跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/09 10:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何佳穎
研究生(外文):Chia-ying Ho
論文名稱:南台灣紅樹林濕地碳吸存能力之調查及估算
論文名稱(外文):Estimation of Carbon Sequestration for a Mangrove Wetland in Southern Taiwan
指導教授:林瑩峯
指導教授(外文):Ying-feng Lin(林瑩峯)
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:145
中文關鍵詞:總呼吸通量紅樹林土壤碳儲存量甲烷異營性呼吸通量氧化亞氮土壤有機碳密度淨初級生產量碳吸存
外文關鍵詞:Carbon Budget Calculation MethodNet Primary ProductivityGas EmissionSoil Organic Matter PoolNitrousoxideMethaneNet Ecosystem ProductionCarbon SequestrationHeterotrophic RespirationMangrove WetlandCarbon dioxideBiomass PoolSoil carbon density
相關次數:
  • 被引用被引用:13
  • 點閱點閱:1966
  • 評分評分:
  • 下載下載:248
  • 收藏至我的研究室書目清單書目收藏:0
本研究以紅樹林的淨初級生產量、溫室氣體,包含CH4、N2O、CO2年釋放通量、碳儲存量等因素,藉由碳質量收支計算法,估計濕地的碳吸存能力。為達到研究目的,本研究於2010年9月到2012年3月在台灣七股鹽田紅樹林濕地,分別收集水質、土壤、紅樹林灌木的落葉量及樹木胸徑、淨初級生產量、甲烷(CH4)釋放通量、氧化亞氮(N2O)釋放通量、二氧化碳(CO2)釋放通量。
依據資料分析結果,紅樹林濕地所監測到甲烷(CH4)在透光環境的釋放通量介於-0.43~5.44 mg CH4-C m-2 h-1;不透光環境的釋放通量介於-0.4~0.48 mg CH4-C m-2 h-1。氧化亞氮(N2O)在透光環境的釋放通量介於-85.34~173.23μg N2O m-2 h-1;不透光環境的釋放通量介於-27.44~177.73μg N2O m-2 h-1。二氧化碳(CO2)在透光環境的釋放通量介於-97.34~40.21 mg CO2-C m-2 h-1;不透光環境的釋放通量介於5.04~97.84 mg CO2-C m-2 h-1。依上述資料估算出,七股紅樹林濕地CH4及N2O的年釋放通量分別為3 g CH4-C m-2 yr-1、149 mg N2O m-2 yr-1。同時,紅樹林的總呼吸通量(CO2)為246.74 g CO2-C m-2 yr-1,異營性呼吸通量為148 g C m-2 yr-1。
在紅樹林淨初級生產量(FNPP)估計上,依據胸徑推估法,FNPP為632( 273~1036 ) g C m-2 yr-1;依據係數估算法,FNPP為913( 820~1067 ) g C m-2 yr-1。因此,本研究認為七股紅樹林每年淨初級生產量(FNPP)為632~913 g C m-2 yr-1。在濕地碳吸存通量上,本研究發現七股紅樹林濕地碳吸存通量結果為462~749 g C m-2 yr-1,與國外文獻之相對數值561~1,170 g C m-2 yr-1相似。
本研究利用紅樹林地面上(AGA)和地面下生物量(BGB)所得總生物量平均、紅樹林植物的生物量含碳比率(Cfm)及每株紅樹林植物所佔面積( )為參數,計算出單位面積紅樹林生物碳密度平均為3,299 g C m2。因紅樹林總面積57,220.6 m2,故紅樹林總生物碳儲存量為189 ton C。在有機碳密度估量上,藉由土壤有機碳密度(SCD)方法,本研究估計有機碳密度平均為2,485 g C m2,紅樹林總土壤有機碳儲存量為142 ton C。
The purpose of this study was to estimate the carbon sequestration of wetlands using the parameters of the Net Primary Production, the yearly emission of greenhouse gases containing CH4, N2O, and CO2, and the carbon storage of mangrove forests through the carbon budget calculation method. To address the purpose, this study collected the data of the water quality, soil, the quantity of dead leaves, and the diameter at breast height of mangrove forest, Net Primary Production, CH4 emission, N2O emission, and CO2 emission at Chigu mangrove forests wetland, Taiwan, from September, 2010 to March, 2012.
