跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 03:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李岳軒
研究生(外文):Yueh-Hsuan Lee
論文名稱:TLS-11抑制人類大腸癌細胞株COLO 205生長之作用機制
論文名稱(外文):The growth inhibitory mechanism of TLS-11 in human colorectal cancer cell line COLO 205
指導教授:黃麗嬌黃麗嬌引用關係
指導教授(外文):Li-Jiau Huang
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:藥物化學研究所碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:75
中文關鍵詞:大腸癌α-咔吧啉細胞凋亡細胞週期
外文關鍵詞:COLO 205alpha-carbolineapoptosiscell cycle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:389
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
將新合成的α-咔吧啉合成衍生物進行人類大腸癌細胞株COLO 205及人類正常胚胎皮膚細胞Detroit 551的細胞毒性評估。結果發現化合物TLS-11對於人類大腸癌細胞株COLO 205具有優越之毒殺活性,IC50 值為0.49 μM,細胞存活率分析顯示TLS-11抑制細胞生長呈現劑量及時間依存性;其對人類正常胚胎皮膚細胞Detroit 551則具低毒性。故本論文進一步探討TLS-11之抗癌作用機轉。。
細胞週期分析結果,發現人類大腸癌細胞株COLO 205經過TLS-11處理後造成細胞週期停滯在G2/M期並且造成G2/M期相關蛋白質:CDK1、cyclin B1、p53及p21蛋白質增加。
為探討人類大腸癌細胞株COLO 205經TLS-11處理後造成細胞死亡的機制,進行型態觀察、Hoechst 33258染色法染色、Annexin V / PI 雙染法染色、粒線體膜電位、DNA膠體電泳及西方墨點法分析,結果顯示人類大腸癌細胞株COLO 205經過TLS-11處理後造成細胞的死亡與細胞凋亡有關。
在細胞凋亡內在途徑方面,TLS-11造成人類大腸癌細胞株COLO 205的 Bax/ Bcl-2蛋白質比例增加以及由粒線體釋出cytochrome c ,cytochrome c與Apaf-1蛋白質結合後進而活化caspase 9及caspase 3蛋白質;粒線體也會釋放出AIF及Endo G蛋白質使細胞產生凋亡。在細胞凋亡外在途徑方面,TLS-11對於death-receptor蛋白:FAS/CD95、TNFR1及TRAILR1 (DR4)增加有明顯的影響;但相對而言,TRAILR2 (DR5)卻沒有顯著的增加。在有絲分裂活化蛋白質激酶路徑方面,TLS-11對於JNK及ERK訊息傳導路徑有明顯的影響;對於p38較無明顯之影響。
綜合以上實驗數據顯示,TLS-11誘導人類大腸癌細胞株COLO 205產生細胞凋亡與死亡受體路徑、粒線體凋亡路徑及JNK-MAPKs訊息傳導路徑有關,希望可以成為一個對正常細胞具低毒性之治療大腸癌之抗癌候選藥物。


The newly synthesized α-carboline derivatives were evaluated for cytotoxicity against human colon cancer cell line COLO 205 and normal human embryonic skin cell Detroit 551. The results showed that the compound TLS- 11 exhibited potent cytotoxicity against human colon cancer line COLO 205 with IC50 value 0.49 μM. TLS-11 induced dose- and time-dependent decrease in viability in TLS-11 treated COLO 205 cells. Beside, it exerts low cytotoxicity on Detroit 551 normal human embryonic skin cell. Further, the purpose of this study was to investigate the anti-cancer effect and the molecular action mechanisms of TLS-11 on COLO 205 cells.
Cell cycle analysis showed that TLS-11induced significant G2 / M phase arrest. Western blotting showed that TLS-11caused increase in CDK1,cyclin B1, p53 and p21 proteins .
After the TLS-11 treatment COLO 205 cells caused cell death by carry out cell morphological observation , Hoechst 33258 staining, Annexin V / PI double staining, Mitochondrial membrane potential, DNA electrophoresis and Western blot analysis. The results showed that TLS-11 treatment caused cell death and apoptosis.
