[1] G. L. Patrick, An Introduction to medicinal chemistry, fourth ed., Oxford University Press Inc. New York, 2009.
[2] 謝明杰, Phenylquinolone類緣化合物之合成及其抗血小板活性 中國醫藥學院藥物化學研究所博士論文, 1997.[3] F.A. Steldt, K.K. Chen, The alkaloids of lunasia amara. J. Am. Pharm. Assoc. 32 (1943) 107-111
[4] S. Goodwin, A.F. Smith, A.A. Velasquez, E.C. Horning, Alkaloids of lunasia amara Blanco. Isolation studies. J. Am. Chem. Soc. 81 (1959) 6209-6213.
[5] R. Johnstone, J.R. Price, A.R. Todd, Alkaloids of the australian rutaceae: lunasia quercifolia. I. 7-Methoxy-1-methyl-2-phenyl-4-quinolone. Aust. J. Chem. 11 (1958) 562-574.
[6] H.C. Beyerman, R.W. Rooda, Alkaloids of Lunasia Amara-structure and synthesis of lunasia. I. Proceedings of the koninklijke nederlandse akademie van wetenschappen, series B: Physical Sci. 63 (1960) 427-431.
[7] O.O. Orazi, R.A. Corral, Plant studies. VIII. Isolation of tertiary bases from balfourodendron riedelianum. Anales de la Asociacion Quimica Argentina. 51 (1963) 174-179.
[8] F. Tillequin, M. Koch, T. Sevenet, Alkaloids from flindersia fournieri stem barks. Planta Medica 39 (1980) 383-387.
[9] V. I. Akhmedzhanova, I. A. Bessonova, S. Y. Yunusov, Alkaloids of haplophyllum leptomerum. I. Structure of leptomerine. Khimiya Prirodnykh Soedinenii 1 (1986) 84-86.
[10] A.R.P. Ambrozin, P.C. Vieira, J.B. Fernandes, M.F. das G. Fernandes da Silva, S. de Albuquerque, New pyranoflavones and trypanosomicidal activity of substances isolated from conchocarpus heterophyllus. Quimica Nova. 31 (2008) 740-743.
[11] A.P. Terezan, R.A. Rossi, R.N. A. Almeida, T.G. Freitas, J.B. Fernandes, M.F.das G. Fernandes da Silva, P.C. Vieira, O.C. Bueno, F.C. Pagnocca, J.R. Pirani, Activities of extracts and compounds from spiranthera odoratissima St. Hill. (rutaceae) on leaf-cutting ants and their symbiotic fungus. J. Brazil. Chem. Soci. 21 (2010) 882-886.
[12] N.K. Hart, S.R. Johns, J.A. Lamberton, J.R. Price, Alkaloids of the australian rutaceae: Lunasia quercifolia. IV. Identification of a minor constituent as 5-hydroxy-1-methyl-2-phenyl-4-quinolone and the preparation of an angular isomer of (-)-lunine. Aust. J. Chem. 21 (1968) 1389-1391.
[13] H.R. Arthur, H.T. Cheung, An examination of the Rutaceae of Hong Kong. VI. Graveoline a new alkaloid from ruta graveolens. Aust. J. Chem. 13 (1960) 510-513.
[14] A.Z. Gulubov, II.Z. Bozhkova, T.O. Sunguryan, Composition of Bulgarian medical plant Ruta graveolens. I. Alkaloid composition of ruta graveolens from bulgaria. Nauchni Trudove na Visshiya Pedagogicheski Institut, Plovdiv, Matematika, Fizika, Khimiya, Biologiya. 8 (1970) 125-128.
[15] D.M. Razakova, I.A. Bessonova, S.Yu. Yunusov, Alkaloids of haplophyllum dubium. Khimiya Prirodnykh Soedinenii. 6 (1979) 810-812.
