跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 16:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳家璽
研究生(外文):Jia-Xi Chen
論文名稱:南臺灣淡水埤塘與鹹水潟湖溫室氣體通量之調查
論文名稱(外文):Estimation of Green House Gas Fluxes for Freshwater Ponds and Saline Lagoons in Southern Taiwan
指導教授:林瑩峯
指導教授(外文):Ying-Feng Lin
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:167
中文關鍵詞:總初級生產量氧化亞氮虎頭埤底泥碳密度底泥碳庫量二氧化碳甲烷七股潟湖
外文關鍵詞:Chiku LagoonSoil Organic Matter PoolCarbon dioxideHu-Tou-PiMethaneNitrous oxideSoil carbon densityGross Primary Productivity
相關次數:
  • 被引用被引用:11
  • 點閱點閱:996
  • 評分評分:
  • 下載下載:116
  • 收藏至我的研究室書目清單書目收藏:1
本研究自2010年9月至2012年5月期間監測七股潟湖與虎頭埤的水質,二氧化碳(CO2)、甲烷(CH4)及氧化亞氮(N2O)的釋放通量、水中藻總初級生產量及底泥有機碳密度,進而判斷該場址為碳儲場或是碳的排放源。七股潟湖主要是陸上魚塭跟七股海域的緩衝水域,波浪與海流較外海穩定,而且可以保存水中的養分,使水質得以淨化,能吸收和儲存洪水、調節水位,阻緩洪水速度,減少災害。而虎頭埤則為一座水庫主要作為灌溉用途,由虎頭埤所分流的灌溉用水,供給了五百多公頃的農地水源。
本研究以漂浮箱採氣及氣體層析法監測湖塘水面與大氣交界面的CO2,CH4, N2O通量變化。結果顯示,七股潟湖CO2釋放通量介於0.03~14.46 mg CO2-C m-2 h-1,估算整年平均CO2釋放通量介於,12.96~107.06 g CO2-C m-2 yr-1;虎頭埤CO2釋放通量介於-4.79~60.57 mg CO2-C m-2 h-1,估算整年平均CO2釋放通量介於30.55~149.86 g CO2-C m-2 yr-1。七股潟湖CH4釋放通量介於-0.22~0.62 mg CH4-C m-2 h-1,估算整年平均CH4釋放通量介於,0.66~2.81 g CH4-C m-2 yr-1;虎頭埤CH4釋放通量介於0.08~3.88 mg CH4-C m-2 h-1,估算整年平均CH4釋放通量介於6.44~22.16g CH4-C m-2 yr-1。七股潟湖N2O釋放通量介於-0.52~27.85 μg N2O m-2 h-1,估算整年平均N2O釋放通量介於,30.28~113.37 mg N2O m-2 yr-1;虎頭埤N2O釋放通量介於1.39~32.31 μg N2O m-2 h-1,估算整年平均N2O釋放通量介於85.86~110.55 mg N2O m-2 yr-1。七股潟湖與虎頭埤溫室氣體通量皆呈現與河口(溪口)距離相關,距離河口越近則釋放通量越高,而比較兩場址CO2、N2O釋放通量並無明顯差異(p>0.05),CH4則有明顯差異(p= 0.00981<0.05)。
本研究利用水中植物性浮游生物初級生產量測量方法估算水中的總初級生產量(GPP),結果顯示七股潟湖與虎頭埤的總初級生產量分別為23.29~47.88 mg C m-2 h-1及51.5~110.53 mg C m-2 h-1。而測量底泥碳密度,七股潟湖介於1.28~1.70 kg m-2。虎頭埤之底泥有機碳密度介於2.41~3.57 kg m-2。可推估七股潟湖與虎頭埤底泥有機碳庫量分別為,14,502以及764 ton C。
This research monitored the water quality at Chiku Lagoon and Hu-Tou-Pi Reservoir , the gross primary production of algae and the release flux of CO2、CH4 and N2O, and the density of organic carbon in the soil since September 2010 to May 2012, further determine whether this site is carbon storage field or the emission sources of carbon. Chiku Lagoon is mainly the buffer water zone between onshore fish farms and Chiku water zone. The waves and ocean currents there are more stabilized than open sea, and it can preserve the nutrients in the water and purify the water quality. It can also absorb and store up floodwaters , moderate the water line and retard the velocity of floodwaters to reduce the frequency of disasters. Hu-Tou-Pi Reservoir is mainly used for irrigation, and the irrigation water divided from Hu-Tou-Pi Reservoir supplies the water sources of approximately five hundred hectares farmland.
