密閉溫室實場濾網選用最佳化參考依據。
本研究首先建立濾網過濾效果測試系統,利用釋放系統與桑樹(約17 μm),水稻(約31 μm)與玉米(約100 μm)三種不同粒徑花粉,選用ASHRAE以及歐盟EN共五種不同等級濾網(MERV7、MERV8、MERV18、F5、F7)進行測試。根據微粒氣動分徑儀(APS 3321)與微粒計數器(CPC 3010),於濾網前後測得1.5μm到20μm的一般微粒以及所選擇三種花粉之濃度,評估其過濾效果,並獲得各等級濾網對於100μm以下各類花粉之過濾效果曲線。實驗進行同時,亦規劃進行濾網前後壓損的量測。結合各等級濾網過濾效果曲線及其壓損結果,以提供基因轉殖植物密閉溫室中濾網選用之資訊。
結果發現對於粒徑1.5μm以上的一般微粒,過濾效果由高至低依序為MERV18,F7,MERV8,MERV7,F5,而且MERV18,F7與MERV8三種濾網對於5μm以上的微粒,其效果已達到90%以上。而效果最低的F5等級濾網,對粒徑介於1.5μm 到15μm微粒之過濾效果,僅約50%左右。針對大於20μm的花粉,F5等級濾網對於所選三類花粉之過濾效果只有70%左右,MERV8等級濾網則達到90%以上,而F7與MERV 18兩個等級的濾網效果更佳,約可達到95%~99%。在各等級濾網壓損方面,發現MERV18 (15Pa)為F7(9Pa)的 1.67倍,更為MERV8(4Pa)及MERV7(4Pa)的3.75倍;而以過濾效果而言,MERV8與F7對粒徑在5μm以上的花粉,都至少有95%以上的效果。因此以MERV8或F7取代高效率過濾網(MERV18),既可獲得一定程度的過濾效果,亦可達到節能的效果。
本研究利用一般微粒與常見溫室基因轉殖作物花粉,完成五種等級濾網對於粒徑在100μm以下花粉的過濾效果曲線。由於多數基因轉殖植物花粉之粒徑大於20μm,而中級過濾網(MERV8、F7)即可達到95%至99%之過濾效果。因此如果欲達95%過濾效果,即可建議選擇壓損較小的中級過濾網來取代目前多數實場使用的高效率過濾網(MERV18),既達到相同過濾效果,同時亦可節省能源耗損以及濾網購置成本。此外根據一般微粒與三種基因轉殖植物花粉實驗結果,對於粒徑接近桑樹、水稻與玉米三種花粉之其他基因轉殖植物花粉的過濾效果,不需進行進一步實驗即可評估適用之濾網等級。未來則可利用此實驗模式進行更多等級濾網測試,建立一系列各等級濾網過濾效果曲線與壓損等數據,提供實際存在不同基因轉殖植物花粉的密閉溫室濾網等級選擇最佳化之資訊。

In addition to air tightness and negative pressure design, proper grade of filter selection in ventilation system also plays an important role on both prevention of pollen disposal and energy saving. In this study, filtration efficiency of various grades of filters and pressure drop are tested by using pollens with different particle sizes. Practical applications of filter selection in greenhouse for transgenic plants will be investigated.
The zea mays (100 μm), poa pratensis (31 μm), morus alba (17 μm) and different particle sizes of Arizona dust (1.5 μm, 5 μm, 10 μm, 15 μm) are served as challenge aerosols to evaluate the filtration efficiency of five grades of filters (MERV7,MERV8, MERV18, F5, F7) in test chamber. According to the number concentrations measured by APS 3321 and CPC 3010 at upstream and downstream of the filter, the filtration curve of each grade of filter was obtained. The results provide the useful information of optimal filter selection in a sealed greenhouse by integrating with the recorded pressure drop through the filter.
