跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 22:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭仟翊
研究生(外文):Chien-Yi Hsiao
論文名稱:4D-CT影像為基礎之肺功能胸腔腫瘤放射治療計畫
論文名稱(外文):Functional IMRT Treatment Planning with 4D-CT-Based-Ventilation Imaging for Thoracic Cancer Patients
指導教授:施子卿黃宗祺黃宗祺引用關係
指導教授(外文):TZU-CHING SHIHTzung-Chi Huang
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:臨床醫學研究所碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:89
中文關鍵詞:結構性放射治療計畫四維電腦斷層影像光流法形變影像對位功能性肺區功能性放射治療計畫
外文關鍵詞:Functional Lung RegionsDeformable Image Registration4D-CT
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
現今臨床胸腔腫瘤放射治療計畫,是以結構性放射治療計畫(Anatomic Treatment Planning)製作方式製作,使用電腦斷層模擬攝影影像或電腦斷層模擬攝影影像與診斷影像或功能性造影影像之影像融合影像作為定義腫瘤、重要組織及危急器官之圈選,其中,在肺組織定義及肺部區域放射劑量的評估,是以整個肺區作為一個器官考量結構,給予適當劑量體積限制參數,降低整個肺區域的輻射劑量分布,但是並無考慮肺功能的部分,且針對肺功能較佳的區域,並無特別考量此區域所接受之輻射劑量多寡。本研究使用四維電腦斷層影像與影像形變對位法定義高肺功能肺區(Functional Lung Regions),製作功能性放射治療計畫(Functional Treatment Planning)。收集臨床11例胸腔腫瘤病患四維電腦斷層影像,採用最大吸氣(Maximum End-Inhale)及最大吐氣(Maximum End-Exhale)兩組相位電腦斷層影像,使用光流法(Optical Flow Method)之形變影像對位技術(Deformable Image Registration),計算出肺組織的最大呼吸運動變化量功能性肺區影像;(1)回溯性的探討一般傳統結構性強度調控放射治療計畫中,高肺功能肺區所接受的輻射劑量分布情形。(2)製作功能性強度調控放射治療計畫,並與結構性強度調控放射治療計畫做比較,比較兩者計畫對於腫瘤劑量的包覆性與均勻性之差異與肺部劑量體積參數百分比及平均肺劑量(V5%、V20%、MLD)。結果發現功能性強度調控放射治療計畫在腫瘤劑量的部分,因降低功能性肺區輻射劑量,而些微犧牲腫瘤的順形度與均勻度,但是皆在臨床可接受範圍內;在周圍的正常組織及危急器官部分,降低功能性肺區之輻射劑量,會導致肺以外周圍的其他器官輻射劑量略微增加,但是皆在耐受劑量體積限制標準內。

In current practice of thoracic cancer radiotherapy, the difference in pulmonary function was not considered when generating treatment plans. Lung volumes are deemed equally when placing radiation beams in planning. The primary purpose of this study was to evaluate the radiation dose of IMRT treatment plans on highly functional lung volumes by incorporation of functional lung imaging using 4D-CT for thoracic cancer patients. Eleven patients who had non-trivial but stable respiration motion and were available for 4D simulation schedule received 4D radiotherapy simulation and were included in this retrospective study. With deformation calculated by deformable image registration among 4D-CT image sets, pulmonary ventilation can be defined as the fractional volume change in respiration. The 3D dose distributions of IMRT plans were overlapped with the 3D ventilation distributions and analyzed. The ventilation difference of the left and right lungs can be seen on the corresponding ventilation image. Lower ventilation around lung tumor region was also observed. For the cases of small target volumes (planned target volume < 400 cc, 6 cases in total), all V5(%), V20(%) and the mean lung dose (MLD) values for the highly functional regions, top 20%, 30% and 40% ventilation, were lower than the values for the total lung. For the cases of large target volumes, two out of five cases had higher V5(%) and V20(%) values for the highly functional regions compared with total lung. The present study has demonstrated the evaluation of radiation dose of IMRT treatment plans with incorporation of functional lung imaging from 4D-CT for thoracic cancer patients. Radiation treatments affect functional lung volumes more seriously on larger tumors than small tumors. Thus it is more critical to arrange radiation beams for functional lung sparing for patients with large tumors.