[16] V.I. Akhmedzhanova, I.A. Bessonova, S.Y. Yunusov, Alkaloids of haplophyllum foliosum. Khimiya Prirodnykh Soedinenii. 6 (1980) 803-805.
[17] A. Ulubelen, H. Guner, M. Cetindag, Alkaloids and coumarins from the roots of ruta chalepensis var. latifolia. Planta Medica. 54 (1988) 551-552.
[18] K. El Sayed, M.S. Al-Said, F.S. El-Feraly, S.A. Ross, New Quinoline Alkaloids from ruta chalepensis. J. Nat. Prod. 63 (2000) 995-997.
[19] A.L. Hale, K.M. Meepagala, A. Oliva, G. Aliotta, S.O. Duke, Phytotoxins from the Leaves of ruta graveolens. J. Agricultural and Food Chem. 52 (2004), 3345-3349.
[20] A.M. Emam, E.S. Swelam, N.Y. Megally, Furocoumarin and quinolone alkaloid with larvicidal and antifeedant activities isolated from ruta chalepensis leaves. J. Nat. Prod. (Gorakhpur, India) 2 (2009) 10-22.
[21] Ha-Huy-Ke, M. Luckner, J. Reisch, 1-methyl-2-phenyl-3,6-dimethoxy- 4-quinolone, a new alkaloid from orixa japonica. Phytochem. (Elsevier) 9 (1970) 2199-2208.
[22] S. Funayama, R. Tanaka, Y. Kumekawa, T. Noshita, T. Mori, T. Kashiwagura, K.Murata, Rat small intestine muscle relaxation alkaloids from orixa japonica leaves. Bio. & Pharm. Bull. 24 (2001) 100-102.
[23] D.M. Razzakova, I.A. Bessonova, S.Y. Yunusov, Structure of folimidine. Khimiya Prirodnykh Soedinenii. 6(1972) 755-759.
[24] A. Ulubelen, B. Terem, E. Tuzlaci, K.F. Cheng, Y.C. Kong, Alkaloids and coumarins from ruta chalepensis. Phytochem. 25 (1986) 2692-2693.
[25] B.A. Barros-Filho, F.M. Nunes, M. da C.F. de Oliveira, M. Andrade- Neto, M.C. de Mattos, F.G. Barbosa, J. Mafezoli, Pirani, R. Jose, Secondary metabolites from esenbeckia almawillia kaastra (rutaceae). Quimica Nova. 30 (2007) 1589-1591.
[26] T.S. Wu, Alkaloids and coumarins of skimmia reevesiana. Phytochem. 26 (1987) 873-875.
[27] F.M. Oliveira, A.E.G. Santana, L.M. Conserva, J.G.S. Maia, G.M.P. Guilhon, Alkaloids and coumarins from esenbeckia species. Phytochem. 41 (1996) 647-649.
[28] B.A. Barros-Filho, F.M. Nunes, M. da C.F. de Oliveira, M. Andrade- Neto, M.C. de Mattos, F.G. Barbosa, J. Mafezoli, J.R. Pirani, Secondary metabolites from esenbeckia almawillia kaastra (rutaceae). Quimica Nova 30 (2007) 1589-1591.
[29] S. Funayama, T. Noshita, T. Mori, T. Kashiwagura, K. Murata, Quinoline alkaloids from orixa japonica (johzan)-isolation of an important biosynthetic intermediate. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 41 (1999) 451?{456.
[30] A.E.M. Khaleel, 2-Phenyl-4-quinolinone alkaloids from casimiroa edulis llave et lex (rutaceae). Monatshefte fuer Chemie 133 (2002) 183-187.
[31] A.S. Awaad, D.J. Maitland, S.M. Moneir, New antihypertensive alkaloids from casimiroa edulis fruits. Egyptian J. Biomed. Sci. 21 (2006) 14-22.
[32] Subehan; N. Takahashi, S. Kadota, Y. Tezuka, Cytochrome P450 2D6 inhibitory constituents of lunasia amara. Phytochem. Lett. 4 (2011) 30-33.