The filtration efficiency result of tested filters for particles with size greater than 1.5 μm is MERV18>F7>MERV8>MERV7>F5. The efficiency of MERV18, F7 and MERV8 approaches to 90% for particles greater than 5μm. However, the efficiency of F5 filter is only 50% for particles ranging between 1.5μm and 15μm. As to the three pollens, the maximum efficiency of F5 filter is only 70%, MERV8 is greater than 90%, F7 and MERV 18 are up to 95%~99%. The pressure drop of MERV18 (15Pa) is 1.67 and 3.75 times that of F7 (9Pa) and MERV8 (4Pa) or MERV7 (4Pa) respectively. Therefore, MERV8 or F7 could be substituted for MERV18 by considering both filtration efficiency and energy saving since the efficiency of both grades of filter is up to 95%.
The filtration curves of five grades of filters were obtained for various pollens with diameters smaller than 100μm. The filters of MERV8 and F7 which have smaller pressure drop and high filtration efficiency (95%~99%) are suggested since most of the pollens in greenhouse is greater than 20μm. A series of test could be performed on different grades of filters in the future by using similar method, to provide the optimal filter selection information in sealed greenhouse for transgenic plants.

摘要 I
Abstract III
致謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 4
1.3 研究流程 5
第二章 文獻回顧與探討 7
2.1 濾網過濾機制及相關研究 7
2.2 濾網等級 10
2.3 濾網測試性能指標 12
2.4 花粉監測 15
2.5 負壓相關研究 17
2.6 密閉溫室設施規範 20
第三章 研究方法與設計 22
3.1 實驗材料 22
3.1.1 濾網過濾性能測試系統 22
3.1.2 足尺環境控制艙室 22
3.1.3 花粉與微粒釋放系統 25
3.1.4 測試濾網選擇 28
3.1.5 微粒與花粉選擇 30
3.2 實驗儀器 32
3.2.1 空氣微粒監測系統 32
3.2.2 花粉監測系統 32
3.2.3 濾網壓損量測 33
3.3 實驗設計 37
3.3.1 微粒與花粉逸散系統穩定性及再現性評估 37
3.3.2 不同等級濾網過濾效果測試 37
3.3.3 壓力調整對於花粉逸散之評估 38
第四章 結果與討論 40
4.1 濾網測試系統氣密性測試 40
4.2 微粒與花粉釋放系統穩定度測試 42
4.3各等級濾網對於微粒及花粉過濾結果 45
4.4 壓力分佈設定對花粉逸散驗證與成效評估 51
4.5 濾網選擇成本與節能之評估 55
第五章 結論與建議 58
參考文獻 60

1.柯一嘉。基因轉殖植物之危害、評估與責任。農業世界,2007。
2.李國欽、徐慈鴻。GMO/GMF風險評估與風險管理方法。行政院農委會農業藥物毒物試驗所,2004。
3.行政院農業委員會農糧署。植物品種及種苗法。行政院農業委員會農糧署,2010。
4.行政院農業委員會農糧署。基因轉殖植物田間試驗管理辦法。行政院農業委員會農糧署,2005
5.Alderman S. L., Parsons M. S., Hogancamp K. U., and Waggoner C. A., Evaluation of the Effect of Media Velocity on Filter Efficiency and Most Penetrating Particle Size of Nuclear Grade High-Efficiency Particulate Air Filters. Journal of Occupational and Environmental Hygiene, 5: 713-720, 2008.
6.Kowalski W. J., Bahnfleth W. P., Whittam T. S., Filtration of Airborne Microorganisms:Modeling and Prediction. ASHRAE Transactions:Research, 1999.
7.ASHRAE Standard ANSI/ASHRAE Standard 52.2, Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size, 1999.
8.EN 779 :2002, New European Standard for General Ventilation Filters, Europe, 2002.
9.財團法人紡織產業研究所。空調用空氣過濾網過濾效率驗證規範,修正第五版http://www.ttri.org.tw/,2005。
10.First M. W., Aging of HEPA Filters In Service and In Storage. Journal of the American Biological Safety Association 1(1) pp. 52-62, 1996.
11.Garcia G., ASME AG-1 HEPA Filter Media Velocity. Bechtel National Incorporated, Richland, Washington, 2003.
