跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 19:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊詩盈
研究生(外文):Shih-Ying Yang
論文名稱:多酚保健食品與藥物交互作用及機轉探討
論文名稱(外文):Polyphenol Dietary Supplements-Drug Interactions and Mechanism
指導教授:李珮端李珮端引用關係
學位類別:博士
校院名稱:中國醫藥大學
系所名稱:藥物化學研究所博士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:188
中文關鍵詞:香椿白藜蘆醇牛奶薊P-醣蛋白多重抗藥性蛋白
外文關鍵詞:Toona sinensisResveratrolMilk thistleP-glycoporteinMultidrug resistance proteins
相關次數:
  • 被引用被引用:0
  • 點閱點閱:630
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近代流行病學研究顯示,蔬果中的多酚對心血管疾病、癌症等慢性病有預防之功效。因此市場上多酚類保健食品應運而生且蔚為風行。保健食品攝入體內後,與藥物一樣,其體內處置與藥物運轉蛋白如P-醣蛋白 (P-gp)、多重抗藥性蛋白 (MRPs) 或代謝酵素等息息相關。因此,併服保健食品可能調控此些蛋白而導致其他西藥動力學的改變,甚而影響療效及安全。因此,慢性病患使用保健食品的利與弊值得關注。本研究探討併服香椿 (TS)、白藜蘆醇 (RDS)、牛奶薊 (MT)、聖約翰草 (SJW) 等保健食品對治療指數狹窄之免疫抑制劑cyclosporin (CsA)、methotrexate (MTX) 動力學之影響及相關機轉。
Cyclosporin (CsA) 為 P-glycoprotein (P-gp) 與 cytochrome 3A4 (CYP3A4) 之受質。本研究以大鼠探討併服 MT、RDS、TS 對 CsA 動力學之影響。結果顯示,併用 MT、RDS、TS 皆顯著降低 CsA 之血藥面積及血峰濃度。機轉研究顯示, TS、RDS 藉由活化 P-gp、CYP3A4,而 MT 藉由活化 P-gp,造成 CsA 生可用率之降低。
MT、RDS、SJW 口服後,其多酚成分於體循環中主要以sulfates/glucuronides 存在,它們在生理 pH 環境下皆為陰離子,為 multidrug resistance proteins (MRPs)、organic anion transporter (OATs)之可能受質。 Methotrexate (MTX) 為 MRPs、OATs 之受質。因此本研究以大鼠探討 MT、RDS、SJW 對 MTX 動力學之影響。結果顯示,併服單劑量 RDS、SJW 皆使 MTX 之血藥面積及平均滯留時間顯著增加,其中以 SJW-MTX 之交互作用最為嚴重,實驗組七隻大鼠中有三隻於第 7-13 天死亡。機轉研究顯示, SJW、RDS 之代謝物藉由抑制外排蛋白 MRP2 ,造成 MTX 生可用率之提高。
綜言之,大鼠併服多酚保健食品時,顯著降低 CsA 之血藥濃度,然而卻顯著提高 MTX 之血藥濃度。因此,對於使用 P-pg 、 CYP3A4 或 MRP2 之慢性病患,多酚保健食品可能影響療效及安全,使用不可不慎。


Recent epidemiologic researches have reported that plant polyphenols play a probable role in the prevention of cardiovascular disease and cancer. Therefore, polyphenol-rich botanical products, claimed to support health are easily purchasable in the market worldwide. Like other xenobiotics, the concentrated dietary supplements are absorbed, metabolized and excreted by human body. The biological fates of dietary supplements are also associated with metabolizing enzymes and drug transporters. Hence, when critical medicines are coadministered with dietary supplements, there is probable toxic interaction between them. This study investigated the effects of Toona sinensis leaves (TS), resveratrol dietary supplements (RDS), milk thistle (MT) and St. John’s wort (SJW) on the pharmacokinetics of cyclosporine (CsA) and methotrexate (MTX) in rats and the underlying mechanism.
CsA, an immunosuppressive agent with narrow therapeutic window, is a substrate of P-glycoprotein (P-gp) and CYP 3A4. Our results showed that coadminstration with TS, MT and RDS significantly decreased the AUC0-t and Cmax of CsA. The mechanism studies indicated that TS and RDS reduced CsA absorption via activating P-gp and CYP3A4, whereas MT lowered CsA absorption mainly through activating P-gp.
MTX, an immunosuppressant with narrow therapeutic window, is a substrate of multiple resistance proteins (MRPs) and organic anion transporters (OATs). Our results showed that coadminstration with RDS and SJW significantly increased the AUC0-t and Cmax of MTX. The mechanism study indicated that RDS and SJW decreased MTX elimination via inhibiting MRP2, More importantly, higher mortality of rats was observed.
In conclusion, coadministration of polyphenol-rich dietary supplements significantly altered the pharmacokinetics of CsA and MTX. We suggest that for the sake of drug safety, the concurrent use of polyphenol-rich dietary supplements with critical medicines which are substrates of P-gp, CYP3A4 and/or MRP2 should be with caution.

目錄……………………………………………………………………I
附圖目錄 ……………………………………………………………IV
附表目錄 ……………………………………………………………VIII
中文摘要 ……………………………………………………………XII
英文摘要 ……………………………………………………………XIV
研究架構 ……………………………………………………………XVI
縮寫表 ……………………………………………………………XVII
第一章 緒論…………………………………………………………1
第二章 總論…………………………………………………………7
第一節 香椿之簡介…………………………………………………7
第二節 白藜蘆醇(Resveratrol)之簡介…………………………10
第三節 牛奶薊(Milk thistle)之簡介……………………………14
第四節 聖約翰草(St John’s wort)之簡介……………………19
第五節 藥物運輸蛋白之簡介………………………………………25
1. 多重藥物抗藥性蛋白之特性………………………………25
2. 有機陰離子運送蛋白之特性………………………………30
3. P-醣蛋白之特性……………………………………………33
第六節 環孢靈(Cyclosporin)之特性……………………………35
第七節 胺甲葉酸(Methotrexate)之特性…………………………38
第三章 實驗材料與方法……………………………………………43
第一節 實驗材料……………………………………………………43
第二節 溶液配製……………………………………………………49
第三節 香椿(TS)分析、長期生化值及對CsA動力學之影響……53
1. 香椿水煎劑指標成分之定量分析…………………………53
2. 大鼠口服香椿水煎劑之代謝動力學………………………54
3. 大鼠口服香椿水煎劑後之生化值檢測……………………59
4. 大鼠併服香椿水煎劑對 CsA 動力學之影響……………60
5. 香椿與CsA 交互作用之機制探討…………………………61
第四節 白藜蘆醇分析及對CsA、MTX動力學之影響…………………67
1. Resveratrol分析方法之建立與確效……………………67
2. 大鼠併服RDS對 CsA 動力學之影響………………………68
3. 大鼠併服RDS對胺甲葉酸 (MTX) 動力學之影響…………69
4. RDS與CsA 交互作用機制探討……………………………70
5. RDS與MTX 交互作用機制探討……………………………72
第五節 Milk thistle對CsA及MTX動力學之影響……………………75
1. 大鼠併服Milk thistle(MT)對 CsA 動力學之影響……75
2. 大鼠併服MT對胺甲葉酸 (MTX) 動力學之影響…………75
3. Millk thistle與CsA 交互作用機制探討………………76
第六節St John’s wort對胺甲葉酸 (MTX) 動力學之影響…………79
1. 大鼠併服St John’s wort (SJW)對胺甲葉酸 (MTX) 動力學之影響…………………………………………………………………………79
2. SJW與MTX 交互作用機制探討………………………………………79
第四章 結果與討論…………………………………………………81
第一節 香椿之代謝動力學及對大鼠生化值之影響…………………81
第二節 白藜蘆醇保健食品 (RDS) 對 CsA、MTX 動力學之影響…87
第三節 牛奶薊保健食品 (MT) 對CsA、MTX動力學之影響…………94
第四節 聖約翰草 (SJW) 對MTX動力學之影響………………………97
第五章 結論………………………………………………………100
參考文獻………………………………………………………………102

1. Beary M, and Wildgust HJ. Chronic disease to top agenda. Cardiorespiratory fitness is an important risk factor. British medical journal. 2011, 22: 342.