In apoptosis intrinsic pathway, TLS-11 treatment caused Bax / Bcl-2 protein ratio increase and cytochrome c released from mitochondria. And then cytochrome c will binding with Apaf-1 and thus activation of caspase 9 and caspase 3 protein. Mitochondria also released AIF and Endo G protein to cause apoptosis.In apoptosis extrinsic pathway, TLS-11 treatment caused increase in FAS/CD95, TNFR1 and TRAILR1 (DR4). The TRAILR2 (DR5) is not. In mitogen activated protein kinase pathway, TLS-11 treatment caused JNK and ERK increase. The p38 is not.
Taken together, we conclude that TLS-11 induced COLO 205 cells death by G2/M phase arrest and death-receptor associated and mitochondrial - apoptotic pathway and JNK-MAPKs signaling pathways. It may be a low cytotoxicity drug candidate for the treatment of human colon cancer in the future.





目錄
圖目錄 IV
表目錄 VI
略字表 VII
中文摘要 IX
Abstract XI
第一章 緒論 1
第一節 癌症流行病學 1
第二節α-咔吧啉 (α-Carboline)類化合物研究概況 4
第三節TLS-11之合成方法 5
第四節 細胞週期 (Cell cycle)之調控機制 6
一、細胞週期 (cell cycle) 6
二、細胞週期 (cell cycle)之調控因子 8
三、p53蛋白質與細胞週期關係 10
第五節 細胞凋亡 (apoptosis) 11
一、死亡接受器細胞凋亡路徑 13
二、粒腺體細胞凋亡路徑 13
第六節 有絲分裂活化蛋白質激酶之簡介 16
第七節 大腸癌(Colorectal cancer)之簡介 17
一、大腸功能介紹 17
二、大腸癌病因 17
三、大腸癌臨床徵狀 18
四、大腸癌治療 19
第二章 研究動機與目的 22
第三章 結果與討論 23
第一節 結果 23
一、TLS-11化合物對COLO 205細胞的細胞毒性 23
二、TLS-11誘導COLO 205細胞之型態變化 23
三、TLS-11誘導COLO 205細胞產生細胞凋亡 24
四、TLS誘導COLO 205細胞產生DNA 斷裂情形 24
五、TLS誘導COLO 205細胞產生粒線體膜電位改變 25
六、TLS-11對COLO 205細胞的細胞週期影響 26
七、TLS-11對COLO 205細胞的細胞週期調控蛋白之影響 26
八、TLS-11對COLO 205細胞之Bcl-2家族蛋白質調控 27
九、TLS-11誘導COLO 205細胞凋亡時會造成cytochrom c的累積及caspase 9、caspase 3的活化 27
十、TLS-11誘導COLO 205細胞凋亡時對AIF及Endo G的影響 28
十一、TLS-11誘導COLO 205細胞凋亡時對death-receptor的影響 29
十二、TLS-11誘導COLO 205細胞凋亡時對MAPKs影響 29
第二節 討論 31
第四章 結論 34
第五章 實驗部分 35
第一節 實驗材料 35
一、細胞株 35
二、細胞培養材料 35
三、儀器 36
四、試劑 37
五、溶液配製 40
第二節 實驗方法 44
一、藥物配製 44
二、細胞培養 44
三、細胞計數及存活測試 44
四、細胞增殖分析 45
五、細胞型態分析 46
六、Hoechst 33258染色法 46
七、Annexin V / PI 雙染法 47
八、DNA萃取及電泳分析 47
九、粒線體膜電位染色 48
十、細胞週期分析 48
十一、蛋白質萃取 49
十二、蛋白質定量分析 49
十二、西方墨點法 50
十三、統計分析 51
參考文獻 68



1.Helbecque N, Moquin C, Bernier JL, Morel E, Guyot M, Henichart JP. Grossularine-1 and grossularine-2, alpha carbolines from Dendrodoa grossularia. Cancer Biochem Biophys 1987 Sep;9(3):271-9.