中文摘要i
英文摘要iii
致謝v
目錄vii
圖索引x
表索引xii
第一章 緒論1
1.1研究背景1
1.2研究目的6
第二章 原理與文獻回顧8
2.1強度調控放射治療原理8
2.2放射治療計畫原理 13
2.3腫瘤靶體積的定義18
2.3.1.ICRU No.50號報告18
2.3.2.ICRU No.62號報告19
2.4四維電腦斷層掃描原理21
2.4.1.4D-CT取像方式 21
2.4.2.4D-CT影像為基礎之肺功能影像優點26
第三章 研究材料與方法27
3.1臨床病例資料收集27
3.24D-CT影像資訊29
3.3影像處理32
3.3.1.光流法32
3.3.2.局部體積變化計算35
3.3.3.肺通氣體積計算37
3.4治療計畫系統與治療計畫評估標準及治療計畫結果評估40
3.4.1.治療計畫劑量體積限制標準40
3.4.2.治療計畫劑量體積限制及重要性分配 44
3.4.3.腫瘤體積劑量評估48
3.5實驗架構與流程51
第四章 研究結果與討論53
4.1以4D-CT影像為基礎之肺功能影像53
4.2回溯性探討結構性IMRT治療計畫高肺功能肺區輻射劑量56
4.3結構性IMRT治療計畫V.S功能性IMRT治療計畫64
4.3.1.腫瘤劑量評估67
4.3.2.正常組織及危急器官劑量評估70
第五章 結論76
第六章 參考文獻79
附錄88


1.Siegel R, Naishadham D, Jemal A. Cancer Statistics, 2012. CA Cancer J Clin. 2012; 62(1): 10-29.
2.www.doh.gov.tw 行政院衛生署統計資料專區
3.Arriagada R, Komaki R, Cox JD. Radiation dose escalation in non-small cell carcinoma of the lung. Semin Radiat Oncol. 2004; 14(4): 287-91.
4.Lavrenkov K, Christian JA, Partridge M, et al. A potential to reduce pulmonary toxicity: The use of perfusion SPECT with IMRT for functional lung avoidance in radiotherapy of non-small cell lung cancer. Radiother Oncol. 2007; 83(2): 156-62.
5.Graham MV, Purdy JA, Emami B, et al. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys. 1999; 45(2): 323-9.
6.http://apps.webofknowledge.com/
7.Levin DL, Chen Q, Zhang M, et al. Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging. Magn Reson Med. 2001; 46(1): 166-71.
8.Bunow B, Line BA, Horton MR, et al. Regional ventilatory clearance by xenon scintigraphy: A critical evaluation of two estimation procedures. J Nucl Med. 1979; 20(7): 703-10.
9.Gottschalk A, Sostman HD, Coleman RE, et al. Ventilation-perfusion scintigraphy in the PIOPED study. Part II. evaluation of the scintigraphic criteria and interpretations. J Nucl Med. 1993; 34(7): 1119-26.
10.Munawar I, Yaremko BP, Craig J, et al. Intensity modulated radiotherapy of non-small-cell lung cancer incorporating SPECT ventilation imaging. Med Phys. 2010; 37(4): 1863-72.
11.McGuire SM, Zhou S, Marks LB, et al. A methodology for using SPECT to reduce IMRT dose to functional lung. Int J Radiat Oncol Biol Phys. 2006; 66(1): 1543-52.
12.Vidal Melo MF, Layfield D, Harris RS, et al. Quantification of regional ventilation-perfusion ratios with PET. J Nucl Med. 2003; 44(12): 1982-91.
13.Willey-Courand DB, Harris RS, Galletti GG, et al. Alterations in regional ventilation, perfusion, and shunt after smoke inhalation measured by PET. J Appl Phisiol. 2002; 93(3): 1115-22.