2. 廖建彰,Lifestyle and the Risk of Stroke. 臺灣家庭醫學雜誌,2006, 16: 143-154.
3. Chen N, Shaw ZG, Cao WL, Li YM, Zhen NC, Chang JT, and Chen QM. Risk Factors for Stroke. Minghsin Journal. 2007, 33: 47-53.
4. 陳建仁,台灣十大死因的三十年變遷. 健康世界,2006, 241: 6-13.
5. Mennen LI, Sapinho D, de Bree A, Arnault N, Bertrais S, Galan P, and Hercberg S. Comsumption of Food Rich in Flavonoids Is Related to a Decreased Cardiovascular Risk in Apparently Healthy French Women. The Journal of nutrition. 2004, 134: 923-926.
6. Riemersma RA, Rice-Evans CA, Tyrrell RM, Clifford MN, and Lean ME. Tea Flavonoids and cardiovascular health. QJM: monthly journal of the Association of Physicians. 2001, 94: 277-282.
7. Vita JA. Polyphenols and cardiovascular disease: effects on endothelial and platelet function. The American journal of clinical nutrition. 2005, 81:292-297.
8. Manthey JA. Biological properties of flavonoids pertaining to inflammation. Microcirculation. 2000, 7: 29-34.
9. Arts IC, and Hollman PC. Polyphenols and disease risk in epidemiologic studies. The American journal of clinical nutrition. 2005, 81: 317S-325S.
10. Scalbert A, Manach C, Morand C, Rémésy C, and Jiménez L. Dietary polyphenols and the prevention of diseases. Critical reviews in food science and nutrition. 2005, 45: 287-306.
11. Guo W, Kong E, and Meydani M. Dietary polyphenols, inflammation, and cancer. Nutrition and cancer. 2009, 61: 807-10.
12. 國家中醫藥管理局「中華本草」編委會,中華本草(5),上海科學技術出版社,1999, 45-48.
13. 全國中草藥匯編編寫組,全國中草藥匯編(下),人民衛生出版社,1978, 467.
14. 劉忠良,香椿研究慨況,基層中醫藥雜誌,2001, 16: 57-58.
15. 湖北八里湖農場職工醫院科研小組,草藥治療細菌性痢疾-香椿流浸膏治療急性菌痢20例療效觀察,新醫學,1972, 7: 14.
16. 徐敬武,白膺,蔬菜與健康長壽,中國醫藥科技出版社,1989, 227.
17. Chang HC, Hung WC, Hung MS., and Hsu HK. Extract from the leaves of Toona sinensis Roemor exerts potent antiproliferative effect on human lung cancer cells. The American journal of Chinese Medicine. 2002, 30: 307-314.
18. Wang PH. The study of hypoglycermic effects of Toona sinensis aqueous leaf extracts on Alloxan-induced diabetic rats. Master thesis, Kaohsiung Medical University Graduate Institute of Medicine, 2000.
19. Liao JW, Hsu CK, Wang MF, Hsu WM, and Chan YC. Beneficial effect of Toona sinensis Roemor on improving cognitive performance and brain degeneration in senescence-accelerated mice. The British Journal of Nutrition. 2006, 96: 400-407.
20.邢莎莎,陳超,香椿化學成分及藥理作用研究進展,安徽農業科學, 2010, 38: 8978- 8979, 8981.
21. Ramprasath VR, and Jones PJH. Anti-atherogenic effects of resveratrol. European Journal of Clinical Nutrition. 2010, 64: 660-668.
22. Campagna M, and Rivas C. Antiviral activity of resveratrol. Biochemical Society transactions. 2010, 38:50-53.
23. Soares DG, Andreazza AC, and Salvador M. Sequestering ability of butylated hydroxytoluene, propyl gallate, resveratrol, and vitamins C and E against ABTS, DPPH, and hydroxyl free radicals in chemical and biological systems. Journal of agricultural and food chemistry. 2003, 51: 1077-1080.
24. Czapski GA, Cakala M, Kopczuk D, and Strosznajder JB. Effect of poly (ADPfibose) pelymerase inhibitom on oxidative stress evoked hydroxyl radical level and maeromoleeules oxidation in cell free system of rat brain cortex. Neuroscience letters. 2004, 356: 45-48.
25. Mikstacka R, Rimando AM, and Ignatowicz E. Antioxidant effect of trans-resveratrol, pterostilbene, quercetin and their combinations in human erythrocytes in vitro. Plant foods for human nutrition. 2010, 65: 57-63.
26. 陳國良,耿春梅,劉湘永,白藜蘆醇衍生物及類似物的研究進展,藥學進展,2006, 30: 145-150.
27. Holmes-McNary M, and Baldwin AS Jr. Chemopreventive properties of trans-resveratrol are associated with inhibition of activation of the IkappaB kinase. Cancer research. 2000, 60: 3477-3483.
28. Mertens-Talcott SU, and Percival SS. Ellagic acid and quercetininteract synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in humanleukemia cells. Cancer letters. 2005, 218: 141-151.
29. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, and Pezzuto JM. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997, 275: 218-220.
30. Burns J, Yokota T, Ashihara H, Lean ME, and Crozier A. Plant foods and herbal sources of resveratrol. Journal of agricultural and food chemistry. 2002, 50: 3337-3340.
31. Frémont L. Biological effects of resveratrol. Life Science. 2000, 66: 663-673.
32. Kang OH, Jang HJ, Chae HS, Oh YC, Choi JG, Lee YS, Kim JH, Kim YC, Sohn DH, Park H, and Kwon DY. Anti-inflammatory mechanisms of resveratrol in activated HMC-1 cells: pivotal roles of NF-kappaB and MAPK. Pharmacological research: the official journal of the Italian Pharmacological Society. 2009, 59: 330-337.
33. 金順姬,段錠,黃梅,白藜蘆醇和抗壞血酸對預防非典型肺炎方劑I和Ⅵ所致小鼠外周血液淋巴細胞DNA損傷的保護作用.中草藥,2003, 34: 1114-1117.