2.Moquin C, Guyot M. Grossularine, a novel indole derivative from the marine tunicate, dendrodoa grossularia. Tetrahedron Letters 1984;25(44):5047-5048.
3.Moquin-Pattey C, Guyot M. Grossularine-1 and grossularine-2, cytotoxic α-carbolines from the tunicate. Dendrodoa grossularia. Tetrahedron 1989;45(11):3445-3450.
4.Kaczmarek L, Nantka-Namirski P. Cancerostatics. IV. On the synthesis of some noval 1-Azacarbazole derivatives as antineoplastic agents. Pol J Pharmacol Pharm 1981 Jan-Feb;33(1):121-7.
5.Semenov AA, Tolstikhina VV. Pyrido[2,3-b]indoles (α-carbolines) (review). Chemistry of Heterocyclic Compounds 1984;20(4): 345-356.
6.Peczynska-Czoch W, Pognan F, Kaczmarek L, Boratynski J. Synthesis and structure-activity relationship of methyl-substituted indolo[2,3-b]quinolines: novel cytotoxic, DNA topoisomerase II inhibitors. J Med Chem 1994 Oct 14;37(21):3503-10.
7.Jung-Sik K, Shin-ya K, Furihata K, Hayakawa Y, Seto H. Structure
of mescengricin, a novel neuronal cell protecting substance produced by Streptomyces griseoflavus. Tetrahedron Letters 1997;38(19):3431-3434.
8.Tseng LS. Synthesis and anticancer activity of 3,9-substituted-α- carboline derivatives.中國醫藥大學, 藥物化學研究所碩士論文 2011.
9.Hartwell LH, Culotti J, Pringle JR, Reid BJ. Genetic control of the cell division cycle in yeast. Science. 1974 Jan 11;183(4120):46-51.
10.Murray AW, Kirschner MW. Dominoes and clocks: the union of two views of the cell cycle. Science 1989 Nov 3;246(4930):614-21.
11.Hunter T, Pines J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 1994 Nov 18;79(4):573-82.
12.Lee CC, Masuda C, Yamamoto S, Wanibuchi H, Ikemoto S, Sugimura K, Nakatani T, Wada S, Kishimoto T, Fukushima S. Assessment of cell cycle-related elements p53, p21WAF1/Cip1, cyclin D1 and PCNA in a mixed transitional cell carcinoma and adenocarcinoma of the renal pelvis: a case report.Jpn J Clin Oncol 1998 Mar;28(3):227-32.
13.Schafer KA. The cell cycle: a review. Vet Pathol 1998Nov;35(6):461-78.
14.Sandal T. Molecular aspects of the mammalian cell cycle and cancer. Oncologist 2002;7(1):73-81.
15.Cook SJ, Balmanno K, Garner A, Millar T, Taverner C, Todd D. Regulation of cell cycle re-entry by growth, survival and stress signalling. Biochem Soc Trans 2000 Feb;28(2):233-40.
16.Hung DT, Jamison TF, Schreiber SL. Understanding and controlling the cell cycle with natural products. Chem Biol 1996 Aug;3(8):623-39.
17.Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed. Cell 1983 Jun;33(2):389-396.
18.Johnson DG, Walker CL. Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 1999;39:295-312.
19.Eastman A. Cell cycle checkpoints and their impact on anticancer therapeutic strategies. J Cell Biochem 2004 Feb 1;91(2):223-31.
20.Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 1997;13:261-91.
21.Colette D, Henry K. Cell-cycle control and cortical development. Nat Rev Neurosci 2007;8(6):438-450.
22.Eleftherios D. Clinical applications of the p53 tumor suppressor gene. Clinica Chimica Acta 1995;237(1–2):79-90.