Based on the collected data, it was found that at Chigu mangrove forests wetland, the CH4 emission in a translucent environment and an opaque environment were from -0.43 to 5.44 mg CH4-C m-2 h-1 and from -0.4 to 0.48 mg CH4-C m-2 h-1, respectively. The N2O emission in a translucent environment and in an opaque environment were from -85.34 to 173.23μg N2O m-2 h-1and from -27.44 to 177.73μg N2O m-2 h-1, respectively. The CO2 emission in a translucent environment and an opaque environment were from -97.34 to 40.21 mg CO2-C m-2 h-1 and from 5.04 to 97.84 mg CO2-C m-2 h-1, respectively. Based on the results, this study estimated that the yearly emissions of CH4 and N2O were 3 g CH4-C m-2 yr-1 and 149 mg N2O m-2 yr-1, respectively. The total ecosystem respiration and the heterotrophic respiration of the mangrove forests were 246.74 g CO2-C m-2 yr-1 and 148 g C m-2 yr-1, respectively.
Based on the Diameter at Breast Height (DBH) FNPP and the coefficient estimation methods, the Net Primary Productivity (FNPP) were calculated to be 632 g C m-2 yr-1 and 913 g C m-2 yr-1, respectively. This study argued that the FNPP of Chigu mangrove forests wetland was from 462 to 749 g C m-2 yr-1 and was similar to the results of 561 to 1,170 g C m-2 yr-1 reported in the research literature.
Based on the average of the total above-ground biomass and the total below-ground biomass, the Cfm, and the average area that a mangrove plant covers ( ), this study argued that the carbon density of Chigu mangrove forests wetland was 3,299 g C m2. The area of Chigu mangrove forests wetland is 57,220.6m2, and so the total of Soil Organic Matter Pool is 189 ton C. Using the Soil Organic Carbon Density calculation method, this study also argued that the average Soil Organic Carbon Density of Chigu mangrove forests wetland was 2,485 g C m2, and the total Soil Organic Carbon Density was 142 ton C.
中文摘要 I
英文摘要 III
致謝 V
目錄 VI
表目錄 X
圖目錄 XII
照片目錄 XIII
第一章 前言 1
1.1 研究動機 1
1.2 研究方向與目的 3
第二章 文獻回顧 5
2.1 濕地簡介 5
2.1.1 濕地的定義 5
2.1.2 濕地的種類 5
2.2 海岸濕地 6
2.2.1 紅樹林 15
2.2.2 紅樹林的功能 16
2.3 濕地環境中的碳循環 17
2.4 濕地碳吸存能力的調查方法 22
2.5 碳收支計算法 23
2.5.1 碳收支計算的理論架構 23
2.5.2 碳收支計算的通用方程式 28
2.6 當前的全球碳收支及濕地的碳庫與碳吸存 31
2.7 與本研究相關文獻報導 36
第三章 研究設備與方法 38
3.1 研究場址敘述 38
3.1.1 七股鹽田紅樹林濕地 38
3.2 研究場址溫室氣體及水質現地採樣 42
3.2.1 採樣頻率 42
3.2.2 採樣方法 42
3.2.3 溫室氣體採樣法 44
3.3 溫室氣體分析方法 47
3.3.1 甲烷分析條件 47
3.3.2 氧化亞氮分析條件 47
3.3.3 二氧化碳分析條件 48
3.3.4 氣體濃度定量分析 51
3.4 溫室氣體釋放通量之估算 51
3.5 紅樹林的碳收支計算 52
3.5.1 紅樹林淨初級生產量測量方法 53
3.5.1.1 落葉淨初級生產量測量方法 53
3.5.1.2 紅樹林地面上幹木淨初級生產量測量方法 55
3.5.1.3 紅樹林地面下根部淨初級生產量測量方法 57
3.5.2 紅樹林有機碳輸入碳通量 58
3.5.3 紅樹林有機碳輸出碳通量 58
3.5.4 紅樹林土壤的異營性呼吸通量 59
3.5.5 紅樹林甲烷釋放當量通量 61
3.6 碳庫估算 65
3.6.1 生物碳儲存量的估算 65
3.6.2 土壤有機物碳儲存量的估算 66
3.7 水質分析 67
3.8 固體樣本乾重分析法 69
3.8.1 固體樣本有機碳含量分析 70
3.9 土壤採樣方法 71
3.9.1 土壤有機物及碳含量分析 71
3.9.2 土壤假密度分析 72
第四章 結果與討論 73
4.1 水質分析 73
4.1.1 溫度與酸鹼值的比較 73
4.1.2 鹽度與導電度的比較 74
4.1.3 氧化還原電位與溶氧的比較 74
4.1.4 懸浮固體與濁度的比較 75
4.1.5 化學需氧量與生化需氧量的比較 75