[33] S.C. Kuo, H.Z. Lee, J.P. Juang, Y.T. Lin, T.S. Wu, J.J. Chang, D. Lednicer, K.D. Pad, C.M. Lin, E. Hamel, K.H. Lee, Synthesis and cytotoxicity of 1,6,7,8-substituted-2-(4′-substituted phenyl)-4-quinolones and related compounds: identification as antimitotic agents interacting with tubulin, J. Med. Chem. 36 (1993) 1146-1156.
[34] Y.Y. Lai, L.J. Huang, K.H. Lee, Z. Xiao, K.F. Bastow, T. Yamori, S.C. Kuo, Synthesis and biological relationships of 3'',6-substituted 2-phenyl- 4-quinolone-3-carboxylic acid derivatives as antimitotic agents, Bioorg. Med. Chem. 13 (2005) 265-275.
[35] L. Li, H.K. Wang, S.C. Kuo, T.S. Wu, D. Lednicer, C.M. Lin, E. Hamel, K.H. Lee, Antitumor agents. 150. 2′,3′,4′,5′,5,6,7-Substituted 2-phenyl-4- quinolones and related compounds: their synthesis, cytotoxicity, and inhibition of tubulin polymerization, J. Med. Chem. 37 (1994) 1126-1135.
[36] Y. Xia, Z.Y. Yang, P. Xia, K.F. Bastow, Y. Nakanishi, P. Nampoothiri, E. Hamel, A. Brossi,K.H. Lee, Antitumor agents. Part 226: synthesis and cytotoxicity of 2-phenyl-4-quinolone acetic acids and their esters, Bioorg. Med. Chem. Lett. 13 (2003) 2891-2893.
[37] Y. Li, H. Fang, W. Xu, Recent advance in the research of flavonoids as anticancer agents. Mini. Rev. Med. Chem. 7 (2007) 663-678.
[38] K.H. Lee, K. Tagahara, H. Suzuki, R.Y. Wu, M. Haruna, I.H. Hall, H.C. Huang, K. Ito, T. Lida, J. S. Lai, Antitumor Agents 49: Tricin, kaempferol-3- O-P-D-glucopyranoside and (+)-nortrachelogenin, antileukemic principles from mikstoremia indica. J. Nat. Prod. 44 (1981) 530-535.
[39] M.T. Hung, A.W. Wood, H.L. Newmark, J.M. Snyer, H. Yagi, Jerina, A.H. Conney, Inhibition of the mutagenicity of bay-region diol-epoxides of polycyclic aromatic hydrocarbons by phenolic plant flavonoids. Carcinogenesis 4 (1983) 1631-1637.
[40] L.W. Wattenberg , J.L. Leong, Inhibition of the carcinogenic action of 7,12-dimethylbenz[a]anthracene by beta-naphthoflavone. Prod. 128 (1981) 940-943.
[41] L. Li, H.K. Wang, S.C. Kuo, T.S. Wu, A. Mauger, C.M. Lin, E. Hamel, K.H. Lee, Antitumor agents. 155. Synthesis and biological evaluation of 3′,6,7-substituted 2-phenyl-4-quinolones as antimicrotubule agents, J. Med. Chem. 37 (1994) 3400-3407.
[42] Y.H. Chang, M.H. Hsu, S.H. Wang, L.J. Huang, K. Qian, S.L. Morris- Natschke, E. Hamel, S.C. Kuo, K.H. Lee, Design and synthesis of 2-(3- benzo[b]thienyl)-6,7-methylenedioxyquinolin-4-one analogs as potent antitumor agents that inhibit tubulin assembly, J. Med. Chem. 52 (2009) 4883-4891.
[43] L.C. Chou, M.T. Tsai, M.H. Hsu, S.H. Wang, T.D. Way, C.H. Huang, H.Y. Lin, K. Qian, Y. Dong, K.H. Lee, L.J. Huang, S.C. Kuo, Design, synthesis, and preclinical evaluation of new 5,6-(or 6,7-)disubstituted-2- (fluorophenyl)quinolin-4-one derivatives as potent antitumor agents, J. Med. Chem. 53 (2010) 8047-8058.
