跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 18:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪維謙
研究生(外文):Wei-chien Hung
論文名稱:淡水與半鹽水魚塭微藻之親緣演化關係之研究
論文名稱(外文):Phylogenetic analysis of freshwater and brackish water fish farms microalgae
指導教授:賴雪端賴雪端引用關係
指導教授(外文):Sheue-duan Lai
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:生物科技系暨研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:128
中文關鍵詞:ITS rDNA18S rDNA微藻綠藻
外文關鍵詞:18S rDNAITS rDNAgreen algaemicroalgae
相關次數:
  • 被引用被引用:0
  • 點閱點閱:735
  • 評分評分:
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的在於探討台灣南部淡水魚塭與半鹽水魚塭的小型微藻之種類,及適當的誘導後之產油潛力。目前微藻的應用相當廣泛,如化妝品、保健食品、水產養殖飼料、生質能源及刑事鑑定上等,眾多應用皆使用到小型微藻,但是由於小型微藻往往不易鑑定,須以較高倍數的顯微鏡觀察,或應用分子生物技術鑑定。本實驗以ITS rDNA序列來進行魚塭微藻的親緣鑑定,而綠藻的Desmodesmus與Scenedesmus屬則增加18S rDNA序列之比對。研究用的微藻樣品採集自嘉南藥理科技大學鄰近魚塭、台南市四鯤鯓、篤加溪及四草等地魚塭。結果共分離出9株淡水魚塭微藻及5株半鹽水至海水之魚塭微藻。其中,有13株魚塭微藻之ITS rDNA分析結果,皆可與NCBI基因資料庫進行比對。而以Neighbor-Joining method、Maximum-parsimony method及Maximum-likelihood method等方法建構樹狀圖,比對13株魚塭微藻及實驗室保存的3株藻種之ITS region rDNA,皆亦發現ITS region rDNA可做為分子鑑定的指標。此外,亦發現ITS2 rDNA序列在Desmodesmus與Scenedesmus的分類鑑定上,較ITS region rDNA(ITS1, 5.8S, ITS2)及18S rDNA序列,有更好的鑑定分析效果。耐鹽度分析顯示,淡水魚塭所分離出的藻種,可耐低於1%的鹽度,而半鹽水的微藻可以耐低於2%~3%的鹽度。尼羅紅染色顯示只有4株微藻包括【Scenedesmus AENLCNU CENP-017】、【Chlorella AENLCNU SQSP-023】、【Chlorella AENLCNU CTUP-025】及【Chlorella AENLCNU DJCP-026】會因培養基中之鹽度的提高而些微增加產油潛能。
The aim of this study was isolated from the freshwater and brackish water fish farms microalgae in southern Taiwan, and to explore the optimum growth conditions, the ability of lipid production and the phylogenetic relationship. Many applications are using microalgae such as cosmetics, health food, aquaculture feed, biomass energy or criminal identification. However, without higher magnification of the microscope and molecular identification, microalgae are not easy to identify. In this experiment, phylogenetic identification by ITS rDNA sequences was done for all fish farms microalgae. In addition, Desmodesmus and Scenedesmus were done by both 18S and ITS rDNA sequences. Samples waere collected from fish farm nearby Chia-Nan University, Su-Kunshen fish farm, Tu-Chia creek and Szu-Tsao wildlife reservation in southern Taiwan.
Fourteen microalgae were isolated, including 9 species of freshwater and 5 species of brackish water species. The results of 13 microalgal ITS rDNA were compared with the NCBI database. The phylogenetic trees were constructed using other known green algal 18S rDNA and ITS rDNA sequences. The tree topologies were obtained by Neighbor-Joining method, Maximum-likelihood method and Maximum-parsimony method. Comparing the ITS region rDNA sequence between 13 fish farms microalgae and 3 green aglae which kept in algal ecological laboratory were also found that the ITS region rDNA can be used as DNA barcodes in molecular identification. Moreover, the ITS2 rDNA sequence demonstrated better than ITS region rDNA(ITS1, 5.8S, ITS2)and 18S rDNA sequences in identify both genus Desmodesmus and genus Scenedesmus. The salinity tolerant studies indicated that freshwater microalgae can survive less than 1% salinity, and brackish water microalgae can survive less than 2% ~3%salinity. Nile red staining showed that only four green algae, including [Scenedesmus AENLCNU CENP-017], [Chlorella AENLCNU SQSP-023], [Chlorella AENLCNU CTUP-025] and [Chlorella AENLCNU DJCP-026] could increase the oil production potential by increasing the salinity concentration.