Floating box and Gas Chromatography are used in this research to collect gases and monitor the flux change of CO2、CH4 and N2O of the interface between lake and atmosphere. The results show that Chiku Lagoon’s CO2 release flux is between 0.03 and 14.46 mg CO2-C m-2 h-1. It is estimated that the average CO2 release flux throughout the year is between 12.96 and 107.06 g CO2-C m-2 yr-1; Hu-Tou-Pi Reservoir’s CO2 release flux is between -4.79 and 60.57 mg CO2-C m-2 h-1. It is estimated that the average CO2 release flux throughout the year is between 30.55 and 149.86 g CO2-C m-2 yr-1. Chiku Lagoon’s CH4 release flux is between -0.22 and 0.62 mg CH4-C m-2 h-1. It is estimated that the average CH4 release flux throughout the year is between 0.66 and 2.81 g CH4-C m-2 yr-1;Hu-Tou-Pi Reservoir’s CH4 release flux is between 0.08 and 3.88 mg CH4-C m-2 h-1. It is estimated that the average release flux throughout the year is between 6.44 and 22.16 g CH4-C m-2 yr-1. Chiku Lagoon’s N2O release flux is between -0.52 and 27.85 μg N2O m-2 h-1. It is estimated that the average N2O release flux throughout the year is between 30.28 and 113.37 mg N2O m-2 yr-1;Hu-Tou-Pi Reservoir’s N2O release flux is between 1.39 and 32.31 μg N2O m-2 h-1. It is estimated that the average N2O release flux throughout the year is between 85.86 and 110.55 mg N2O m-2 yr-1. Greenhouse gases at Chiku Lagoon and Hu-Tou-Pi Reservoir all show the relevance with the distance between the estuary and the two places. The closer is the distance; the higher is the release flux. Comparing the release flux of CO2、N2O at the two places and it shows no apparent differences(p>0.05). However, the release flux of CH4 at the two places shows apparent differences(p= 0.00981<0.05).
Submerged botanical plankton primary production measurement method is used in this research to estimate the underwater gross primary production. The results show that the gross primary production at Chiku Lagoon and Hu-Tou-Pi Reservoir are 23.29~47.88 mg C m-2 h-1 and 51.5~110.53 mg C m-2 h-1, respectively. Measuring the density of carbon in the soil, Chiku Lagoon’s density of carbon in the soil is between 1.28 and 1.70 kg m-2, and Hu-Tou-Pi Reservoir’s density of carbon in the soil is between 2.41 and 3.57 kg m-2. It can be inferred that the amount of carbon pool in the soil at Chiku Lagoon and Hu-Tou-Pi Reservoir are 14,502 and 764 ton C, respectively.