14.Shioyama Y, Jang SY, Liu HH, et al. Preserving functional lung using perfusion imaging and intensity-modulated radiation therapy for advanced-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2007; 68(5): 1349-58
15.Bates EL, Bragg CM, Wild JM, et al. Functional image-based radiotherapy planning for non-small cell lung cancer: A simulation study. Radiother Oncol. 2009; 93(1): 32-6
16.Colgan R, McClelland J, McQuaid D, et al. Planning lung radiotherapy using 4D CT data and a motion model. Phys Med Biol. 2008; 53(20): 5815-30.
17.Yaremko BP, Guerrero TM, Noyola-Martinez J, et al. Reduction of normal lung irradiation in locally advanced non-small-cell lung cancer patients, using ventilation images for functional avoidance. Int J Radiat Oncol Biol Phys. 2007; 68(2): 562-71.
18.Yamamoto T, Kabus S, von Berg J, Lorenz C, Keall PJ, et al. Impact of four-dimensional computed tomography pulmonary ventilation imaging-based functional avoidance for lung cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2011; 79(1): 279-88.
19.Lind PA, Marks LB, Hollis D, et al. Receiver operating characteristic curves to assess predictors of radiation-induced symptomatic lung injury. Int J Radiat Oncol Biol Phys. 2002; 54(2): 340-7.
20.Robnett TJ, Machtay M, Vines EF, et al. Factors predicting severe radiation pneumonitis in patients receiving definitive chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys. 2000; 48(1): 89-94.
21.Harris B, Bailey D, Miles S, et al. Objective analysis of tomographic ventilation–perfusion scintigraphy in pulmonary embolism. Am J Respir Crit Care Med. 2007; 175(11): 1173-80.
22.Moule RN, Kayani I, Prior T et al. Adaptive 18 fluoro-2-deoxyglucose positron emission tomography/computed tomography-based target volume delineation in radiotherapy planning of head and neck cancer. Clin Oncol. 2011; 23(5): 364-71.
23.Petersson J, Sánchez-Crespo A, Rohdin M, et al. Physiological evaluation of a new quantitative SPECT method measuring regional ventilation and perfusion. J Appl Phisiol. 2004; 96(3): 1127-36.
24.Ketai L, Hartshorne M. Potential of computed tomography-SPECT and computed tomography-coincidence Fusion images of the chest. Clin Nucl Med 2001; 26(5):433–441
25.Cattaneo GM, Rizzo G, Lombardi P, et al. Integration of computerized tomography imaging with single photon emission in a commercial system for developing radiotherapy fields: application to conformational irradiation for lung carcinoma. Radiol Med (Torino) 1999; 97(4):272–278
26.Kwa SL, Theuws JC, van Herk M, et al. Automatic three-dimensional matching of CT-SPECT and CT-CT to localize lung damage after radiotherapy. J Nucl Med. 1998; 39(6): 1074-80.
27.Simon BA. Non-invasive imaging of regional lung function using X-ray computed tomography. J Clin Monit Comput. 2000; 16(5-6): 433-42.
28.Marcucci C, Nyhan D, Simon BA. Distribution of pulmonary ventilation using Xe-enhanced computed tomography in prone and supine dogs. J Appl Phisiol. 2001; 90(2): 421-30.
29.Suga K, Yuan Y, Ogasawara N, et al. Altered clearance of gadolinium diethylenetriaminepentaacetic acid aerosol from bleomycin-injured dog lungs: initial observations. Am J Respir Crit Care Med. 2003; 167(12): 1704-10.
30.Patz S, Hersman FW, Muradian I, et al. Hyperpolarized (129)Xe MRI: a viable functional lung imaging modality? Eur j Radiol. 2007; 64(3): 335-44.
31.Castillo R, Castillo E, Martinez J, et al. Ventilation from four-dimensional computed tomography: density versus Jacobian methods. Phys Med Biol. 2010; 55(16): 4661-85.