[44] Y. Xia, Z.Y. Yang, P. Xia, K.F. Bastow, Y. Tachibana, S.C. Kuo, E. Hamel, T. Hackl, K.H. Lee, Antitumor agents. 181. Synthesis and biological evaluation of 6,7,2'',3'',4''-substituted-1,2,3,4-tetrahydro-2- phenyl-4-quinolones as a new class of antimitotic antitumor agents, J. Med. Chem. 41 (1998) 1155-1162.
[45] M.J. Hour, L.J. Huang, S.C. Kuo, Y. Xia, K. Bastow, Y. Nakanishi, E. Hamel, K.H. Lee, 6-Alkylamino- and 2,3-dihydro-3''-methoxy-2- phenyl-4-quinazolinones and related compounds: Their synthesis, cytotoxicity, and inhibition of tubulin polymerization, J. Med. Chem. 43 (2000) 4479-4487.
[46] Y. Xia, Z.Y. Yang, M.J. Hour, S.C. Kuo, P. Xia, K.F. Bastow, Y. Nakanishi, P. Namrpoothiri, T. Hackl, E. Hamel, H.K. Lee, Antitumor agents. Part 204: Synthesis and biological evaluation of substituted 2-arylquinazolinones, Bioorg. Med. Chem. 11 (2001) 1193-1196.
[47] M. Hadjeri, E.L. Peiller, C. Beney, N. Deka, M.A. Lawson, C. Dumontet, A. Boumendjel, Antimitotic activity of 5-hydroxy-7-methoxy-2-phenyl- 4-quinolones, J. Med. Chem. 47 (2004) 4964-4970.
[48] L.C. Chou, C.T. Chen, J.C. Lee, T.D. Way, C.H. Huang, S.M. Huang, C.M. Teng, T. Yamori, T.S. Wu, C.M. Sun, D.S. Chien, K. Qian, S.L. Morris-Natschke, E. Hamel, K.H. Lee, L.J. Huang, S.C. Kuo, Synthesis and preclinical evaluations of 2-(2-fluorophenyl)-6,7-methylene- dioxyquinolin-4-one monosodium phosphate (CHM-1-P-Na) as a potent antitumor agent, J. Med. Chem. 53 (2010) 1616-1626.
[49] K. Chen, S.C. Kuo, M.C. Hsieh, A. Mauger, C.M. Lin, E. Hamel, K.H. Lee, Antitumor agents 174. 2'',3'',4'',5,6,7-Substituted 2-phenyl-1,8- naphthyridin-4-ones: Their synthesis, cytotoxicity, and inhibition of tubulin polymerization, J. Med. Chem. 40 (1997) 2266-2275.
[50] K. Chen, S.C. Kuo, M.C. Hsieh, A. Mauger, C.M. Lin, E. Hamel, K.H. Lee, Antitumor agents. 178. Synthesis and biological evaluation of substituted 2-aryl-1,8-naphthyridin-4(1H)-ones as antitumor agents that inhibit tubulin polymerization, J. Med. Chem. 40 (1997) 3049-3056.
[51] S.X. Zhang, K.F. Bastow, Y. Tachibana, S.C. Kuo, E. Hamel, A. Mauger, V.L. Narayanan, K.H. Lee, Antitumor agents. 196. Substituted 2-thienyl- 1,8-naphthyridin-4-ones: Their synthesis, cytotoxicity, and inhibition of tubulin polymerization, J. Med. Chem. 42 (1999) 4081-4087.
[52] S.B. Bak, D. Christensen, W.B. Dixon, L. Hansen-Nygaard, J. Rastrup- Andersen, M. Schottlander, The complete structure of furan. J. mol. spectrosc. 9 (1962) 124.