目錄
中文摘要 I
英文摘要 III
目錄 VI
表目錄 IX
圖目錄 XI
誌謝 VI
第一章 前言 1
1.1 研究動機 1
1.2 研究方向與目的 3
1.3 研究架構 3
第二章 文獻回顧 5
2.1 濕地的定義 5
2.2 濕地的分類 6
2.2.1 一般濕地分類 6
2.2.2 潟湖與埤塘 8
2.3 濕地環境中的碳循環 11
2.4 濕地碳匯能力的調查方法 14
2.5 濕地的碳匯能力 16
2.5.1 當前的全球碳收支及濕地的碳庫與碳匯 16
2.5.2 濕地與全球碳收支 20
2.5.3 濕地的碳匯能力比較 20
2.6 潟湖與埤塘CO2、 CH4及N2O釋放通量之文獻 24
第三章 研究設備與方法 28
3.1 研究場址 28
3.1.1 七股潟湖 28
3.1.2 埤塘 29
3.2 採樣規劃 30
3.2.1 採樣位置的規劃 30
3.3 採樣點及樣本採集 39
3.3.1 氣體釋放通量樣本採集 39
3.3.2 水樣採集 40
3.3.3 底泥採樣方法 40
3.3.4 氣體釋放通量之估算 41
3.4 分析 42
3.4.1 氣體分析 42
3.4.2 水質分析 45
3.4.3 底泥分析 46
3.5 統計分析 48
第四章 結果與討論 53
4.1 水質分析結果 53
4.1.1 七股潟湖 53
4.1.2 虎頭埤 58
4.2 底泥分析結果 64
4.2.1 七股潟湖 64
4.2.2 虎頭埤 66
4.3 總初級生產量 68
4.3.1 七股潟湖 69
4.3.2 虎頭埤 73
4.4 CO2氣體釋放通量監測結果 76
4.4.1 七股潟湖 77
4.4.1.1 時間空間變化 76
4.4.1.2 平均年通量估算 82
4.4.2 虎頭埤 86
4.4.2.1 時間空間變化 86
4.4.2.2 平均年通量估算 90
4.5 CH4氣體釋放通量監測結果 93
4.5.1 七股潟湖 93
4.5.1.1 時間空間變化 93
4.5.1.2 平均年通量估算 98
4.5.2 虎頭埤 101
4.5.2.1 時間空間變化 101
4.5.2.2 平均年通量估算 105
4.6 N2O釋放通量監測結果 109
4.6.1 七股潟湖 109
4.6.1.1 時間空間變化 109
4.6.1.2 平均年通量估算 113
4.6.2 虎頭埤 116
4.6.2.1 時間空間變化 116
4.6.2.2 平均年通量估算 120
4.7 碳庫估算 123
4.7.1 七股潟湖 125
4.7.2 虎頭埤 132
第五章 結論 137
第六章 參考文獻 139
表目錄
表2.1 全球不同陸域生態系統的面積、碳庫及淨初級生產量 22
表2.2 全球不同陸域生態系統的底泥碳密度及碳庫量 23
表3.1 水樣分析項目及方法水質分析方法一覽表 52
表4.1 七股潟湖樣區水質分析結果平均值 56
表4.2 海域地面水體標準 57
表4.3 虎頭埤樣區水質分析結果平均值 62
表4.4 陸域地面水體標準(河川、湖泊) 63
表4.5 七股潟湖樣區底泥分析結果 65
表4.6 虎頭埤樣區底泥分析結果 67
表4.7 七股潟湖總初級生產量監測結果 70
表4.8 虎頭埤樣區總初級生產量分析結果 74
表4.9 七股潟湖樣區CO2交換通量監測結果 79
表4.10 七股潟湖各樣點CO2釋放通量差異性統計分析 81
表4.11 利用擴大計算法估算潟湖¬ CO2通量年平均值 83
表4.12 不同河口與潟湖的空氣—水面年平均CO2交換通量 84
表4.13 虎頭埤樣區 CO2交換通量監測結果 87
表4.14 虎頭埤各樣點CO2釋放通量差異性統計分析 89
表4.15 利用擴大計算法估算淡水埤塘 CO2通量年平均值 91
表4.16 不同埤塘、湖泊及水庫CO2交換通量 92
表4.17 七股潟湖樣區CH4交換通量監測結果 95
表4.18 七股潟湖各樣點CH4釋放通量差異性統計分析 97
表4.19 利用擴大計算法估算潟湖¬CH4通量年平均值 99
表4.20 不同河口及潟湖的CH4釋放通量 100
表4.21 虎頭埤樣區CH4交換通量監測結果 102
表4.22 虎頭埤各樣點CH4釋放通量差異性統計分析 104
表4.23 利用擴大計算法估算淡水埤塘 CH4通量年平均值 106
表4.24 國外埤塘、湖泊及水庫CH4交換通量 107
表4.25 國內不同湖泊的CH4釋放通量 108
表4.26 七股潟湖樣區N2O交換通量監測結果 110
表4.27 七股潟湖各樣點N2O釋放通量差異性統計分析 112
表4.28 利用擴大計算法估算潟湖¬N2O通量年平均值 114
表4.29 國內外不同河口濕地的N2O釋放通量 115
表4.30 虎頭埤樣區N2O交換通量監測結果 117
表4.31 虎頭埤各樣點N2O釋放通量差異性統計分析 119
表4.32 利用擴大計算法估算淡水埤塘N2O通量年平均值 121