34. Shukla Y, and Singh R. Resveratrol and cellular mechanisms of cancer prevention. Annals of the New York Academy of Sciences. 2011, 1215: 1-8.
35. 西安植物園中草藥研究組,水飛薊,中草藥通訊,1973, 6: 28-35.
36. 劉新波,水飛薊,黑龍江科技信息,2010, 9: 49.
37. 李慧,潘競鏘,水飛薊素抗肝損傷及治療糖尿病併發症作用的研究,現代食品與藥品雜誌,2007, 17: 18-22.
38. 王宇,賈繼東,水飛薊素的抗肝臟纖維化作用及其機制,中華醫學雜誌,2005, 85: 1219-1221.
39. 徐牡丹,張雙雋,水飛薊油的營養成分及降脂作用的研究,營養學報,1996, 18: 163-167.
40. 康一凡,高建章,趙定麟,高壓氧與水飛薊賓聯合應用對肢體缺血再灌注損傷及其機制,骨與關節損傷雜誌,1995, 10: 98.
41. Huseini HF, Larijani B, Heshmat R, Fakhrzadeh H, Radjabipour B, Toliat T, and Raza M. The efficacy of Silybum marianum (L.) Gaertn. (silymarin) in the treatment of type II diabetes: a randomized, double-blind, placebo-controlled, clinical trial. Phytotherapy research. 2006, 20: 1036-1039.
42. 陳紅,章同華,尉挺,水飛薊賓對培養心肌細胞缺氧缺糖的保護作用,第二軍醫大學學報,1990, 11: 147-149.
43. 睢大. 保肝藥水飛薊素的藥理研究進展. 時珍國藥研究,1993, 4: 41.
44. Elke L P. Properties and medical use of flavonolignans (silymarin) from Silybum marianum. Phytotherapy research. 1996, 10: 25-26.
45. Johann SB, Isolde SB, and Fortunato SL. Biochemistry and phar-macology of silibinin. Book of Abstracts. 212th ACS National Meeting Orlando, FL, 1996, 8: 25-29.
46.http://www.doh.gov.tw/ufile/doc/98%e5%b9%b4%e5%ba%a6%e5%96%ae%e6%96%b9%e8%97%a5%e5%93%81%e5%81%a5%e4%bf%9d%e7%94%b3%e5%a0%b1%e6%8e%92%e8%a1%8c.doc 健保98年單方藥品申報金額排行統計表
47. Greeson JM, Sanford B, and Monti DA. St. John''s wort (Hypericum perforatum): a review of the current pharmacological, toxicological, and clinical literature. Psychopharmacology. 2001, 153: 402-414.
48.Bombardelli E, and Morazzoni P. Hypericum perforatum. Fitoterapia, 1995, 66: 43-68.
49. Reuter HD. St. John''s wort as a herbal antidepressant. European Journal of Herbal Medicine. 1995, 1: 19-24.
50. 江君,郭樹仁,趙君賢,張燕,尹志超,劉平蘭,貫葉金絲桃抗菌作用研究綜述中國醫藥生物技術,2010, 5: 381.
51. Barnes J, Anderson LA, and Phillipson JD. St John''s wort (Hypericum perforatum L.): a review of its chemistry, pharmacology and clinical properties. The Journal of pharmacy and pharmacology. 2001, 53: 583-600.
52. Verotta L, Appendino G, Jakupovic J, and Bombardelli E. Hyperforin analogues from St. John''s wort (Hypericum perforatum). Journal of natural products. 2000, 63: 412-415.
53. Verotta L. Hypericum perforatum, a source of neuroactive lead structures. Current topics in medicinal chemistry. 2003, 3: 187-201.
54. Izzo AA. Herb-drug interactions an overview of the clinical evidence. Fundamental & clinical pharmacology. 2004, 19: 1-16.
55. Singh YN. Potential for interaction of kava and St. John’s wort with drugs. Journal of Ethnopharmacology. 2005, 100: 108-113.
56. Paulke A, Schubert-Zsilavecz M, and Wurglics M. Determination of St. John’s wort flavonoid-metabolites in rats brain through high performance liquid chromatography coupled with fluorescence detection. Journal of chromatography B, 2006, 832: 109-113.
57. Venkataramanan R, Komoroski B, and Strom S. In vitro and in vivo assessment of herb interaction. Life Science. 2006, 78: 2105-2115.
58. Tirona RG, and Bailey DG. Herbal product–drug interactions mediated by induction. British journal of clinical pharmacology. 2006, 61: 677-681.
59. 蔡苾珞、蔡東湖,草藥在身體的吸收,當代醫學,2003, 30: 633-636.
60. Winterstein AP and Storrs CM. Herbal Supplements: Considerations for the Athletic Trainer. Journal of athletic training. 2001, 36: 425-432.
61. Guidance for industry. Botanical drug products. Draft guidance. Food and Drug Administration, Center for Drug Evaluation and Research, 2004.
62. Sun D, Lennernas H, Welage LS, Barnett JL, Landowski CP, Foster D, Fleisher D, Lee KD, and Amidon GL. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tages and correlation with permeability of 26 drugs. Pharmaceutical research. 2002, 19: 1400-1416.
63. Toyoda Y, Hagiya Y, Adachi T, Hoshijima K, Kou MT, and Ishikawa T. MRP class of human ATP binding cassette (ABC) transporters: historical background and new research directions. Xenobiotica. 2008, 38: 833-862.
64. Verschraagen M, Koks CHW, Schellens JHM, and Beijnen JH. P-glycoprotein system as a determinant of drug interactions: The case of digoxin-verapamil. Pharmacological research. 1999, 40: 301-306.
65. Fardel O, Lecureur V, and Guillouzo A. The P-glycoprotein multidrug transporter. General pharmacology. 1996, 27: 1283-1291.
66. Hunter J, Hirst BH. Intestinal secretion of drugs. The role of P-glycoprotein and related drug efflux systems in limiting oral drug absorption. Advanced drug delivery reviews. 1997, 25: 129-157.
67. Watkins PB. The barrier fuction of CYP3A4 and P-glycoprotein in the small bowel. Advanced drug delivery reviews. 1997, 27: 161-170.
68. Johnstone RW, Ruefili AA, and Smyth MJ. Multiple physiological functions for multidrug transporter P-glycoprotein. Trends in biochemical sciences. 2000, 25: 1-6.
69. Choo EF, Leake B, Wandel C, Imamura H, Wood AJ, Wilkinson GR, and Kim RB. Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug metabolism and disposition. 2000, 28: 655-660.
70. Fromm MF. P-glycoprotein : A defence mechanism limiting oral bioavailability and CNS accumulation of drugs. International journal of clinical pharmacology and therapeutics. 2000, 38: 69-74.
71. Usia T, Iwata H, Hiratsuka A, Watabe T, Kadota S, Tezuka Y. Sesquiterpenes and flavonol glycosides from Zingiber aromaticum and their CYP3A4 and CYP2D6 inhibitory activities. Journal of natural products. 2004, 67: 1079-1083.
72. Tran VH, Marks D, Duke RK, Bebawy M, Duke CC, and Roufogalis BD. Modulation of P-glycoprotein-Mediated Anticancer Drug Accumulation, Cytotoxicity, and ATPase Activity by Flavonoid Interactions. Nutrition and cancer. 2011, 63: 435-443.