12.Alderman S. L., Parsons M. S., Hogancamp K. U., and Waggoner C. A., Evaluation of the Effect of Media Velocity on Filter Efficiency and Most Penetrating Particle Size of Nuclear Grade High-Efficiency Particulate Air Filters. Journal of Occupational and Environmental Hygiene, 5: 713-720, 2008.
13.Lewis W. H., Vinay P., Zenger V. E., Airborne and Allergenic Pollen of North America. The John Hopkins University Press, Baltimore and London., 1983.
14.Smith E.G., Sampling and Identifying Allergenic Pollens and Molds (Volume II):An Illustrated Identifying Manual for Air Samplers. Blewestone Press, San Antonio, Texas, 1986.
15.黃增泉、陳淑華、陳世輝、郭長生、張惠珠、鄒稚華。台灣空中孢粉誌。國立台灣大學植物學研究所,1998。
16.Hayden C. S., Earnest G. S., Jensen P. A., Development of an empirical model to aid in designing airborne infection isolation rooms. Journal of Occupational and Environmental Hygiene, 4, 198-207, 2007.
17.王順志,負壓隔離病房總體設計與洩漏率研究。行政院勞工委員會勞工安全衛生研究所,2009。
18.行政院勞工委員會勞工安全衛生研究所。負壓隔離病房指引。台北縣:行政院勞工委員會勞工安全衛生研究所,2003。
19.Centers for Disease Control and Prevention (CDC). Guidelines for Preventing transmission of mycobacterium tuberculosis in health-care settings. MMWR 54 (RR-17). 2005.
20.Victorian Advisory Committee on Infection Control. Guidelines for the classification and design of isolation rooms in health care facilities. Victorian Advisory Committee on Infection Control, 2007.
21.行政院農業委員會農糧署。基因轉殖植物田間試驗機構隔離設施設置指引,行政院農業委員會農糧署,2011。
22.陳烈夫、杜元凱、吳明哲。基因轉殖植物田間試驗管理概況。農業試驗所技術服務,2010。
23.行政院農業委員會農糧署。基因轉殖植物田間試驗管理辦法。行政院農業委員會農糧署,2005。
24.行政院農業委員會農糧署。基因轉殖植物田間試驗機構隔離設施設置指引,行政院農業委員會農糧署,2011。
25.Lai C. Y., Kuo Y. M., Hwang J. S., Shih T. S., Chen C. C., Determination of Uniformity of Filter Deposits. Aerosol Science and Technology, 40:607-614, 2006.
26.Mittal H., Parks S. R., Pottage T., Walker J. T., Bennett A. M., Survival of Microorganisms on HEPA Filters. Applied Biosafety, ABSA 16(3) pp. 163-166, 2011.
27.田奉展。負壓隔離病房最佳設計參數之探討,碩士論文。中華醫事科技大學,2009。
28.Society of Aut Society of Automotive Engineers, SAE J726 Air Cleaner Test Code, 2002.
29.財團法人紡織產業研究所。空調用空氣過濾網過濾效率驗證規範,修正第五版http://www.ttri.org.tw/,2005。
30.U.S. Environmental Protection Agency, BCES: Module3-Characteristics of Particles, U.S. Environmental Protection Agency, 2010.
31.Orwa C., Mutua A., Kindt R., Jamnadass R. and Anthony S., Morus Alba. World Agroforestry Centre, Kenya, 2009.
32.Soepboer W., Sugita S., Lotter A. F., Jacqueline F. N. and Willem O., Pollen Productivity Estimates for Quantitative Reconstruction of Vegetation Cover on the Swiss Plateau. The Holocene 17,1 pp. 65-77, 2007
33.Sosnoskie L. M., Webster T. M., Dales D., Rains G. C., Grey T. L. and Culpepper A. S., Pollen Grain Size, Density, and settling Velocity for Palmer Amaranth (Amaranthus palmeri). Weed Science 57:404-409, 2009.
34.財團法人紡織產業研究所。空調用空氣過濾網過濾效率驗證規範,修正第五版http://www.ttri.org.tw/,2005。
35.First M. W., Aging of HEPA Filters In Service and In Storage. Journal of the American Biological Safety Association 1(1) pp. 52-62, 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top