表4.33 國內外不同埤塘、湖泊及水庫的N2O釋放通量 122
表4.34 七股潟湖底泥碳密度估算 128
表4.35 國外不同河口、鹹水草澤的底泥碳密度估算 129
表4.36七股潟湖底泥碳庫估算 130
表4.37 七股潟湖底泥監測結果 131
表4.38 虎頭埤底泥碳密度估算 133
表4.39 國外不同湖泊、河川的底泥碳密度估算 134
表4.40 虎頭埤底泥碳庫估算 135
表4.41 淡水埤塘虎頭埤底泥監測結果 136



圖目錄
圖1.1 研究流程圖 4
圖2.1 適用於碳匯調查的濕地分類系統 10
圖2.3 全球碳庫及碳循環 17
圖3.1 七股潟湖實場與採樣點 32
圖3.2 虎頭埤實場與採樣點 33
圖3.3 氣體採樣的材料 49
圖3.4 氣體分析儀器 50
圖3.5 現地採樣照片 51
圖4.1 七股潟湖樣區CO2交換通量平均值與標準偏差 80
圖4.2 虎頭埤樣區CO2交換通量平均值與標準偏差 88
圖4.3 七股潟湖樣區CH4交換通量平均值與標準偏差 96
圖4.4 虎頭埤樣區CH4交換通量平均值與標準偏差 103
圖4.5 七股潟湖樣區N2O交換通量平均值與標準偏差 111
圖4.6 虎頭埤樣區N2O交換通量平均值與標準偏差 118
1.Abril, G., Etcheber, H.,Delille, B., Frankignoulle, M., Borges, A.V. (2003). Carbonate dissolution in the turbid and eutrophic Loire estuary.Marine Ecology-Progress Series, 259, pp. 129–138.
2.Abril, G., Guérin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse, P., Tremblay, A.,Varfalvy, L. Matvienko, B. (2005).Carbon dioxide and methane emissions and the carbon budget of a 10-year-old tropical reservoir (Petit-Saut, French Guiana).Global Biogeochemical Cycles, 19, p. GB4007.
3.Anderson, C.J., Mitsch, W.J. (2006). Sediment, carbon, and nutrient accumulation at two 10-year-old created riverine marshes. Wetlands 26, 779-792.
4.Boynton, W.R. ., Hagy, J.D., Murray, L., Stokes, C., Kemp, W.M. (1996). A comparative analysis of eutrophication patterns in a temperate coastal lagoon. Estuaries 19:408–421.
5.Wei-yong B., MA Li., Xiu-wei H., Cheng-ye T., Zhone X. (2011). 遼河流域表層土壤碳密度與碳儲量淺析.
6.Botges, A.V., Djenidi, S., Lacroix, G., Theate, J., Delille, B., Frankignoulle, M. (2006).Atmospheric CO2 flux from mangrove surrounding waters. Geophysical Research Letters 30,1558.
7.Bouillon, S., Dehairs, F., Velimirov, B., Abril, G., Botges, A.V. (2007a). Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi bay, Kenya),J. Geophysical Res-Biogeo 112,G02018,doi:10.1029/2006JG000325.
8.Bouillon, S., Dehairs, F., Schiettecatte, L.S., Botges, A.V. (2007b). Biogeochemistry of the Tana estuary and delta (northern Kenya), Limnol.Oceanogr.52,45-59.
9.Bouillon, S. Mangrove production and carbon sinks: A revision of global buget estimates, Global biogeochem. Cycles.