73. Sheu MT, Liou YB, Kao YH, Lin YK, Ho HO., A quantitative structure-activity relationship for the modulation effects of flavonoids on p-glycoprotein-mediated transport. Chemical & pharmaceutical bulletin (Tokyo). 2010, 58: 1187-1194.
74. Kimura Y, Ito H, Ohnishi R, and Hatano T. Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food and chemical toxicology. 2010, 48: 429-435.
75. Sergent T, Dupont I, Van der Heiden E, Scippo ML, Pussemier L, Larondelle Y, and Schneider YJ., CYP1A1 and CYP3A4 modulation by dietary flavonoids in human intestinal Caco-2 cells. Toxicology letters. 2009, 191: 216-222.
76. Yu CP, Wu PP, Hou YC, Lin SP, Tsai SY, Chen CT, and Chao PD. Quercetin and rutin reduced the bioavailability of cyclosporine from Neoral, an immunosuppressant, through activating P-glycoprotein and CYP 3A4. Journal of agricultural and food chemistry. 2011, 59: 4644-4648.
77. Fang SH, Hou YC, and Chao PD. Pharmacokinetic and pharmacodynamic interactions of morin and cyclosporin. Toxicology and applied pharmacology. 2005, 205: 65-70.
78. Hsiu SL, Hou YC, Wang YH, Tsao CW, Su SF, and Chao PD. Quercetin significantly decreased cyclosporin oral bioavailability in pigs and rats. Life Science. 2002, 72: 227-235.
79. Doller C. Therapeutic drugs. Churchill livingstone. London. P. C 1991, 373-377.
80. Hebert MF. Contributions of hepatic and intestinal metabolism and P- glycoprotein to cyclosporine and tacrolimus oral drug delivery. Advanced drug delivery reviews. 1997, 27: 201-214.
81. Lown KS, Mayo RP, Leichtman AB, Hoiao HL, Turgeon DK, Schmiedlin RP, Brown MB, Guo W, Rossi SJ, Benet LZ, and Watkins PB. Role of intestinal P-glycoprotein in interpatient variation in the oral bioavailability of cyclosporin A. Clinical pharmacology and therapeutics. 1997, 62: 248-260.
82. Fricker G, Drewe J, Huwyler J, Gutmann H, and Beglinger C. Relevance of P-glycoprotein for the enteral absorption of cyclosporin A: in vitro – in vivo correlation. British journal of pharmacology. 1996, 118: 1841-1847.
83. Chladek J, Grim J, Martinkova J, Simkova M, and Vaneckova J. Low-dose methotrexate pharmacokinetics and pharmacodynamics in the therapy of severe psoriasis. Basic & clinical pharmacology & toxicology. 2005, 96: 247-248.
84. Cronstein BN. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacological reviews. 2005, 57: 163-172.
85. Reid T, Yuen A, Catolico M, and Carlson RW. Impact of omeprazole on the plasma clearance of methotrexate. Cancer chemotherapy and pharmacology. 1993, 33: 82-84.
86. Tröger U, Stotzel B, Martens-Lobenhoffer J, Gollnick H, and Meyer FP. Drug points: severe myalgia from an interaction between treatments with pantoprazole and methotrexate. British medical journal. 2002, 324: 1497.
87. Breedveld P, Zelcer N, Pluim D, Sönmezer O, Tibben MM, Beijnen JH, Schinkel AH, van Tellingen O, Borst P, and Schellens JH. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions. Cancer Research. 2004, 64: 5804-5811.
88. Ng KH, Lim BG, and Wong KP. Sulfate conjugating and transport functions of MDCK distal tubular cells. Kidney international. 2003, 63: 976-986.
89. Mizuno N, Niwa T, Yotsumoto Y, and Sugiyama Y. Impact of drug transporter studies on drug discovery and development. Pharmacological reviews. 2003, 55: 425-461.
90. Beringer PM, and Slaughter RL. Transporters and their impact on drug disposition. The Annals of pharmacotherapy. 2005, 39: 1097-1108.
91. Ballatori N, Hammond CL, Cunningham JB, Krance SM, and Marchan R. Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins. Toxicology and Applied Pharmacology. 2005, 204: 238-255.
92. Hsieh TJ, Tsai YH, Liao MC, Du YC, Lien PJ, Sun CC, Chang FR, and Wu YC. Anti-diabetic properties of non-polar Toona sinensis Roem extract prepared by supercritical-CO2 fluid. Food and Chemical Toxicology. 2012, 50: 779-789.
93. 程富勝,胡庭俊,張霞,椿樹活性成分及藥理作用研究與應用,中國動物保健,2004, 1: 42.
94. Yang YC, Hsu HK, Hwang JH, Hong SJ. Enhancement of glucose uptake in 3T3-L1 adipocytes by Toona sinensis leaf extract. Kaohsiung Journal of Medicine Science. 2003, 19: 327-333.
95. Hsu HK, Yang YC, Hwang JH, and Hong SJ. Effects of Toona sinensis leaf extract on lipolysis in differentiated 3T3-L1 adipocytes, Kaohsiung Journal Medicine Science. 2003, 19: 385-390.
96. Hsu PC, Hsu HK, Wang MF, Liao JW, and Chan YC. Effects of Toona sinensis leaf extract on brain oxidant status and aging pathological changes in senescence acceleratea mice, Taiwanese Journal of Agricultural Chemistry and Food Science. 2004, 42: 199-206.
97. Chang HC, Hung WC, Huang MS, and Hsu HK. Extract from the leaves of Toona sinensis roemor exerts potent antiproliferative effect on human lung cancer cells. American Journal of Chinese Medicine. 2002, 30: 307-314.
98. Lin CX, Lee E, Jin MH, Yook J, Quan Z, Ha K, Moon TC, Kim MJ, Kim KJ, Lee SH, and Chang HW. Deoxypodophyllotoxin (DPT) inhibits eosinophil recruitment into the airway and Th2 cytokine expression in an OVA-induced lung inflammation. Planta Medica. 2006, 72: 786-791.
99. 陳叢瑾,黃克瀛,李德良,香椿葉提取物清除DPPH自由基的測定方法.林產化學與工業,2006, 26: 69.
100. Chen HY, Lin YC, and Hsieh CL. Evaluation of antioxidant activity of aqueous extract of some selected nutraceutical herbs. Food Chemistry 2007, 104: 1418-1425.
101. 朱育鳳,周琴妹,陶開春,臭椿葉與香椿葉的比較鑒別及體外抗菌試驗.中藥材,2000, 23:484.
102. 田迪英,楊榮華,香椿的抗菌作用研究,食品工業科技,2002, 23: 21.
103. Li XD. Recent studies on insecticidal activities of limonoids from Meliaceous plants . Insect Science. 1999, 6: 283-288.
104. Docherty JJ, Fu MM, Stiffler BS, Limperos RJ, Pokabla CM, and DeLucia AL. Resveratrol inhibition of herpes simplex virus replication. Antiviral Research. 1999, 43: 135-145.