中文摘要 I
Abstract III
本文目錄 V
圖目錄 VIII
表目錄 XIII
附圖目錄 XIV
附表目錄 XVI
英文縮寫對照表 XVII
第一章 緒論 1
1-1文獻回顧 1
1-1-1藻類在保健食品的應用 1
1-1-2藻類在水產養殖的應用 2
1-1-2藻類在環境生物技術上的應用 3
1-1-3微藻與能源的研究 3
1-1-4微藻的培養 4
1-2研究目的 13
第二章 材料與方法 14
2-1 採樣 14
2-2 微藻的培養條件 15
2-3藻種分離與篩選 16
2-4 擴增18S rDNA與ITS region的DNA片段 16
2-5 基因序列的整理 19
2-6 微藻的生長條件測試 20
第三章 結果 22
3-1 本研究所分離與定序的12株純種綠藻 22
3-2 微藻的18S rDNA與ITS region的PCR產物 27
3-3 Desmodesmus與Scenedesmus的18S rDNA序列 29
3-4 十三株純種綠藻的ITS rDNA基因序列 30
3-5 綠藻的18SrDNA及ITS rDNA基因序列的比對 34
3-6 親緣關係樹狀圖 35
3-7 本研究純化之微藻的生態分佈 37
3-8 十二株純種綠藻的最適pH值,溫度及耐鹽度測試 37
3-9 實驗室目前已純化之魚塭綠藻之產油潛力 38
第四章 討論 40
4-1 樣品來源的探討 40
4-2 培養條件的探討 40
4-3 分子鑑定的探討 42
4-4 淡水,半鹽水與海水等魚塭綠藻之親緣關係 47
第五章 結論 59
參考文獻 62
附錄 101
1.Packer M. Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy. 2009;37(9):3428-3437.
2.Lai SD. An ecological study of brackish water diatom assemblages in wetlands, near the Tseng-Wen estuary, in southwestern Taiwan. Diatom. 2001;17:111-113.
3.Milledge J. Commercial application of microalgae other than as biofuels: a brief review. Reviews in Environmental Science and Biotechnology. 2011;10(1):31-41.
4.Olaizola M. Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng. 2003;20(4-6):459-466.
5.Walker TL, Purton S, Becker DK, Collet C. Microalgae as bioreactors. Plant Cell Rep. 2005;24(11):629-641.
6.Lorenz RT, Cysewski GR. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 2000;18(4):160-167.
7.Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N. Biofuels from microalgae. Biotechnol Prog. 2008;24(4):815-820.
8.Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol. 2011;102(1):57-70.
9.Siver PA, Lord WD, McCarthy DJ. Forensic limnology: The use of freshwater algal community ecology to link suspects to an aquatic crime scene in Southern New England. Joumal of Forensic Science. 1994; 3:847-853.
10.Ben-Amotz A, Avron M. On the Factors Which Determine Massive beta-Carotene Accumulation in the Halotolerant Alga Dunaliella bardawil. Plant Physiol. 1983;72(3):593-597.
11.Davis HC, Guillard RR. Relative value of ten genera of micro-organisms as foods for oyster and clam larvae. Fish Bull. 1958;58:293-304.
12.Spectorova LV, Goronkova OI, Nosova LP, Albitskaya ON. High-density culture of marine microalgae — Promising items for mariculture: I. Mineral feeding regime and installations for culturing Dunaliella tertiolecta Butch. Aquaculture. 1982;26(3–4):289-302.
13.Gong Y, Jiang M. Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol Lett. 2011;33(7):1269-1284.
14.Leman J. Oleaginous microorganisms: an assessment of the potential. Adv Appl Microbiol. 1997;43:195-243.
15.Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews. 2010;14(1):217-232.
16.Kalligeros S, Zannikos F, Stournas S, et al. An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine. Biomass and Bioenergy. 2003;24(2):141-149.
17.Chen M, Tang H, Ma H, Holland TC, Ng KY, Salley SO. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol. 2011;102(2):1649-1655.
18.Olmos J, Paniagua J, Contreras R. Molecular identification of Dunaliella sp. utilizing the 18S rDNA gene. Lett Appl Microbiol. 2000;30(1):80-84.
19.Harrison PJ, Waters RE, Taylor FJR. A broad spectrum artificial seawater medium for coastal and open ocean phytoplankton. Journal of Phycology. 1980;16(1):28-35.
20.Starr RC, Zeikus JA. UTEX-the culture collection of algae at the university of texas at austin 1993 list of coultures. Journal of Phycology. 1993;29:1-106.