[53] W.R. Harshbarger, S.H. Bauer, An electron diffraction study of the structure of thiophene, 2-chlorothiophene and 2-bromothiophene. Acta crystallographica. Section B 26 (1970) 1010.
[54] R.D. Brown, F.R. Burden, P.D. Godfrey, The microwave spectrum of selenophene , J. mol. spectrosc. 25 (1968) 415.
[55] J.A. Elvidge, Ring currents in furan, thiophen, and pyrrole and the aromaticities of these compounds, Chem. Commun. (1965) 160
[56] B. Grzelakowska-Sztabert, Cell cycle checkpoints--molecular background. Folia Morphologica (Warszawa) 63 (2004) 1-3.
[57] G. Brown, P.J. Hughes, R.H. Michell, Cell differentiation and proliferation--simultaneous but independent? Exp. Cell Res. 291 (2003) 282-288.
[58] J.R. Jackson, D.R. Patrick, M.M. Dar, P.S. Huang, Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat. Rev. Cancer 7 (2007) 107-117.
[59] T. Hunter, J. Pines, Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 79 (1994) 573-582.
[60] D.O. Morgan, Principles of CDK regulation. Nature 374 (1995) 131-134.
[61] C. Swanton, Cell-cycle targeted therapies. Lancet. Oncology 5 (2004) 27-36.
[62] N. Kong, N. Fotouhi, P.M. Wovkulich, J. Roberts, Cell cycle inhibitors for the treatment of cancer. Drugs Fut 28 (2003) 881-896
[63] D. Hanahan, A. Weinberg R, The hallmarks of cancer. Cell 100 (2000) 57-70.
[64] M. Weller, K. Frei, P. Groscurth, P.H. Krammer, Y. Yonekawa, A. Fontana, Anti-Fas/APO-1 antibody-mediated apoptosis of cultured human glioma cells. Induction and147 modulation of sensitivity by cytokines. J. Clin. Invest. 94 (1994) 954-964.
[65] S. Nagata, Apoptosis by death factor. Cell 88 (1997)355-365.
[66] I. Budihardjo, H. Oliver, M. Lutter, X. Luo, X. Wang, Biochemical pathways of caspase activation during apoptosis. Annu.l Rev. Cell & Develop. Biol. 15 (1999) 269-290.
[67] M. MacFarlane, A.C. Williams, Apoptosis and disease: a life or death decision. EMBO reports 5 (2004) 674-678
[68] M.T. Tsai, Synthesis and anti-cancer activity of 5,6,7-substituted 2-fluorophenyl-4-quinolone derivatives, 中國醫藥大學藥學院藥物化學研究所碩士論文, 2009.
[69] H. Kagawa, A. Shigematsu, S. Ohta, Y. Harigaya, Preparative monohydroxyflavanone syntheses and a protocol for gas chromatography-mass spectrometry analysis of monohydroxyflavanones, Chem. Pharm. Bull. 53 (2005) 547–554.
[70] R.J. Robbins, D.M. Laman, D.E. Falvey, Substituent effects on the lifetimes and reactivities of arylnitrenium ions studied by laser flash photolysis and photothermal beam deflection, J. Am. Chem. Soc. 118 (1996) 8127–8135.
[71] S.K. Srivastava, A. Jha, S.K. Agarwal, R. Mukherjee, A.C. Burman, Synthesis and structure-activity relationships of potent antitumor active quinoline and naphthyridine derivatives. Anticancer Agents Med. Chem. 7 (2007) 685–709.
[72] M.H. Chen, Synthesis and cytotoxicity of 6-alkylamion-2-substituted phenyl-4-quinolone derivatives, 中國醫藥大學藥學院藥物化學研究所碩士論文, 2010.
[73] S.C. Kuo, C.M. Teng, K.H. Lee, L.J. Huang, L.C. Chou, C.S. Chang, C.M. Sun, T.S. Wu, S.L. Pan, T.D. Way, J.C. Lee, J.G. Chung, J.S. Yang, C.T. Chen, C.C. Huang, S.M. Huang, US 2010/0168064 A1.