105. Docherty JJ, Fu MM, Hah JM, Sweet TJ, Faith SA, and Booth T. Effect of resveratrol on herpes simplex virus vaginal infection in the mouse. Antiviral Research. 2005, 67: 155-162.
106. Mikstacka R, Rimando AM, and Ignatowicz E. Antioxidant effect of trans-resveratrol, pterostilbene, quercetin and their combinations in human erythrocytes in vitro. Plant foods for human nutrition. 2010, 65: 57-63.
107. Soares DG, Andreazza AC, and Salvador M. Sequestering ability of butylated hydroxytoluene, propyl gallate, resveratrol, and vitamins C and E against ABTS, DPPH, and hydroxyl free radicals in chemical and biological systems. Journal agriculture and food chemistry. 2003, 51: 1077-1080.
108. Kang OH, Jang HJ, Chae HS, Oh YC, Choi JG, Lee YS, Kim JH, Kim YC, Sohn DH, Park H, and Kwon DY. Anti-inflammatory mechanisms of resveratrol in activated HMC-1 cells: pivotal roles of NF-kappaB and MAPK. Pharmacology Research. 2009, 59: 330-337.
109. Baur JA, and Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Drug Discovery. 2006, 5: 493-506.
110. Das DK, and Maulik N. Resveratrol in cardioprotection: a therapeutic promise of alternative medicine. Molecular Interventions. 2006, 6: 36-47.
111. Petrovski G, Gurusamy N, and Das DK. Resveratrol in cardiovascular health and disease. Annals of the New York Academy of Sciences. 2011, 1215: 22-33.
112. Reagan-Shaw S, Mukhtar H, and Ahmad N. Resveratrol imparts photoprotection of normal cells and enhances the efficacy of radiation therapy in cancer cells. Photochemistry and photobiology. 2008, 84: 415-421.
113. Aziz MH, Afaq F, and Ahmad N. Prevention of ultraviolet-B radiation damage by resveratrol in mouse skin is mediated via modulation in survivin. Photochemistry and photobiology. 2005, 81: 25-31.
114. Gupta SC, Kannappan R, Reuter S, Kim JH, and Aggarwal BB. Chemosensitization of tumors by resveratrol. Annals of the New York Academy of Sciences. 2011, 1215: 150-160.
115. Walle T, Hsieh F, DeLegge MH, Oatis JE, and Jr. Walle UK. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metabolism and Disposition. 2004, 32: 1377-1382.
116. Boocock DJ, Patel KR, Faust GE, Normolle DP, Marczylo TH, Crowell JA, Brenner DE, Booth TD, Gescher A, and Steward WP. Quantitation of trans-resveratrol and detection of its metabolites in human plasma and urine by high performance liquid chromatography. Journal of chromatography B. 2007, 848, 182-187.
117. Almeida L, Vaz-da-Silva M, Falcão A, Soares E, Costa R, Loureiro AI, Fernandes-Lopes C, Rocha JF, Nunes T, Wright L, and Soares-da-Silva P. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Molecular nutrition & food research. 2009, 53: S7-S15.
118. Kubota T, Uemura Y, Kobayashi M, and Taguchi H. Combined effects of resveratrol and paclitaxel on lung cancer cells. Anticancer Research. 2003, 23: 4039-4046.
119. Jazirehi AR, and Bonavida B. Resveratrol modifies the expression of apoptotic regulatory proteins and sensitizes non-Hodgkin''s lymphoma and multiple myeloma cell lines to paclitaxel-induced apoptosis Mol Cancer Therapy. 2004, 3: 71-84.
120. Rezk YA, Balulad SS, Keller RS, and Bennett JA. Use of resveratrol to improve the effectiveness of cisplatin and doxorubicin: study in human gynecologic cancer cell lines and in rodent heart. American journal of obstetrics and gynecology. 2006, 194: 23-26.
121. Rambaldi A, Jacobs BP, Iaquinto G, Gluud C. Milk thistle for alcoholic and/or hepatitis B or C virus liver diseases. The Cochrane database of systematic reviews . 2005, 18:CD003620.
122. Luper S. A review of plants used in the treatment of liver diseases, Part I, Alternative Medicine Review. 1998; 3: 410-421.
123. Wu JW, Lin LC, and Tsai TH. Drug–drug interactions of silymarin on the perspective of pharmacokinetics. Journal of Ethnopharmacology. 2009, 21: 185-193.
124.譚海榮, 吳謙, 潘競鏘,水飛薊賓對抗大鼠酒精性脂肪肝作用及機制,中國臨床藥理與治療學,2004, 9: 803-806.
125. Salmi HA, and Sarna S. Effect of silymarin on chemical, functional, and morphological alterations of the liver. A double-blind controlled study. Scandinavian journal of gastroenterology. 1982, 17: 517-521.
126. 余恩欣,王芳,王強,水飛薊素磷脂醯膽鹼複合物對實驗性肝損傷的保護作用,中國新藥雜誌,2004, 13: 993-995.
126.鮑發應,謝軍,水飛薊賓磷脂複合物聯合干擾素治療乙型肝炎,齊齊哈爾醫學院學報,,2006, 27: 1185-1186.
128. 莊東平,王碩豐,章越凡,水飛薊賓對小鼠腹腔巨噬細胞釋放纖維化因數的影響,藥學實踐雜誌,2006, 24: 20-22.
129. Ferenci P, Dragosics B, Dittrich H, Frank H, Benda L, Lochs H, Meryn S, Base W, and Schneider B. Randomized controlled trial of silymarin treatment in patients with cirrhosis of the liver. Journal of hepatology. 1989, 9: 105-113.
130. Soto C, Recoba R, Barrón H, Alvarez C, and Favari L. Silymarin increases antioxidant enzymes in alloxan-induced diabetes in rat pancreas. Comparative biochemistry and physiology. Toxicology & pharmacology. 2003, 136: 205-212.
131. Soto C, Mena R, Luna J, Cerbón M, Larrieta E, Vital P, Uría E, Sánchez M, Recoba R, Barrón H, Favari L, and Lara A. Silymarin induces recovery of pancreatic function after alloxan damage in rats. Life Science. 2004, 75: 2167-2180.
132. Manna SK, Mukhopadhyay A, Van NT, and Aggarwal BB. Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis. The Journal of immunology. 1999, 163: 6800-6809.
133. Kang JS, Jeon YJ, Kim HM, Han SH, and Yang KH. Inhibition of inducible nitric-oxide synthase expression by silymarin in lipopolysaccharide- stimulated macrophages. The Journal of pharmacology and experimental therapeutics. 2002, 302: 138-144.
134. Morazzoni P, Montalbetti A, Malandrino S, and Pifferi G. Comparative pharmacokinetics of silipide and silymarin in rats. European Journal of Drug Metabolism and Pharmacokinetics. 1993, 18: 289-297.
135. Wu JW, Lin LC, Hung SC, Chi CW, and Tsai TH. Analysis of silibinin in rat plasma and bile for hepatobiliary excretion and oral bioavailability application. Journal of pharmaceutical and biomedical analysis. 2007, 45: 635-641.