10.Brix, H. (1989). Gas exchange through dead culms of reed, Phragmites australis (Cav) Trin ex Steudel Aquat. Bot., 35, pp. 81–98
11.Brix, H., Sorrell, B.K., Schierup, H.-H. (1996). Gas fluxes achieved by in situ convective flow in Phragmites australis Aquat. Bot., 54, pp. 151–163
12.Brix, H., Sorrell, B.K., Lorenzen, B. (2001). Are Phragmites- dominated wetlands a net source or net sink of greenhouse gases? Aquatic Botany 69, 313–324.
13.Caumette, P., Castel, J., Herbert, R. (1996). Coastal lagoon eutrophication and anaerobic processes. Dordrecht: Kluwer Academic.
14.Casper, P., Maberly, S.C., Hall, G.H., Finlay, B.J. (2000). Fluxis of methane and carbon dioxide from a small productive lake to the atmosphere.Biogeochemistry 49,1-19.
15.Cole, J.J., Caraco, N.F., Kling, G.W., Kratz, T.K. (1994). Carbon dioxide supersaturation in the surface waters of lakes. Science 265, 1568-1570.
16.Cole, J.J., Caraco, N.F. (1998). Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6.Limnol.oceanogr.43, 647-656.
17.Duchemin, E. (2000). Hydroélectricité et gaz à effet de serre: Évaluation des émissions des différents gaz et identification des processus biogéochimiques de leur production. Thèse présentée comme exigence partielle du doctorat en sciences de l''environnement.Université du Québec à Montréal, Canada 308 p.
18.Euliss, N.H. Jr., Gleason, R.A., Olness, A., McDougal, R.L., Murkin, H.R., Robarts, R.D., Bourbonniere, R.A., Warner, B.G. (2006). North American prairie wetlands are important nonforested land-based carbon storage sites. Science of the Total Environment 361:179–188.
19.Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille, B., Libert, E. Théate, J.-M. (1998). Carbon dioxide emission from European estuaries.Science, 282 (5388), pp. 434–436.
20.Fugen, D., Xian, Y., Chien-Lu P., Gary Michaelson., Laodong Guo., Torre Jorgenson.Spatial variation of tundra soil organic carbon along the coastline of northern Alaska. 328–335
21.Gazeau, F., Borges, A.V., Barrón, C., Duarte, C.M., Iversen, N., Middelburg, J.J., Delille, B., Pizay, M.D., Frankignoulle, M., Gattuso, J.-P. (2005). Net ecosystem metabolism in a micro-tidal estuary (Randers Fjord, Denmark): evaluation of methods and interannual variability.Marine Ecology-Progress Series, 301, pp. 23–41.
22.Goulven, G., Hans, H., Caroline, P., Alberto, V., (2010). Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially‐explicit typology of estuaries and continental shelves.GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L15607, doi:10.1029/2010GL043691.
23.Gorham, E. (1991). Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1, 182–195.
24.Guiling Z., Jing Z., Jie X., Zhang, F. (2006). Distributions, sources and atmospheric fluxes of nitrous oxide in Jiaozhou Bay. Estuarine, Coastal and Shelf Science Volume 68, Issues 3–4, July 2006, Pages 557–566 Ecological and Management Implications on Seagrass Landscapes.
25.Hadi, A., Inubushi, K., Furukawa, Y., Purnomo, E. Rasmadi, M., Tsuruta, H. (2005). Greenhouse gas emission from tropical peatlands of Kalimantan, Indonesia. Nutrient Cycling in Agroecosystems 71, 73-98.
26.Hamilton, J.D., Kelly, C.A., Rudd, J.W.M., Hesslein, R.H., Roulet, N.T. (1994). Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson Bay lowlands (HBLs). J. Geophys. Res. 99,1495-1510.
27.Hemond, H.F. (1980).Biochemistry of Thoreau’s Bog, Concord, Mass. Ecological Monographs 50, 507-526.
28.Huttunen, J.T., Alm, J., Liikanen, A., Juutinen, S., Larmila, T., Hammar, T., Silvola, J., Martikainen, P.J. (2003a). Fluxes of methane,carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 52, 609-621.