[74] H. Gilman, A. David Shirley, Metalation of thiophene by n-butyllithium, J. Am. Chem. Soc. 71 (1949) 1870–1871.
[75] S. Tsuboi, S. Mimura, S.I. Ono, K. Watanabe, A. Takeda, Oxidation of 2,4-alkadienoic esters with selenium dioxide: a new synthesis of furans and selenophenes, Bull.Chem. Jpn. 60 (1987) 1807?{1812.
[76] L. Wen, S.C. Rasmussen, Synthesis and structural characterization of 2,5-dihalo-3,4-dinitrothiophenes, J. Chem. Crystal. 37 (2007) 387-398
[77] P. Franchetti, L. Cappellacci, G.A. Sheikha, H.N. Jayaram, V.V. Gurudutt, T. Sint, B.P. Schneider, W.D. Jones, B.M. Goldstein, G. Perra, A. De Montis, A.G. Loi, P. La Colla, M. Grifantini, Synthesis, structure, and antiproliferative activity of selenophenfurin, an inosine 5''- monophosphate dehydrogenase inhibitor analogue of selenazofurin, J. Med. Chem. 40 (1997) 1731–1737.
[78] G. Musumarra, D.F. Condorelli, A.S. Costa, M. Fichera, A multivariate insight into the in vitro antitumour screen database of the national cancer institute: classification of compounds, similarities among cell lines and the influence of molecular targets, J. Comput. Aided. Mol. Des. 15 (2001) 219–34.
[79] M. Cuendet, J. M. Pezzuto, Antitumor activity of bruceantin: an old drug with new promise. J. Nat. Prod. 67 (2004) 269?{72.
[80] H. Holcombe, I. Mellman, C. A. Jr Janeway, K. Bottomly, B. N. Dittel, The immunosuppressive agent 15-deoxyspergualin functions by inhibiting cell cycle progression and cytokine production following naive T cell activation. J. Immunol. 169 (2002) 4982-4989.
[81] M. Schmidt, H. Bastians, Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. Drug Resist. Updat. 10 (2007) 162-181
[82] M.H. Hsu, S.C. Kuo, C.J. Chen, J.G. Chung, Y.Y. Lai, L.J. Huang, 1-(3,4-Dimethoxyphenyl)-3,5-dodecenedione (I6) induces G1 arrest and apoptosis in human promyelocytic leukemia HL-60 cells, Leuk. Res. 29 (2005) 1399-1406.
[83] M.H. Hsu, C.J. Chen, S.C. Kuo, J.G. Chung, Y.Y. Lai, C.M. Teng, S.L. Pan, L.J. Huang, YJC-1 induces mitotic phase arrest in A549 cells, Eur. J. Pharmacol. 559 (2007) 14-20.
[84] E. Hamel, Evaluation of antimitotic agents by quantitative comparisons of their effects on the polymerization of purified tubulin. Cell Biochem. Biophys. 38 (2003) 1-22.
[85] P. Verdier-Pinard, J.Y. Lai, H.D. Yoo, J. Yu, B. Marquez, D.G. Nagle, M. Nambu, J.D. White, J.R. Falck, W.H. Gerwick, B.W. Day, E. Hamel, Structure-activity analysis of the interaction of curancin A, the potent colchicines site antimitotic agents, with tubulin and effects of analogs on the growth of MCF-7 breast cnacer cells. Mol. Pharmacol. 53 (1998) 62-76.
[86] C.J. Chen, M.H. Hsu, L.J. Huang, T. Yamori, J.G. Chung, F.Y. Lee, C.M. Teng, S.C. Kuo, Anticancer mechanisms of YC-1 in human non-small- cell lung cancer cell line, NCI-H226, Biochem. Pharmacol. 75 (2008) 360-368.