4.1.6 總凱式氮、氨氮、亞硝酸氮與硝酸氮的比較 76
4.1.7 磷酸鹽與硫酸鹽的比較 76
4.2 濕地土壤性質分析 80
4.3 紅樹林的呼吸通量 84
4.3.1 時間與空間變化 84
4.3.2 全年通量估算 84
4.4 紅樹林甲烷釋放通量 86
4.4.1 時間與空間變化 86
4.4.2 全年通量估算 87
4.5 紅樹林氧化亞氮氣體通量 88
4.5.1 時間與空間變化 88
4.5.2 全年通量估算 89
4.6 淨初級生產量 95
4.6.1 落葉生產量 95
4.6.2 地面上生質物淨初級生產量 97
4.6.3 地面下根部淨初級生產量 98
4.6.4 紅樹林淨初級生產量 99
4.7 碳吸存通量 107
4.8 碳庫估算 111
4.8.1 土壤碳含量 111
4.8.2 土壤有機碳密度 112
4.8.3 土壤有機物碳儲存量估算 113
4.8.4 紅樹林生物碳儲存量估算 113
第五章 結論與建議 118
5.1 結論 118
5.2 建議 121
第六章 參考文獻 122
(1)Alongi, D.M., Clough, B.F., Robertson, A.I., (2005). Nutrient-use efficiency in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Aquatic Botany 82, 121-131.
(2)Bartlett, K.B., Harris, R.C., (1993). Review and assessment of methane emissions from wetlands. Chemosphere 26:261–320. doi:10.1029/2009JG001186.
(3)Bouillon, S. (2008). Mangrove production and carbon sinks: A revision of global budget estimates, Global Biogeochem. Cycles, 22, GB2013, doi:10.1029/2007GB003052.
(4)Briggs, S.V., (1977). Estimates of biomass in a temperate mangrove community. Aust. J. Ecol. 2, 369–373.
(5)Barr, J. G., Engel,V. Fuentes, J. D., Zieman, J. C., O’Halloran, T. L., Smith III, T. J., Anderson, G. H., (2010). Controls on mangrove forest‐atmosphere carbon dioxide exchanges in western Everglades National Park, J. Geophys. Res., 115, G02020.
(6)Cahoon, D. R., Lynch, J. C. (1997). Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, U.S.A. Mangroves Salt Marshes 1, 173– 186.
(7)Cardona, P., Botero, L., (1998). Soil characteristics and vegetation structure in a heavily deteriorated mangrove forest in the Caribbean coast of Colombia. Biotropica 30, 24– 34.
(8)Chmura, G. L., Anisfeld, S. C. Cahoon, D. R., Lynch, J. C., (2003). Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem. Cycles, 17(4), 1111, doi:10.1029/2002GB001917.
(9)Fan, K.C., (2008). Population structure, allometry and above-ground biomass Avicennia marina forest at Chishui river estuary, Tainan County, Taiwan.林業研究季刊 30, 1-16.
(10)Golley, F., Odum, H.T., Wilson, R., (1962). The structure and metabolism of a Puerto Rican red mangrove forest in May. Ecology 43, 9–19.
(11)Hadi, A., Inubushi, K., Furukawa, Y., Purnomo, E. Rasmadi, M., Tsuruta, H., (2005). Greenhouse gas emission from tropical peatlands of Kalimantan, Indonesia. Nutrient Cycling in Agroecosystems 71, 73-98
(12)IPCC, (2001). Climate Change 2001: The Scientific Basis. Published for the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, UK.
(13)IPCC, (2007). Climate Change 2007: The Physical Science Basis. Published for the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, UK.
(14)J.C. Trexler, E.E. Gaiser and D.L. Childers (eds), (2006). Interaction of Hydrology and Nutrients in Controlling Ecosystem Function in Oligotrophic Coastal Environments of South Florida.DOI 10.1007/s10750-006-0149-5
(15)Jobbagy, R., R. B. Jackson , (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Application. 10:423-436.