29.Itthlpatachai, L.B., Kjerfve, S., Rakkhiew, A., Siripong, D., Srisangtong, S., Tangjaitrong, G. (1911). Wattayakorn and E.Wolanski, Oceanography and hydrology studies. p:8-34. In:The integrated multi~disciplinary survey and research programme of the Ranong mangrove ecosystem.UNESCO, Bangkok, Thaniland (ISBN 974-8260-54-2) 183p.
30.IPCC, (2006). IPCC Guidelines for National Greenhouse Gas lnventories.Volume 4, Agriculture Forestry and Other Land Use. Lnstitute gor Global Environmental Strategies, Hayama.
31.IPCC, Climate Change (2007): The Physical Science Basis. Published for the lntergovernmental Panel on Vlimate Change (IPCC). Cambridge University Press, UK.
32.Kayranli, B., Scholz, M., Mustafa, A., Hedmark, Å. (2010). Carbon storage and fluxes within 7 freshwater wetlands: a critical review. Wetlands. 30, 111-124.
33.Kelly, C.A., Chynoweth, D.P. (1981). The contributions of temperature and of the input of organic matter in controlling rates of sediment methanogenesis.Limnology and Oceanography, 26, pp. 891–897.
34.Kemenes, A., Forsberg, B.R., Melack, J.M. (2007). Methane release below a tropical hydroelectric dam.Geophysical Research Letter, 34, p. LI2809 doi: 10.129/2007GL029479.
35.Khalil, M.A.K., Shearer, M.J. (1993). Sources of methane: an overview. In: Khalil, M.A.K. (Ed.), Atmospheric Methane Sources, Sinks, and Role in Global Change, vol. 13. Nato ASI Series, Springer, Berlin, pp. 180–198.
36.Kone, Y.J.M., Borges, A.V. (2008). Dissolved inorganic carbon dynamics in the waters surrounding forested mangroves of the Ca Mau Province (Vietnam),Estuar. Coast. Shelf Sci. 77, 409-421.
37.Kone,Y.J.M., Abril, G., Kouadio, K.N., Delille, B., Borges, A.V. (2009). Seasonal variability of carbon dioxide in the rivers and lagoons of lvort Coast (West Africa). Estuaries and Coasts 32, 246-260.
38.Laruelle, G.G., Durr, H.H., Slomp, C.P., Borges, A.V. (2010). Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophysical Research Letter 37, L15607.
39.Lars, K, Anette, N, Martin, H. Mogens, H.G., Thomas B., Henrik, B.M. (2003). Preliminary estimates of contemporary soil organic carbon stocks in Denmark using multiple datasets and four scaling-up methods. Agriculture, Ecosystems and Environment 96, 19–28.
40.Liu, Y., Zhu, R., Ma, D., Xu, H., Luo, Y., Huang, T., Sun, L. (2011). Temporal and spatial variations of nitrous oxide fluxes from the littoral zones of three alga-rich lakes in coastal Antarctica. Atmospheric Environment 45, 1464-1475.
41.Lovett, G.M., Cole, J.J., Pace, M.L. (2006). Is net ecosystem production equal to ecosystem carbon accumulation? Ecosystems 9, 152-155.
42.Malmer, N. (1975). Development of bog mires. In A.D. Hasler, ed. Coupling of Land and Water System. Ecology Studies 10. Springer-Verlag, New York, pp. 85-92.
43.McCarty G.W., Ritchie J.C. (2002). Impact of soil movement on carbon sequestration in agricultural ecosystems. Environmental Pollution 116:423–430.
44.Mitsuru H., Yukiko S., Yasushi S., Seiichi N., Hidenobu K. (2007). Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan. Chemosphere 68 ,597–603.
45.Mitsuru H., Yukiko S., Yasushi S., Seiichi N., Hidenobu K. (2007). Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan .Volume 68, Issue 3, June 2007, Pages 597–603.