136. Gatti G, and Perucca E. Plasma concentrations of free and conjugated silybin after oral intake of a silybin-phosphatidylcholine complex (silipide) in healthy volunteers. International journal of clinical pharmacology and therapeutics. 1994, 32: 614-617.
137. Rajnarayana K, Reddy MS, Vidyasagar J, and Krishna DR. Study on the influence of silymarin pretreatment on metabolism and disposition of metronidazole. Arzneimittelforschung. 2004, 54: 109-113.
138. Bilia AR, Gallori S, and Vincieri FF. St. John’s wort and depression efficacy, safety and tolerability-an undate. Life Science. 2002, 70: 3077-3096.
139. Greeson JM, Sanford B, and Monti DA. St. John''s wort (Hypericum perforatum): a review of the current pharmacological, toxicological, and clinical literature. Psychopharmacology. 2001, 153: 402-414.
140. Obach RS. Inhibition of human cytochrome P450 enzymes by constituents of St. John''s Wort, an herbal preparation used in the treatment of depression. The Journal of pharmacology and experimental therapeutics. 2000, 294: 88-95.
141. Moore LB, Goodwin B, Jones SA, Wisely GB, Serabjit-Singh CJ, Willson TM, Collins JL, and Kliewer SA. St. John''s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proceedings of the National Academy of Sciences of the United States of America. 2000, 97: 7500-7502.
142. Goodwin B, Moore LB, Stoltz CM, McKee DD, and Kliewer SA. Regulation of the human CYP2B6 gene by the nuclear pregnane X receptor. Molecular pharmacology. 2001, 60: 427-431.
143. Durr D, Stieger B, Kullak-Ublick GA, Rentsch KM, Steinert HC, Meier PJ, and Fattinger K. St John’s wort induces intestinal Pglycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clinical pharmacology and therapeutics. 2000, 68: 598-604.
144. Dresser GK, Schwarz UI, Wilkinson GR, and Kim RB. Coordinate induction of both cytochrome P4503A and MDR1 by St John’s wort in healthy subjects. Clinical pharmacology and therapeutics. 2003, 73: 41-50.
145. Thiede HM, and Walper A. Inhibition of MAO and COMT by hypericum extracts and hypericin. Journal of geriatric psychiatry and neurology. 1994, S1: S54-S56.
146. Ruschitzka F, Meier PJ, Turina M, Luscher TF, and Noll G. Acute heart transplant rejection due to Saint John’s wort. Lancet. 2000, 355: 548-549.
147. Piscitelli SC, Burstein AH, Chaitt D, Alfaro RM, and Falloon J. Indinavir concentrations and St John’s wort. Lancet. 2000; 355: 547-548.
148. Wang LS, Zhou G, Zhu B, Wu J, Wang JG, Abd El-Aty AM, Li T, Liu J, Yang TL, Wang D, Zhong XY, and Zhou HH. St John’s wort induces both cytochrome P450 3A4-catalyzed sulfoxidation and 2C19- dependent hydroxylation of omeprazole. Clinical pharmacology and therapeutics. 2004; 75: 191-197.
149. Johne A, Brockmoller J, Bauer S, Maurer A, Langheinrich M, and Roots I. Pharmacokinetic interaction of digoxin with an herbal extract from St John’s wort (Hypericum perforatum). Clinical pharmacology and therapeutics. 1999, 66: 338-345.
150. Frye RF, Fitzgerald SM, Lagattuta TF, Hruska MW, and Egorin MJ. Effect of St John’s wort on imatinib mesylate pharmacokinetics. Clinical pharmacology and therapeutics. 2004; 76: 323-329.
151. Schwarz UI, Buschel B, and Kirch W. Unwanted pregnancy on selfmedication with St John’s wort despite hormonal contraception. British journal of clinical pharmacology. 2003; 55: 112-113.
152. Mai I, Stormer E, Bauer S, Kruger H, Budde K, and Roots I. Impact of St John’s wort treatment on the pharmacokinetics of tacrolimus and mycophenolic acid in renal transplant patients. Nephrology, dialysis, transplantation. 2003, 18: 819-822.
153. Yue QY, Bergquist C, and Gerden B. Safety of St John’s wort (Hypericum perforatum). Lancet. 2000, 355: 576-577.
154. Nebel A, Schneider BJ, Baker RK, and Kroll DJ. Potential metabolic interaction between St. John’s wort and theophylline. The Annals of pharmacotherapy. 1999; 33: 502.
155. Bray BJ, Perry NB, Menkes DB, and Rosengren RJ. St. John''s wort extract induces CYP3A and CYP2E1 in the Swiss Webster mouse. Toxicological sciences. 2002, 66: 27-33.
156. Cantoni L, Rozio M, Mangolini A, Hauri L, and Caccia S. Hyperforin contributes to the hepatic CYP3A-inducing effect of hypericum perforatum extract in the mouse. Toxicological sciences. 2003, 75: 25-30.
157. Dürr D, Stieger B, Kullak-Ublick GA, Rentsch KM, Steinert HC, Meier PJ, and Fattinger K. St John''s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clinical pharmacology and therapeutics. 2000, 68: 598-604.
158. Gurley BJ, Gardner SF, Hubbard MA, Williams DK, Gentry WB, Cui Y, and Ang CY. Cytochrome P450 phenotypic ratios for predicting herb-drug interactions in humans. Clinical pharmacology and therapeutics. 2002, 72: 276-287.
159. Paolo M, and Bilia AR. The growing knowledge of St. John’s wort (Hypericum perfpratume L) drug interaction and their clinical significance. Current Therapeutics Research. 2000, 61: 389-394.
160. Weiger WA, Smith M, Boon H, Richardson MA, Kaptchuk TJ, and Eisenberg DM. Advising patients who seek complementary and alternative medical therapies for cancer. Annals of internal medicine. 2002, 137: 889-903.
161. Bauer S, Störmer E, Kerb R, Johne A, Brockmöller J, and Roots I. Differential effects of Saint John’s wort (hypericum perforatum) on the urinary excretion of D-glucaric acid and 6β-hydroxycortisol in healthy volunterrs. European journal of clinical pharmacology. 2002, 58: 581-585.
162. Roby CA, Anderson GD, Kantor E, Dryer DA, and Burstein AH. St John''s Wort: Effect on CYP3A4 activity. Clinical pharmacology and therapeutics. 2000, 67: 451-457.
163. Wang Z, Gorski JC, Hamman MA, Huang SM, Lesko LJ, Hall SD. The effects of St John''s wort (Hypericum perforatum) on human cytochrome P450 activity. Clinical pharmacology and therapeutics. 2001, 70:317-326.
164. Dresser GK, Schwarz UI, Wilkinson GR, and Kim RB. Coordinate induction of both cytochrome P4503A and MDR1 by St John''s wort in healthy subjects. Clinical pharmacology and therapeutics. 2003, 73: 41-50.
165. Xie R, Tan LH, Polasek EC, Hong C, Teillol-Foo M, Gordi T, Sharma A, Nickens DJ, Arakawa T, Knuth DW, and Antal EJ. CYP3A and P-glycoprotein induction with St. John''s wort in healthy volunteers of selected ethnic populations. Journal of clinical pharmacology. 2005, 45: 352-356.
