|
1.Feynman, R.P., There''s Plenty of Room at the Bottom. Engineering and Science magazine, 1960. XXIII(5). 2.Corbett, J., et al., Nanotechnology: International Developments and Emerging Products. CIRP Annals - Manufacturing Technology, 2000. 49(2): p. 523-545. 3.Daniel, M.C. and D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev, 2004. 104(1): p. 293-346. 4.SARA E. SKRABALAK, J.C., YUGANG SUN, , L.A. XIANMAO LU, CLAIRE M. COBLEY, AND, and Y. XIA, Gold Nanocages: Synthesis, Properties, and Applications. Accounts of chemical research, 2008. 41(12): p. 9. 5.E. Reverchona, R.A., Nanomaterials and supercritical fluids. The Journal of Supercritical Fluids, 2006. 37(1). 6.Liang, M.G., Liang-Hong, Application of Nanomaterials in Environmental Analysis and Monitoring. Journal of Nanoscience and Nanotechnology, 2009. 9(4). 7.Sundarrajan, S., A.R. Chandrasekaran, and S. Ramakrishna, An Update on Nanomaterials-Based Textiles for Protection and Decontamination. Journal of the American Ceramic Society, 2010. 93(12): p. 3955-3975. 8.Alessio Becheri, M.D., Pierandrea Lo Nostro and Piero Baglioni, Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. Journal of Nanoparticle Research, 2008. 10: p. 10. 9.Chen, X. and H.J. Schluesener, Nanosilver: a nanoproduct in medical application. Toxicol Lett, 2008. 176(1): p. 1-12. 10.Schrauben, J.N., et al., Titanium and zinc oxide nanoparticles are proton-coupled electron transfer agents. Science, 2012. 336(6086): p. 1298-301. 11.Allahverdiyev, A.M., et al., Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol, 2011. 6(8): p. 933-40. 12.SERVICE, R.F., Nanomaterials Show Signs of Toxicity. SCIENCE 2003. 300: p. 243. 13.Yu, L.E.B., K.S.; Yung, L.-Y.L.; Hartono, D.; Ong, C.-N.; Shui, G.; Wenk, M.R.; Tan, Y.-L.; Ong, W.-Y. , Translocation and effects of gold nanoparticles after inhalation exposure in rats Nanotoxicology 2007. 1(3): p. 235-242 14.Petros, R.A. and J.M. DeSimone, Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov, 2010. 9(8): p. 615-27. 15.Brandenberger, C., et al., Effects and uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model. Toxicol Appl Pharmacol, 2010. 242(1): p. 56-65. 16.Jain, T.K., et al., Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm, 2008. 5(2): p. 316-27. 17.Soto, K., K.M. Garza, and L.E. Murr, Cytotoxic effects of aggregated nanomaterials. Acta biomaterialia, 2007. 3(3): p. 351-8. 18.Dhaunsi, G.S., et al., NADPH oxidase in human lung fibroblasts. J Biomed Sci, 2004. 11(5): p. 617-22. 19.Stroh, A., et al., Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radic Biol Med, 2004. 36(8): p. 976-84. 20.Knaapen, A.M., et al., Inhaled particles and lung cancer. Part A: Mechanisms. International journal of cancer. Journal international du cancer, 2004. 109(6): p. 799-809. 21.Wu, W., et al., Phosphorylation of p65 is required for zinc oxide nanoparticle-induced interleukin 8 expression in human bronchial epithelial cells. Environ Health Perspect, 2010. 118(7): p. 982-7. 22.Huang, Y.-W., C.-h. Wu, and R.S. Aronstam, Toxicity of Transition Metal Oxide Nanoparticles: Recent Insights from in vitro Studies. Materials, 2010. 3(10): p. 4842-4859. 23.Sharma, V., D. Anderson, and A. Dhawan, Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis, 2012. 24.Pelley, J.L., A.S. Daar, and M.A. Saner, State of academic knowledge on toxicity and biological fate of quantum dots. Toxicol Sci, 2009. 112(2): p. 276-96. 25.Nel, A., et al., Toxic potential of materials at the nanolevel. Science, 2006. 311(5761): p. 622-7. 26.Sharma, V., et al., DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett, 2009. 185(3): p. 211-8. 27.Morton, D.J., et al., Reduced severity of middle ear infection caused by nontypeable Haemophilus influenzae lacking the hemoglobin/hemoglobin-haptoglobin binding proteins (Hgp) in a chinchilla model of otitis media. Microb Pathog, 2004. 36(1): p. 25-33. 28.Evans, F.O., Jr., et al., Sinusitis of the maxillary antrum. N Engl J Med, 1975. 293(15): p. 735-9. 29.Berk, S.L., et al., Nontypeable Haemophilus influenzae in the elderly. Arch Intern Med, 1982. 142(3): p. 537-9. 