21.Provasoli L, McLaughlin JJ, Droop MR. The development of artificial media for marine algae. Arch Mikrobiol. 1957;25(4):392-428.
22.Santin-Montanya I, Sandin-Espana P, Garcia Baudin JM, Coll-Morales J. Optimal growth of Dunaliella primolecta in axenic conditions to assay herbicides. Chemosphere. 2007;66(7):1315-1322.
23.Lee RE. Phycology. 3rd ed. Cambridge England ; New York: Cambridge University Press; 1999.
24.Hall JD, FuΩikova K, LO C, Lewis LA, Karol KG. An assessment of proposed DNA barcodes in freshwater green algae. Cryptogamie. 2010;31:529-555.
25.Coleman A, Mai J. Ribosomal DNA and ITS-2 sequence comparisons as a tool for predicting genetic relatedness. J Mol Evol. 1997;45(2):168-177.
26.Hejazi MA, Barzegari A, Gharajeh NH, Hejazi MS. Introduction of a novel 18S rDNA gene arrangement along with distinct ITS region in the saline water microalga Dunaliella. Saline Systems. 2010;6:4.
27.Kato A, Nakajima T, Yamashita J, Yakura K, Tanifuji S. The structure of the large spacer region of the rDNA in Vicia faba and Pisum sativum. Plant Mol Biol. 1990;14(6):983-993.
28.Appels R, Gerlach WL, Dennis ES, Swift H, Peacock WJ. Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals. Chromosoma. 1980;78(3):293-311.
29.Pace NR, Smith DK, Olsen GJ, James BD. Phylogenetic comparative analysis and the secondary structure of ribonuclease P RNA--a review. Gene. 1989;82(1):65-75.
30.Beszteri B, Acs E, Makk J, Kovacs G, Marialigeti K, Kiss KT. Phylogeny of six naviculoid diatoms based on 18S rDNA sequences. Int J Syst Evol Microbiol. 2001;51(4):1581-1586.
31.Wilcox LW, Lewis LA, Fuerst PA, Floyd GL. Group I introns within the nuclear-encoded small-subunit rRNA gene of three green algae. Mol Biol Evol. 1992;9(6):1103-1118.
32.An SS, Friedl T, Hegewald E. Phylogenetic Relationships of Scenedesmus and Scenedesmus-like Coccoid Green Algae as Inferred from ITS-2 rDNA Sequence Comparisons. Plant Biology. 1999;1(4):418-428.
33.Semary NAE. The polyphasic description of a Desmodesmus spp. isolate with the potential of bioactive compounds production. Biotechnol Agron Soc Environ. 2011;15:231-238.
34.Guillard RRL, Ryther JH. Studies of marine planktonic daitoms: I. cyclotella nana husted, and detonula confervacea (cleve) gran. Can J Microbiol. 1962;8(2):229-239.
35.賴霈蓉。 台灣本土魚塭微藻之形態18S rDNA 親緣關係之研究。 嘉南藥理科技大學生物科技研究所碩士論文。 2010。
36.楊燕玲。 台灣本土三株微藻ITS rDNA親緣關係之研究。 嘉南藥理科技大學生物科技研究所碩士論文。 2012。
37.Harwati TU, Willke T, Vorlop KD. Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp. Bioresour Technol. 2012;121:54-60.
38.Matsunaga T, Matsumoto M, Maeda Y, Sugiyama H, Sato R, Tanaka T. Characterization of marine microalga, Scenedesmus sp. strain JPCC GA0024 toward biofuel production. Biotechnol Lett. 2009;31(9):1367-1372.
39.Pena-Castro JM, Martinez-Jeronimo F, Esparza-Garcia F, Canizares-Villanueva RO. Phenotypic plasticity in Scenedesmus incrassatulus (Chlorophyceae) in response to heavy metals stress. Chemosphere. 2004;57(11):1629-1636.
40.Van Hannen E, FinkGodhe P, Lurling M. A revised secondary structure model for the internal transcribed spacer 2 of the green algae Scenedesmus and Desmodesmus and its implication for the phylogeny of these algae. European Journal of Phycology. 2002;37(2):203-208.
41.Kessler E, Schäfer M, Hümmer C, Kloboucek A, Huss V. Physiological, biochemical, and molecular characters for the taxonomy of three subgenera of Scenedesmus (Chlorococcales, Chlorophyta). Bot Acta. 1997;110:244-250.
42.Van Hannen EJ, Lürling M, Van Donk E. sequence analysis of the ITS-2 region: a tool to identify strans of scenedesmus (chlorophyceae). Journal of Phycology. 2000;36(3):605-607.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top