46.Mitsch, W.J., Wu, X. (1995). Wetland and global change. In Lal, R., Kimble, J., Levine, E., Stewart, B.A. eds. Advances in Soil Science, Soil Management, and Greenhouse Effect. CRC/Press/Lewis Publishers, Boca Raton, FL.
47.Mitsch, W.J., Gosselink, J.G. (2007). Wetlands, 4th edn. Wiley, New York.
48.Middelburg, J.J., Nieuwenhuize, J., Iversen, N, Hogh, N., Wilde, H.D., Helder, W., Seifert, R., Christof, O. (2002). Methane distribution in European tidal estuaries. Viogeochemistry 59, 95-119.
49.Moore, T.R., Bellamy, D.J. (1974) Peatlands. Springer-Verla.
50.Nirmal Rajkumar, J., Barnes, R., Ramesh, R., Purvaja, R.C. (2008). Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India. Volume 56, Issue 12, December 2008, Pages 2043–2051.
51.Ramesh, R., Purvaja, R., Parashar, D.C., Gupta, P.K., Mitra, A.P. (1997). Anthropogenic forcing on methane emission from the polluted wetlands (Adyar river) of Madras City, India, Ambio 26, 369-374.
52.Rosa, L.P., Matvienko, B., Santos, M.A., Sikar, E., Xavier, A.E., Santos, E., Menezes, C.F., Luorenço,R.S.M. (2002). Carbon dioxide and methane emissions from Brazilian hydroelectric reservoirs: background report. Brazilian Ministry of Science and Technology.
53.Riera, J.L., Schindler, J.E., Kratz, T.K. (1999). Seasonal dynamics of carbon dioxide and methane in two Clearwater lakes and two bog lakes in northern Wisconsin, USA. Can. J. Fish. Aquat. Sci. 56, 265-274.
54.Roulet, N.T. (2000). Peatland, carbon storage, greenhouse gases, and Kyoto Protocol: prospects and significance for Canada. Wetlands 20, 605-615.
55.Roulet, N.T., Lafleur, P.M., Richard, P.J.H., Moore, T.R., Humphreys, E.R., Bubier, J.L. (2007). Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology 13, 397-411.
56.Roulet, N.T., Crill, P.M., Comer, N.T., Dove, A., Bourbonniere, R.A. (1997). CO2 and CH4 flux between a boreal beaver pond and the atmosphere. J. Geophys. Res. 102, 29313-29319.
57.Schrier-Uijl, A.P., Varaart, A.J., Leffelaar, P.A., Berendse, F., Veenendaal, E.M. (2010). Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands. Biogeochemistry. doi:10.1007/s10533-010-9440-7.
58.Shalini, A., Ramesh, R., Purvaja, R., Barnes, J. (2006). Spatial and temporal distribution of methane in an extensive shallow estuary, south India. J. Earth Syst. Sci. 15, 451-460.
59.Sidinei, M.T., A. Enrich-Prast, J.F. Gonçalves Jr., A.M. dos Santos, and F.A. (2001). Esteves. Metabolism and gaseous exchanges in two coastal lagoons from Rio de Janeiro with distinct limnological characteristics. Brazilian Archives of Biology and Technology 44: 433–438.
60.Striegl, R.G., Michmerhuizen, C.M. (1998). Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnol. Oceanogr. 43, 1519-1529.
61.Tanner, C.C. (2001). Plants as ecosystem engineers in subsurface-flow treatment wetlands Water Sci. Technol., 44, pp. 9–17.
62.Trumbore, S.E., Bubier, J.L., Harden, J.W., Grill, P.M. (1999). Carbon cycling in boreal wetlands: A comparison of three approaches. Journal of Geophysical Research.104 (D22), 27,673-27,682.
63.Verma, A., Subramanian, V., Ramesh, R. (2002). Methane emission from acoastal lagoon: Vembanad Lake, West Coast, India. Chemosphere 47, 883-889.
64.Wang, H.J., Wang, W.D., Yin, C.Q., Wang, Y.C., Lu, J.W. (2006). Littoral zones as the“hotspots” of nitrous oxide (N2O) emission in a hyper-eutrophic lake in China.Atmospheric Environment 40, 5522-5527.