30.Bandi, V., et al., Nontypeable Haemophilus influenzae in the lower respiratory tract of patients with chronic bronchitis. Am J Respir Crit Care Med, 2001. 164(11): p. 2114-9. 31.Cuthill, S.L., M.M. Farley, and L.G. Donowitz, Nontypable Haemophilus influenzae meningitis. Pediatr Infect Dis J, 1999. 18(7): p. 660-2. 32.Organization, W.H., World Health Organization World Development Report 1993: Investing in Health. Oxford University Press, 1993. Oxford: p. 215–222. 33.Veeramachaneni, S.B. and S. Sethi, Pathogenesis of bacterial exacerbations of COPD. COPD, 2006. 3(2): p. 109-15. 34.Murphy, T.F., L.O. Bakaletz, and P.R. Smeesters, Microbial interactions in the respiratory tract. Pediatr Infect Dis J, 2009. 28(10 Suppl): p. S121-6. 35.Pettigrew, M.M., et al., Microbial interactions during upper respiratory tract infections. Emerg Infect Dis, 2008. 14(10): p. 1584-91. 36.Hament, J.M., et al., Respiratory viral infection predisposing for bacterial disease: a concise review. FEMS Immunol Med Microbiol, 1999. 26(3-4): p. 189-95. 37.Sethi, S. and T.F. Murphy, Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med, 2008. 359(22): p. 2355-65. 38.Avadhanula, V., et al., Nontypeable Haemophilus influenzae adheres to intercellular adhesion molecule 1 (ICAM-1) on respiratory epithelial cells and upregulates ICAM-1 expression. Infect Immun, 2006. 74(2): p. 830-8. 39.Winter, L.E. and S.J. Barenkamp, Construction and immunogenicity of recombinant adenovirus vaccines expressing the HMW1, HMW2, or Hia adhesion protein of nontypeable Haemophilus influenzae. Clin Vaccine Immunol, 2010. 17(10): p. 1567-75. 40.Rodriguez, C.A., et al., Prevalence and distribution of adhesins in invasive non-type b encapsulated Haemophilus influenzae. Infect Immun, 2003. 71(4): p. 1635-42. 41.Vitovski, S., et al., Nontypeable Haemophilus influenzae in carriage and disease: a difference in IgA1 protease activity levels. JAMA, 2002. 287(13): p. 1699-705. 42.Johnston, J.W. and M.A. Apicella, Sialic acid metabolism and regulation by Haemophilus influenzae: potential novel antimicrobial therapies. Curr Infect Dis Rep, 2008. 10(2): p. 83-4. 43.Ho, D.K., et al., lgtC expression modulates resistance to C4b deposition on an invasive nontypeable Haemophilus influenzae. Journal of immunology, 2007. 178(2): p. 1002-12. 44.Murphy, T.F., C. Kirkham, and A.J. Lesse, Construction of a mutant and characterization of the role of the vaccine antigen P6 in outer membrane integrity of nontypeable Haemophilus influenzae. Infect Immun, 2006. 74(9): p. 5169-76. 45.Griffin, R., et al., Elucidation of the monoclonal antibody 5G8-reactive, virulence-associated lipopolysaccharide epitope of Haemophilus influenzae and its role in bacterial resistance to complement-mediated killing. Infect Immun, 2005. 73(4): p. 2213-21. 46.Nick SerponeCorresponding, D.D., Angelo Albini, Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorganica Chimica Acta, 2007. 360(3): p. 794–802. 47.O Sevena, B.D., S Aydemirb, D Metinb, M.A Ozinelb, S Iclia, Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 165(1-3): p. 103–107. 48.Schilling, K., et al., Human safety review of "nano" titanium dioxide and zinc oxide. Photochem Photobiol Sci, 2010. 9(4): p. 495-509. 49.Lam, H.F., et al., Pulmonary function of guinea pigs exposed to freshly generated ultrafine zinc oxide with and without spike concentrations. Am Ind Hyg Assoc J, 1988. 49(7): p. 333-41. 50.Palomaki, J., et al., Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells. Toxicology, 2010. 267(1-3): p. 125-31. 51.Hussain, S., J.A. Vanoirbeek, and P.H. Hoet, Interactions of nanomaterials with the immune system. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2012. 4(2): p. 169-83. 52.Hanley, C., et al., The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction. Nanoscale research letters, 2009. 4(12): p. 1409-1420. 53.Li, C.H., et al., Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology, 2011. 54.Li, C.H., et al., Zinc Oxide Nanoparticles-Induced Intercellular Adhesion Molecule 1 Expression Requires Rac1/Cdc42, Mixed Lineage Kinase 3, and c-Jun N-Terminal Kinase Activation in Endothelial Cells. Toxicol Sci, 2012. 126(1): p. 162-72. 