166. Moschella C, and Jaber BL. Interaction between cyclosporine and Hypericum perforatum (St. John''s wort) after organ transplantation. American journal of kidney diseases. 2001, 38: 1105-1107.
167. Cheng TO. St John''s wort interaction with digoxin. Archives of internal medicine.2000, 160: 2548.
168. Rey JM, and Walter G. Hypericum perforatum (St John''s wort) in depression: Pest or blessing? The Medical journal of Australia. 1998, 169: 583-586.
169. Sparreboom A, Cox MC, Acharya MR, and Figg WD. Herbal remedies in the United States: potential adverse interactions with anticancer agents. Journal of clinical oncology. 2004, 22: 2489-503.
160. Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AM, and Deeley RG. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992, 258: 1650-1654.
171. König J, Hartel M, Nies AT, Martignoni ME, Guo J, Büchler MW, Friess H, Keppler D. Expression and localization of human multidrug resistance protein (ABCC) family members in pancreatic carcinoma. International journal of cancer. 2005, 115: 359-367.
172. Kruh GD, Belinsky MG, Gallo JM, and Lee K. Physiological and pharmacological functions of Mrp2, Mrp3 and Mrp4 as determined from recent studies on gene-disrupted mice. Cancer metastasis reviews. 2007, 26: 5-14.
173. You G, and Marilyn E Morris. Drug transporters: molecular characterization and role in drug disposition. John Wiley & Sons, Inc., 2007; Hoboken, New Jersey.
174. Haimeur A, Conseil G, Deeley RG, and Cole SP. The MRP-related and BCRP/ABCG2 multidrug resistance proteins: biology, substrate specificity and regulation. Current drug metabolism. 2004, 5: 21-53.
175. Kruh GD, and Belinsky MG. The MRP family of drug efflux pumps. Oncogene. 2003, 22: 7537-7552.
176. Tian Q, Zhang J, Chan E, Duan W, and Zhou S. Multidrug resistance proteins (MRPs) and implication in drug development. Drug development research. 2005; 64: 1-18.
177. Borst P, Zelcer N, and van de Wetering K. MRP2 and 3 in health and disease. Cancer Letter. 2006, 234: 51-61.
178. Endres CJ, Hsiao P, Chung FS, and Unadkat JD. The role of transporters in drug interactions. European journal of pharmaceutical sciences. 2006, 27: 501-17.
179. Ho RH, and Kim RB. Transporters and drug therapy: implications for drug disposition and disease. Clinical pharmacology and therapeutics. 2005, 78: 260-77.
180. Shitara Y, Horie T, Sugiyama Y. Transporters as a determinant of drug clearance and tissue distribution. European journal of pharmaceutical sciences. 2006, 27: 425-446.
181. Anzai N, Kanai Y, and Endou H. Organic anion transporter family: current knowledge. Journal of Pharmacological Sciences 2006, 100: 411-426.
182. Miyazaki H, Sekine T, and Endou H. The multispecific organic anion transporter family: properties and pharmacological significance. Trends in pharmacological sciences. 2004, 25: 654-62.
183. Zhou F, and You G. Molecular insights into the structure-function relationship of organic anion transporters OATs. Pharmaceutical research. 2007; 24: 28-36.
184. Kerb R. Implications of genetic polymorphisms in drug transporters for pharmacotherapy. Cancer Letter. 2006, 234: 4-33.
185. Inui KI, Masuda S, and Saito H. Cellular and molecular aspects of drug transport in the kidney. Kidney International. 2000, 58: 944-958.
186. Chan LM, Lowes S, and Hirst BH. The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. European journal of pharmaceutical sciences. 2004, 21: 25-51.
187. Juliano RL and Ling VA. Surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochimica et biophysica acta. 1976, 455: 152-162.
188. Ueda K. Yoshida A, and Amachi T. Recent progress in P-glycoprotein research. Anti-cancer drug design. 1999, 14: 115-121.
189. Endicott JA, and Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annual review of biochemistry. 1989, 58: 137-171.
190. Thorgeirsson SS, Silverman JA, Gant TW, and Marino PA. Multidrug resistance gene family and chemical carcinogens. Pharmacology & therapeutics. 1991, 49: 283-292.
191. Verschraagen M, Koks CH, Schellens JH, and Beijnen JH. P- glycoprotein system as a determinant of drug interactions: the case of digoxin-verapamil. Pharmacological research. 1999, 40: 301-306.
192. Stouch TR, and Gudmundsson O. Progress in understanding the structure-activity relationships of P-glycoprotein. Advanced drug delivery reviews. 2002, 54: 315-328.
193. Ptachcinski RJ, Burckart GJ, and Venkataramanan R. Cyclosporine. Drug intelligence & clinical pharmacy. 1985, 19: 90-100.
194. Burkle WS. Cyclosporine pharmacokinetics and blood level monitoring. Drug intelligence & clinical pharmacy. 1985, 19: 101-105.
195. Ozbay A, Karamperis N, and Jørgensen KA. A review of the immunosuppressive activity of cyclosporine metabolites: new insights into an old issue. Current clinical pharmacology. 2007, 2: 244-248.
196. Ng KH, Lim BG, and Wong KP. Sulfate conjugating and transport functions of MDCK distal tubular cells. Kidney International. 2003, 63: 976-986.
197. Hebert MF. Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery. Advanced drug delivery reviews. 1997, 27: 201-214.
198. Gerald K. McEvoy. AHFS Drug Information, USA. 2000, 3374-3389.
199. Yee GC. McGurine TR. Pharmacokinetic drug interactions with cyclosporine. Clinical pharmacokinetics. 1990, 19: 319-332.
200. Biffignandi PM, and Bilia AR. The growing knowledge of St. John’s wort (Hypericum perforatum L) drug interactions and their cllinical significance. Current therapeutic research, clinical and experimental. 2000, 61: 389-394.
201. Hou YC, Hisu SL, Tao CW, Wang YH, and Chao PD. Acute intoxication of Cyclosporin caused by coadministration of decoctions of the fruits of Citrus aurantium and the pericarps of Citrus grandis. Planta Medica. 2000, 66: 653-655.
202. Ameer B, and Weintraub RA. Drug interactions with grapefruit juice. Clinical pharmacokinetics. 1997, 33: 103-121.
203. Assaraf YG. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug resistance updates. 2006, 9: 227-246.
204. Genestier L, Paillot R, Quemeneur L, Izeradjene K, and Revillard JP. Mechanisms of action of methotrexate. Immunopharmacology. 2000, 47: 247-257.
205. Chladek J, Grim J, Martinkova J, Simkova M, Vaniekova J, Koudelkova V, and Noiekova M. Pharmacokinetics and pharmacodynamics of low-dose methotrexate in the treatment of psoriasis. British Journal of Clinical Pharmacology. 2002, 54: 147-156.
206. Wong JM, and Esdaile JM. Methotrexate in systemic lupus erythematosus. Lupus. 2005, 14: 101-105.
207. Van Ede AE, Laan RF, Blom HJ, De Abreu RA, and van de Putte LB. Methotrexate in rheumatoid arthritis: an update with focus on mechanisms involved in toxicity. Seminars in Arthritis and Rheumatism. 1998, 27: 277-292.