32.Reinhardt JM, Ding K, Cao K, et al. Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation. Med Image Anal. 2008; 12(6): 752-63.
33.Fraass BA, Kessler ML, McShan DL, et al. Optimization and clinical use of multisegment intensity-modulated radiation therapy for high-dose conformal therapy. Semin Radiat Oncol. 1999; 9(1): 60-77.
34.Choi Y, Kim JK, Lee HS, et al. Impact of intensity-modulated radiation therapy as a boost treatment on the lung-dose distributions for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2005;63(3):683- 9.
35.Yom SS, Liao Z, Liu HH, et al. Initial evaluation of treatment-related pneumonitis in advanced-stage non-small-cell lung cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2007; 68(1): 94-102.
36.Sura S, Gupta V, Yorke E, et al. Intensity-modulated radiation therapy (IMRT) for inoperable non-small cell lung cancer: the Memorial Sloan-Kettering Cancer Center (MSKCC) experience. Radiother Oncol. 2008; 87(1): 17-23.
37.www.coopcl.com.tw
38.Shioyama Y, Jang SY, Liu HH, et al. Preserving functional lung using perfusion imaging and intensity-modulated radiation therapy for advanced-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2007; 68(5): 1349-58.
39.International Commission on Radiation Units and Measurements. ICRU Report No 50: Prescribing, Recording and Reporting Photon Beam Therapy. Bethesda, MD: ICRU Publications 1993.
40.International Commission on Radiation Units and Measurements. ICRU Report No 62: Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50). Bethesda, MD: ICRU Publications 1999.
41.Lu W, Parikh PJ, El Naqa IM, et al. Quantitation of the reconstruction quality of a four-dimensional computed tomography process for lung cancer patients. Med Phys. 2005; 32(4): 890-910.
42.De Ruysscher D, Faivre-Finn C, Nestle U, et al. European Organisation for Research and Treatment of Cancer recommendations for planning and delivery of high-dose, high-precision radiotherapy for lung cancer. J Clin Oncol 2010; 28(36): 5301-10.
43.Pan T. Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT. Med Phys. 2005; 32(2): 627-34.
44.BKP Horn. Brian G: Determining Optical Flow. Artif Intell. 1981; 185-203.
45.Hirose Y, Imaeda T, Doi H, et al. Lung perfusion SPECT in predicting postoperative pulmonary function in lung cancer. Ann Nucl Med. 1993; 7(2): 123-6.
46.National Comprehensive Cancer Network.
47.van''t Riet A, Mak AC, Moerland MA, et al. A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate. Int J Radiat Oncol Biol Phys. 1997; 37(3): 731-6.
48.Feuvret L, Noël G, Mazeron JJ, et al. Conformity index: a review. Int J Radiat Oncol Biol Phys. 2006; 64(2): 333-42.
49.Yoon M, Park SY, Shin D, et al. A new homogeneity index based on statistical analysis of the dose-volume histogram. J appl Clin Med Phys. 2007; 8(2): 9-17.
50.Wu Q, Mohan R, Morris M, et al. Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: dosimetric results. Int J Radiat Oncol Biol Phys. 2003; 56(2): 573-85.
51.Reese AS, Das SK, Curie C, et al. Integral dose conservation in radiotherapy. Med Phys. 2009; 36(3): 734-40.
52.Castillo R, Castillo E, Martinez J, et al. Ventilation from four-dimensional computed tomography: density versus Jacobian methods. Phys Med Biol. 2010; 55(16): 4661-85.
53.Reinhardt JM, Ding K, Cao K, et al. Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation. Med Image Anal. 2008; 12(6): 752-63.
54.Guerrero T, Sanders K, Castillo E, et al. Dynamic ventilation imaging from four-dimensional computed tomography. Phys Med Biol. 2006; 51(4): 777-91.
55.Guerrero T, Sanders K, Noyola-Martinez J, et al. Quantification of regional ventilation from treatment planning CT. Int J Radiat Oncol Biol Phys. 2005; 62(3): 630-4.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top