65.Wang, Z.A., Cai, W.J. (2004). Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary (the Duplin River): Amarsh CO2 pump. Limnol. Oceanogr. 49, 341-354.
66.Worrall, F., Reed, M., Warburton, J., Burt, T. (2003). Carbon budget for British upland peat catchment. The Science of the Total Environment 312, 133-146.
67.Liu, X.L., Liu C.Q., Li, S.L., Wang, F.S., Wang, B.L., Wang, Z.L. (2011). Spatiotemporal variations of nitrous oxide (N2O) emissions from two reservoirs in SW China.Atmospheric Environment 45 (2011) 5458-5468.
68.Zhu,T., Sikora,F.J. (1995). Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands Water Sci. Technol., 32, pp. 219–228.
69.Zoltai, S.C. (1988). Ecoclimatic provinces of Canada and man-induced climatic change. Canada Committee on Ecological Land Classification, .Newsletter 17:12-15.
70.內政部營建署城鄉發展分署,2011。國家重要濕地碳匯功能調查計畫,結案報告。
71.王小利,段建軍,郭勝利,(2007)。黃土丘陵區小流域表層土壤的有機碳密度及其空間分布。
72.王銀波、謝學武,1997。台灣中南部水稻田、旱田、濕地、林地、及坡地土壤甲烷之釋出及其影響因子。台灣地區大氣環境變遷(呂世宗、柳中明、楊盛行編),pp.99-121。國立台灣大學農業化學系和國立台灣大學全球變遷中心,台北,台灣。
73.王樹倫、陳鎮東、張哲明,1997。台灣臨近水域甲烷通量之研究。台灣地區大氣環境變遷 ( 呂世宗、柳中明、楊盛行編) ,pp.143-154。國立台灣大學農業化學系和國立台灣大學全球變遷中心,台北,台灣。
74.李偉搖,2010,台灣南部自然濕地甲烷釋出係數之研究,崑山科技大學環境工程系碩士論文。
75.張哲明、陳鎮東、王樹倫,1998。南台灣河、湖、淺海及溼地之甲烷釋出量研究。台灣地區大氣環境變遷 (三) (呂世宗、柳中明、楊盛行編),pp.71-84。國立台灣大學農業化學系和國立台灣大學全球變遷中心,台北,台灣。
76.趙震慶,1997。台灣中部及南部水稻田、旱田、濕地、森林及坡地果園土壤氧化亞氮之釋放及其影響因子。台灣地區大氣環境變遷(呂世宗、柳中明、楊盛行編),pp.173-194。國立台灣大學農業化學系、國立台灣大學全球變遷中心,台北,台灣。
77.楊盛行、劉清標、陳顗竹、張讚昌、魏嘉碧、賴朝明、王銀波、趙震慶、張哲明、王樹倫、陳鎮東。2003。台灣河川湖泊溼地甲烷及氧化亞氮排放量測。全球變遷通訊雜誌 40: 59-71。
78.賴朝明,1997。台灣北部水稻田、旱田、濕地、林地及垃圾掩埋場氧化亞氮之釋放及其影響因子。台灣地區大氣環境變遷 (呂世宗、柳中明、楊盛行編),pp.383-400。國立台灣大學農業化學系和國立台灣大學全球變遷中心,台北,台灣。
79.賴朝明,1998。台灣北部旱田、森林土壤及垃圾掩埋場氧化亞氮之釋放及其影響因子。台灣地區大氣環境變遷(三) (呂世宗、柳中明、楊盛行編),pp.105-117。國立台灣大學農業化學系和國立台灣大學全球變遷中心,台北,台灣。
80.錢元皓,2003,台灣水田、旱田與濕地土壤氧化亞氮之釋放通量及其減量對策,國立台灣大學農業化學研究所碩士論文。
81.遲傳德,許信旺,吳新民,潘根興,(2006)。安徽省升金湖濕地土壤有機碳儲存與分布。
82.賴建志,2008,人工溼地之甲烷及氧化亞氮釋放研究嘉南藥理科技大學環境工程與科學系碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top