208. Widemann BC, and Adamson PC. Understanding and managing methotrexate nephrotoxicity. The oncologist. 2006, 11: 694-703.
209. Cottin V, Tebib J, Massonnet B, Souquet PJ, and Bernard JP. Pulmonary function in patients receiving long-term low-dose methotrexate. Chest. 1996, 109: 933-938.
210. Imokawa S, Colby TV, Leslie KO, and Helmers RA. Methotrexate pneumonitis: review of the literature and histopathological findings in nine patients. European Respiratory Journal. 2000, 15: 373-381.
211. Ellison NM, and Servi RJ. Acute renal failure and death following sequential intermediate- dose methotrexate and 5-FU: a possible adverse effect due to concomitant indomethacin administration. Cancer treatment reports. 1985, 69: 342-343.
212.Thyss A, Milano G, Kubar J, Namer M, and Schneider M. Clinical and pharmacokinetic evidence of a life-threatening interaction between methotrexate and ketoprofen. Lancet. 1986, 1: 256-258.
213. Tracy TS, Krohn K, Jones DR, Bradley JD, Hall SD, and Brater DC. The effects of a salicylate, ibuprofen, and naproxen on the disposition of methotrexate in patients with rheumatoid arthritis. European journal of clinical pharmacology.1992, 42: 121-125.
214. Kremer JM, and Hamilton RA. The effects of nonsteroidal antiinflammatory drugs on methotrexate (MTX) pharmacokinetics: impairment of renal clearance of MTX at weekly maintenance doses but not at 7.5 mg. The Journal of rheumatology. 1995, 22: 2072-2077.
215. Liao JW, Chung YC, Yeh JY, Lin YC, Lin YG, Wu SM, and Chan YC. Safety evaluation of water extracts of Toona sinensis Roemor leaf. Food and chemical toxicology. 2007, 45: 1393-1399.
216. Liao JW, Yeh YC, Lin YC, Wei MM, and Chung YC. Mutagenicity and safety evaluation of water extract of fermented Toona sinensis Roemor leaves. Journal of Food Science. 2009, 74: T7-T13.
217. Lown KS, Mayo RR, Leichtman AB, Hsiao HL, Turgeon DK, Schmiedlin-Ren P, Brown MB, Guo W, Rossi SJ, Benet LZ, Watkins PB. Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clinical pharmacology and therapeutics. 1997, 62: 248-260.
218. Hsiu SL, Tsao CW, Tsai YC, Ho HJ, and Chao PD. Determinations of morin, quercetin and their conjugate metabolites in serum. Biol Pharm Bull. 2001, 24: 967-969.
219. Lohner K, Schnäbele K, Daniel H, Oesterle D, Rechkemmer G, Göttlicher M, and Wenzel U. Flavonoids alter P-gp expression in intestinal epithelial cells in vitro and in vivo. Molecular nutrition & food research. 2007, 51: 293-300.
220. Scambia G, Ranelletti FO, Panici PB, De Vincenzo R, Bonanno G, Ferrandina G, Piantelli M, Bussa S, Rumi C, and Cianfriglia M. Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breastcancer cell line: P-glycoprotein as a possible target. Cancer chemotherapy and pharmacology. 1994, 34: 459-464.
221. Bansal T, Akhtar N, Jaggi M, Khar RK, and Talegaonkar S. Novel formulation approaches for optimising delivery of anticancer drugs based on P-glycoprotein modulation. Drug Discovery Today. 2009, 14: 1067-1074.
222. Batrakova EV, and Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. Journal of control release. 2008, 130: 98-106.
223. Sachs-Barrable K, Thamboo A, Lee SD, and Wasan KM. Lipid excipients Peceol and Gelucire 44/14 decrease P-glycoprotein mediated efflux of rhodamine 123 partially due to modifying P-glycoprotein protein expression within Caco-2 cells. Journal of pharmacy & pharmaceutical sciences. 2007, 10: 319-331.
224. Cornaire G, Woodley J, Hermann P, Cloarec A, Arellano C, Houin G. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. International journal of pharmaceutics. 2004, 278: 119-131.
225. Cottart CH, Nivet-Antoine V, Laguillier-Morizot C, and Beaudeux JL. Resveratrol bioavailability and toxicity in humans. Molecular nutrition & food research. 2010, 54: 7-16.
226. Patel KR, Scott E, Brown VA, Gescher AJ, Steward WP, and Brown K. Clinical trials of resveratrol. Annals of the New York Academy of Sciences. 2011, 1215: 161-169.
227. Piver B, Berthou F, Dreano Y, and Lucas D. Inhibition of CYP3A, CYP1A and CYP2E1 activities by resveratrol and other non volatile red wine components. Toxicology letters. 2001, 125: 83-91.
228. Chang TK, and Yeung RK. Effect of trans-resveratrol on 7-benzyloxy-4-trifluoromethylcoumarin O-dealkylation catalyzed by human recombinant CYP3A4 and CYP3A5. Canadian journal of physiology and pharmacology. 2001, 79: 220-226.
229. Nabekura T, Kamiyama S, and Kitagawa S. Effects of dietary chemopreventive phytochemicals on P-glycoprotein function. Biochemical and biophysical research communications, 2005, 327: 866-870.
230. Abe T, Mori T, Hori S, Koike K, and Kuwano M, Multidrug resistance protein (MRP), Nippon Rinsho. 1997, 55: 1077-1082.
231. Gutmann H, Fricker G, Török M, Michael S, Beglinger C, and Drewe J. Evidence for different ABC-transporters in Caco-2 cells modulating drug uptake, Pharmaceutical research. 1999, 16: 402-407.
232. Roelofsen H, Soraka CJ, Keppler D, and Boyer JL. Cyclic AMP stimulates sorting of the canalicular organic anion transporter (Mrp2(cMoat) to the apical domain in hepatocytes couplets. Journal of cell science. 1998, 111: 1137-1145.
233. Leslie EM, Deeley RG, and Cole SP. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicology and Applied Pharmacology. 2005, 204: 216-237.
234. Tsuji A. Transporter-mediated drug interactions. Drug Metabolism and Pharmacokinetics. 2002, 17: 253-274.
235. Bakos E, Evers R, Sinkó E, Váradi A, Borst P, and Sarkadi B. Interactions of the human multidrug resistance proteins MRP1 and MRP2 with organic anions. Molecular pharmacology. 2000, 57: 760-768.
236. Beorlegui B, Aldaz A, Ortega A, Aquerreta I, Sierrasesúmega L, and Giráldez J. Potential interaction between methotrexate and omeprazole. The Annals of pharmacotherapy. 2000, 34: 1024-1027.
237. El-Sheikh AA, van den Heuvel JJ, Koenderink JB, and Russel FG. Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport. The Journal of pharmacology and experimental therapeutics. 2007, 320: 229-235.
238. Chen ZS, Lee K, Walther S, Raftogianis RB, Kuwano M, Zeng H, and Kruh GD. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Research. 2002, 62: 3144-3150.
239. Fugh-Berman A, and Ernst E. Herb-drug interactions: review and assessment of report reliability. British journal of clinical pharmacology. 2001, 52: 587-595.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top