1.Packer M. Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy. 2009;37(9):3428-3437.
2.Lai SD. An ecological study of brackish water diatom assemblages in wetlands, near the Tseng-Wen estuary, in southwestern Taiwan. Diatom. 2001;17:111-113.
3.Milledge J. Commercial application of microalgae other than as biofuels: a brief review. Reviews in Environmental Science and Biotechnology. 2011;10(1):31-41.
4.Olaizola M. Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng. 2003;20(4-6):459-466.
5.Walker TL, Purton S, Becker DK, Collet C. Microalgae as bioreactors. Plant Cell Rep. 2005;24(11):629-641.
6.Lorenz RT, Cysewski GR. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 2000;18(4):160-167.
7.Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N. Biofuels from microalgae. Biotechnol Prog. 2008;24(4):815-820.
8.Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol. 2011;102(1):57-70.
9.Siver PA, Lord WD, McCarthy DJ. Forensic limnology: The use of freshwater algal community ecology to link suspects to an aquatic crime scene in Southern New England. Joumal of Forensic Science. 1994; 3:847-853.
10.Ben-Amotz A, Avron M. On the Factors Which Determine Massive beta-Carotene Accumulation in the Halotolerant Alga Dunaliella bardawil. Plant Physiol. 1983;72(3):593-597.
11.Davis HC, Guillard RR. Relative value of ten genera of micro-organisms as foods for oyster and clam larvae. Fish Bull. 1958;58:293-304.
12.Spectorova LV, Goronkova OI, Nosova LP, Albitskaya ON. High-density culture of marine microalgae — Promising items for mariculture: I. Mineral feeding regime and installations for culturing Dunaliella tertiolecta Butch. Aquaculture. 1982;26(3–4):289-302.
13.Gong Y, Jiang M. Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol Lett. 2011;33(7):1269-1284.
14.Leman J. Oleaginous microorganisms: an assessment of the potential. Adv Appl Microbiol. 1997;43:195-243.
15.Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews. 2010;14(1):217-232.
16.Kalligeros S, Zannikos F, Stournas S, et al. An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine. Biomass and Bioenergy. 2003;24(2):141-149.
17.Chen M, Tang H, Ma H, Holland TC, Ng KY, Salley SO. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol. 2011;102(2):1649-1655.
18.Olmos J, Paniagua J, Contreras R. Molecular identification of Dunaliella sp. utilizing the 18S rDNA gene. Lett Appl Microbiol. 2000;30(1):80-84.
19.Harrison PJ, Waters RE, Taylor FJR. A broad spectrum artificial seawater medium for coastal and open ocean phytoplankton. Journal of Phycology. 1980;16(1):28-35.
20.Starr RC, Zeikus JA. UTEX-the culture collection of algae at the university of texas at austin 1993 list of coultures. Journal of Phycology. 1993;29:1-106.
21.Provasoli L, McLaughlin JJ, Droop MR. The development of artificial media for marine algae. Arch Mikrobiol. 1957;25(4):392-428.
22.Santin-Montanya I, Sandin-Espana P, Garcia Baudin JM, Coll-Morales J. Optimal growth of Dunaliella primolecta in axenic conditions to assay herbicides. Chemosphere. 2007;66(7):1315-1322.
23.Lee RE. Phycology. 3rd ed. Cambridge England ; New York: Cambridge University Press; 1999.
24.Hall JD, FuΩikova K, LO C, Lewis LA, Karol KG. An assessment of proposed DNA barcodes in freshwater green algae. Cryptogamie. 2010;31:529-555.
25.Coleman A, Mai J. Ribosomal DNA and ITS-2 sequence comparisons as a tool for predicting genetic relatedness. J Mol Evol. 1997;45(2):168-177.
26.Hejazi MA, Barzegari A, Gharajeh NH, Hejazi MS. Introduction of a novel 18S rDNA gene arrangement along with distinct ITS region in the saline water microalga Dunaliella. Saline Systems. 2010;6:4.
27.Kato A, Nakajima T, Yamashita J, Yakura K, Tanifuji S. The structure of the large spacer region of the rDNA in Vicia faba and Pisum sativum. Plant Mol Biol. 1990;14(6):983-993.
28.Appels R, Gerlach WL, Dennis ES, Swift H, Peacock WJ. Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals. Chromosoma. 1980;78(3):293-311.
29.Pace NR, Smith DK, Olsen GJ, James BD. Phylogenetic comparative analysis and the secondary structure of ribonuclease P RNA--a review. Gene. 1989;82(1):65-75.
30.Beszteri B, Acs E, Makk J, Kovacs G, Marialigeti K, Kiss KT. Phylogeny of six naviculoid diatoms based on 18S rDNA sequences. Int J Syst Evol Microbiol. 2001;51(4):1581-1586.
31.Wilcox LW, Lewis LA, Fuerst PA, Floyd GL. Group I introns within the nuclear-encoded small-subunit rRNA gene of three green algae. Mol Biol Evol. 1992;9(6):1103-1118.
32.An SS, Friedl T, Hegewald E. Phylogenetic Relationships of Scenedesmus and Scenedesmus-like Coccoid Green Algae as Inferred from ITS-2 rDNA Sequence Comparisons. Plant Biology. 1999;1(4):418-428.
33.Semary NAE. The polyphasic description of a Desmodesmus spp. isolate with the potential of bioactive compounds production. Biotechnol Agron Soc Environ. 2011;15:231-238.
34.Guillard RRL, Ryther JH. Studies of marine planktonic daitoms: I. cyclotella nana husted, and detonula confervacea (cleve) gran. Can J Microbiol. 1962;8(2):229-239.
35.賴霈蓉。 台灣本土魚塭微藻之形態18S rDNA 親緣關係之研究。 嘉南藥理科技大學生物科技研究所碩士論文。 2010。36.楊燕玲。 台灣本土三株微藻ITS rDNA親緣關係之研究。 嘉南藥理科技大學生物科技研究所碩士論文。 2012。37.Harwati TU, Willke T, Vorlop KD. Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp. Bioresour Technol. 2012;121:54-60.
38.Matsunaga T, Matsumoto M, Maeda Y, Sugiyama H, Sato R, Tanaka T. Characterization of marine microalga, Scenedesmus sp. strain JPCC GA0024 toward biofuel production. Biotechnol Lett. 2009;31(9):1367-1372.
39.Pena-Castro JM, Martinez-Jeronimo F, Esparza-Garcia F, Canizares-Villanueva RO. Phenotypic plasticity in Scenedesmus incrassatulus (Chlorophyceae) in response to heavy metals stress. Chemosphere. 2004;57(11):1629-1636.
40.Van Hannen E, FinkGodhe P, Lurling M. A revised secondary structure model for the internal transcribed spacer 2 of the green algae Scenedesmus and Desmodesmus and its implication for the phylogeny of these algae. European Journal of Phycology. 2002;37(2):203-208.
41.Kessler E, Schäfer M, Hümmer C, Kloboucek A, Huss V. Physiological, biochemical, and molecular characters for the taxonomy of three subgenera of Scenedesmus (Chlorococcales, Chlorophyta). Bot Acta. 1997;110:244-250.
42.Van Hannen EJ, Lürling M, Van Donk E. sequence analysis of the ITS-2 region: a tool to identify strans of scenedesmus (chlorophyceae). Journal of Phycology. 2000;36(3):605-607.