55.Poje, G. and R.J. Redfield, General methods for culturing Haemophilus influenzae. Methods Mol Med, 2003. 71: p. 51-6. 56.Lee, C.C., J.W. Liao, and J.J. Kang, Motorcycle exhaust particles induce airway inflammation and airway hyperresponsiveness in BALB/C mice. Toxicol Sci, 2004. 79(2): p. 326-34. 57.Calkins, C.M., et al., TNF receptor I mediates chemokine production and neutrophil accumulation in the lung following systemic lipopolysaccharide. The Journal of surgical research, 2001. 101(2): p. 232-7. 58.Heinrich, P.C., J.V. Castell, and T. Andus, Interleukin-6 and the acute phase response. Biochem J, 1990. 265(3): p. 621-36. 59.Padmavathy, N. and R. Vijayaraghavan, Interaction of ZnO nanoparticles with microbes--a physio and biochemical assay. Journal of biomedical nanotechnology, 2011. 7(6): p. 813-22. 60.Franklin, N.M., et al., Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environmental science & technology, 2007. 41(24): p. 8484-90. 61.Karlsson, H.L., et al., Size-dependent toxicity of metal oxide particles--a comparison between nano- and micrometer size. Toxicol Lett, 2009. 188(2): p. 112-8. 62.Monakhov, E.V., et al., Evolution of high-dose implanted hydrogen in ZnO. Superlattices and Microstructures, 2005. 38(4-6): p. 472-478. 63.Dufour, E.K., et al., Clastogenicity, photo-clastogenicity or pseudo-photo-clastogenicity: Genotoxic effects of zinc oxide in the dark, in pre-irradiated or simultaneously irradiated Chinese hamster ovary cells. Mutation research, 2006. 607(2): p. 215-24. 64.Stern, S.T. and S.E. McNeil, Nanotechnology safety concerns revisited. Toxicol Sci, 2008. 101(1): p. 4-21. 65.Gordon, T., et al., Pulmonary effects of inhaled zinc oxide in human subjects, guinea pigs, rats, and rabbits. Am Ind Hyg Assoc J, 1992. 53(8): p. 503-9. 66.Yazdi, A.S., et al., Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta. Proc Natl Acad Sci U S A, 2010. 107(45): p. 19449-54. 67.J. Sawai, S.S., H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, H. Kojima, Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J. Ferment. Bioeng, 1998. 68(5): p. 521–522. 68.Kloepfer, J.A., R.E. Mielke, and J.L. Nadeau, Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol, 2005. 71(5): p. 2548-57. 69.Heinlaan, M., et al., Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 2008. 71(7): p. 1308-16. 70.Zhang, L., et al., Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research, 2006. 9(3): p. 479-489. 71.Cho, W.S., et al., Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect, 2010. 118(12): p. 1699-706. 72.Matsumura, M., et al., Adjuvant effect of zinc oxide on Th2 but not Th1 immune responses in mice. Immunopharmacol Immunotoxicol, 2010. 32(1): p. 56-62. 73.Sayes, C.M., K.L. Reed, and D.B. Warheit, Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci, 2007. 97(1): p. 163-80. 74.Osmond, M.J. and M.J. McCall, Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology, 2010. 4(1): p. 15-41. 75.Feltis, B.N., et al., Independent cytotoxic and inflammatory responses to zinc oxide nanoparticles in human monocytes and macrophages. Nanotoxicology, 2011. 76.Kim, J.S., et al., Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model. Part Fibre Toxicol, 2011. 8: p. 29. 77.Perrella, M.A., et al., High mobility group-I(Y) protein facilitates nuclear factor-kappaB binding and transactivation of the inducible nitric-oxide synthase promoter/enhancer. The Journal of biological chemistry, 1999. 274(13): p. 9045-52. 78.Darnell, J.E., Jr., I.M. Kerr, and G.R. Stark, Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 1994. 264(5164): p. 1415-21. 79.Fang, F.C., Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest, 1997. 99(12): p. 2818-25. 80.Schapiro, J.M., S.J. Libby, and F.C. Fang, Inhibition of bacterial DNA replication by zinc mobilization during nitrosative stress. Proc Natl Acad Sci U S A, 2003. 100(14): p. 8496-501. 81.Harrington, J.C., et al., Resistance of Haemophilus influenzae to Reactive Nitrogen Donors and Gamma Interferon-Stimulated Macrophages Requires the Formate-Dependent Nitrite Reductase Regulator-Activated ytfE Gene. Infect Immun, 2009. 77(5): p. 1945-1958.
|