23.Kamesaki H. Mechanisms involved in chemotherapy-induced apoptosis and their implications in. Int J Hematol1998 Jul;68(1):29-43.
24.Fraser A, Evan G. A license to kill. Cell 1996 Jun14;85(6):781-784.
25.Van Cruchten S, Van Den Broeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol 2002 Aug;31(4):214-23.
26.Okada H, Mak TW. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 2004 Aug;4(8):592-603.
27.Brown JM, Attardi LD. The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 2005 Mar;5(3):231-237.
28.Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 2005 Nov;5(11): 876-885.
29.Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998 Aug 28;281(5381):1305-1308
30.French LE, Tschopp J. Fas-mediated cell death in toxic epidermal necrolysis and graft-versus-host. Schweiz Med Wochenschr 2000 Nov 4;130(44):1656-61.
31.Wajant H. The Fas signaling pathway: more than a paradigm. Science 2002 May 31;296(5573):1635-1636.
32.Degterev A, Yuan J. Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 2008 May;9(5):378-390.
33.Wang X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001 Nov 15;15(22):2922-2933.
34.Penninger JM, Kroemer G. Mitochondria and apoptosis. Science 1998 Aug 28;281(5381):1309-1312.
35.Adams JM, Cory S.The Bcl-2 protein family: arbiters of cell survival. Science 1998 Aug 28;281(5381):1322-1326.
36.Penninger JM, Kroemer G. Mitochondria, AIF and caspases--rivaling for cell death execution. Nat Cell Biol 2003 Feb;5(2):97-99.
37.Hengartner MO. The biochemistry of apoptosis. Nature 2000 Oct 12;407(6805):770-776.
38.Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 2002 Mar;9(3):459-470.
39.Gupta S, Agrawal A, Agrawal S, Su H, Gollapudi S. A paradox of immunodeficiency and inflammation in human aging: lessons learned. Immun Ageing 2006 May 19;3:5.
40.Radhakrishnan K, Edwards JS, Lidke DS, Jovin TM, Wilson BS, Oliver JM. Sensitivity analysis predicts that the ERK-pMEK interaction regulates ERK nuclear. IET Syst Biol 2009 Sep;3(5):329-41.
41.Ben-Hamo R, Efroni S. Gene expression and network-based analysis reveals a novel role for hsa-miR-9 and. Genome Med 2011 Nov 28;3(11):77.
42.Parra E. Inhibition of JNK-1 by small interfering RNA induces apoptotic signaling in PC-3 prostate cancer cells. Int J Mol Med 2012 Jul 5.
43.Marti Obiol R, Garces Albir M, Lopez Mozos F, Ortega Serrano J. Surgical treatment of gastrointestinal stromal tumours. Analysis of our experience. Cir Esp 2012 Jul 3.
44.Cantarini R, Covotta F, Aucello A, Montalto G, Procacciante F, Marcheggiani A, Covotta A. Surgical treatment of isolated lung and adrenal metastasis from colorectal. Ann Ital Chir 2012 Jul-Aug;83(4):337-42.
45.Con SA, Kishimoto G, Con-Chin GR, Con-Wong R. Advances in surgical endoscopy: initial experience in endoscopic colonic. Rev Gastroenterol Peru 2012 Jan;32(1):79-83.
46.Kang KJ, Kim DU, Kim BJ, Kim YH, Rhee PL, Kim JJ, Rhee JC, Chang DK. Endoscopy-based decision is sufficient for predicting completeness in lateral. Digestion 2012;85(1):33-39.
47.Nukatsuka M, Saito H, Sakamoto K, Nakagawa F, Uchida J, Kobunai T, Shiraishi K, Takechi T. Efficacy of Combination Chemotherapy Using Oral Fluoropyrimidine S-1 with Oxaliplatin (SOX) against Colorectal Cancer In Vivo. Anticancer Res 2012 Jul;32(7):2807-12.
48.Rick FG, Buchholz S, Schally AV, Szalontay L, Krishan A, Datz C, Stadlmayr A, Aigner E, Perez R, Seitz S, Block NL, Hohla F. Combination of gastrin-releasing peptide antagonist with cytotoxic agents. Cell Cycle 2012 Jul 1;11(13).
49.Shih T, Lindley C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther 2006 Nov;28(11):1779-802.
50.Gotink KJ, Verheul HM. Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 2010 Mar;13(1):1-14.
51.Cook KM, Figg WD. Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin 2010 Jul-Aug;60(4):222-43.
52.Taylor A, Powell ME. Intensity-modulated radiotherapy--what is it? Cancer Imaging 2004 Mar 26;4(2):68-73.
53.Gaspar LE, Ding M. A review of intensity-modulated radiation therapy. Curr Oncol Rep 2008 Jul;10(4):294-9.
54.Veldeman L, Madani I, Hulstaert F, De Meerleer G, Mareel M, De Neve W. Evidence behind use of intensity-modulated radiotherapy: a systematic review of comparative clinical studies. Lancet Oncol 2008 Apr;9(4):367-75.
55.Tsai JY, Hung CM, Bai ST, Huang CH, Chen WC, Chung JG, Kuo SC, Way TD, Huang LJ. Induction of apoptosis by HAC-Y6, a novel microtubule inhibitor, through activation of the death receptor 4 signaling pathway in human hepatocellular carcinoma cells. Oncol Rep 2010 Nov;24(5):1169-1178.
56.Tsai JY, Lin YC, Hsu MH, Kuo SC, Huang LJ. Synthesis and cytotoxicity of 1,6,8,9-substituted alpha-carboline derivatives. Kaohsiung J Med Sci 2010 Nov;26(11):593-602.
57.Tsai JY. Synthesis and anticancer activity of 3,6-substituted-9- arylmethyl-α-carboline derivatives. 中國醫藥大學藥學院, 藥物化學研究所博士論文 2010.
58.Sidoryk K, Kacznarek L, Szczepek W, Wietrzyk J, Switalska M, Peczyilska-Czoch W. New amino acid derivatives of 6H-indolo[2,3-b]quinolines. Polish journal of chemistry2008;82(11) : 2095-2105
59.Lopez-Mendez C, Bermudez-Fajardo A, Ioannides C, Oviedo-Orta E. Effect of 2-amino-9H-pyrido 2,3-b indole (AalphaC), a carcinogenic heterocyclic amine present in food, on atherosclerotic plaque development in apoE deficient mice. Toxicol Lett 2009 Mar 10;185(2):73-8.
60.Sugimura T. Nutrition and dietary carcinogens. Carcinogenesis 2000 Mar;21(3):387-95.
61.Svorad S. Indole derivatives as neuroprotectants. Life Sciences
1999;65(18–19):1943-1950.
62.El Sayed I, Van der Veken P, Steert K, Dhooghe L, Hostyn S, Van Baelen G, Lemiere G, Maes BU, Cos P, Maes L, Joossens J, Haemers A, Pieters L, Augustyns K. Synthesis and antiplasmodial activity of aminoalkylamino-substituted neocryptolepine derivatives. J Med Chem 2009 May 14;52(9):2979-2988.
63.Chen YL, Hung HM, Lu CM, Li KC, Tzeng CC. Synthesis and anticancer evaluation of certain indolo[2,3-b]quinoline derivatives. Bioorganic Medicinal Chemistry 2004;12(24):6539-6546.
64.Frank PD, Raviindra NG, Laura CM. Carbapenem antibiotics, compositions containing such compounds and methods of use. 1996 July 2;US 005532261A.
65.Aubriot S, Nicolle E, Lattier M, Morel C, Cao W, Daniel KW, Collins S, Leclerc G, Faure P. New series of aryloxypropanol amines with both human β3-adrenoceptor agonistic activity and free radical scavenging properties . Bioorg Med Chem Lett 2002;12(2), 209-212.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