(16)Day J.W. Jr., Carlos Coronado-Molina, Vera-Herrera F.R., Twilley R., Rivera-Monroy V.H., Alvarez-Guillen H., Day R., Conner. W., (1996). A 7 year record of above-ground net primary production in a southeastern Mexican mangrove forest.Aquatic Botany. 55( 1), 39–60.
(17)Kayranli, B., Scholz, M., Mustafa, A., Hedmark, A., (2010). Carbon Storage and Fluxes within FreshwaterWetlands: a Critical Review. Wetland 30, 111-124.
(18)Komiyama, A., Ong, J.E., Poungparn, S., (2008). Allometry, biomass, and productivity of mangrove forests: A review, Aquat. Bot. 89, 128–137.
(19)Komiyama, A., Ogino, K., Aksornkoae, S., Sabhasri, S., (1987). Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. J. Trop. Ecol. 3, 97–108.
(20)Komiyama, A., Moriya, H., Prawiroatmodjo, S., Toma, T., Ogino, K., (1988). Forest primary productivity. In: Ogino, K., Chihara, M. (Eds.), Biological System of Mangrove. Ehime University, pp. 97–117.
(21)Komiyama, A., Havanond, S., Srisawatt,W.,Mochida, Y., Fujimoto, K., Ohnishi, T., Ishihara, S., Miyagi, T., (2000). Top/root biomass ratio of a secondary mangrove (Ceriops tagal (Perr.) C. B. Rob.) forest. Forest Ecol.Manage. 139, 127–134.
(22)K. Krithika, R. Purvaja and R. Ramesh. Fluxes of methane and nitrous oxide from an Indian mangrove., (2007). Current science,vol.94,no.2.
(23)Lovett, G.M., Cole, J.J., Pace, M.L., (2006). Is net ecosystem production equal to ecosystem carbon accumulation? Ecosystems 9, 152-155.
(24)Lynch, J.C., (1989). Sedimentation and nutrient accumulation in mangrove ecosystems of the Gulf of Mexico, M.S. thesis, Univ. of Southwestern Louisiana, Lafayette, La.
(25)Lal, R. , (2004). Soil carbon sequestrationimpacts on global climate change and foodsecurity. Science 304: 1623-1627.
(26)Mander, U., Lõhmusa, K., Teiter, S., Nurka, K.,Mauring, T., Augustin, J., (2008). Gaseous fluxes from subsurface flow constructed wetlands for wastewater treatment. Journal of Environmental Science and Health, Part A 40, 1215-1226.
(27)Mander, U., Lõhmusa, K., Teiter, S., Mauring, T., Nurka, K., Augustin, J., (2008). Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands. Science of the Total Environment 404, 343-353.
(28)Mackey, A.P., (1993). Biomass of the mangrove Avicennia marina (Forsk.) Vierh. near Brisbane, south eastern Queensland. Aust. J. Mar. Freshwater Res. 44, 721–725.
(29)Mitsch W.J., Wu, X., (1995). Wetland and global change. In Lal, R., Kimble, J., Levine, E., Stewart, B.A. eds. Advances in Soil Science, Soil Management, and Greenhouse Effect. CRC/Press/Lewis Publishers, Boca Raton, FL.
(30)Mitsch, W.J., Gosselink, J.G., (2007). Wetlands, 4th edn. Wiley, New York.
(31)Mitsch, W.J., Gosselink, J.G., (1993). “Wetlands 2 ed,” Van Nostrand Reinhold, N. Y.
(32)Naidoo, G., (1980). Mangrove soils of the Beachwood area, Durban. J. S. Afr. Bot. 46, 293–304.
(33)Poungparn, S., (2003). Common allometric relationships for estimating the biomass of mangrove forests. Ph.D. dissertation, Gifu University, 87 pp.
(34)Ross, M.S., Meeder, M.S., Sah, J.P., Ruiz, P.L., Telesnicki, G.J., (2000). The southeast saline Everglades revisited: 50 years of coastal vegetation change. J. Vegetation Sci. 11, 101–112.
(35)Post W.M., Emanuel W.R., Zinke P.J., (1982). Soil carbon pools and world life zone. Nature 298:156-159.
(36)Roulet, N.T., Lafleur, P.M., Richard, P.J.H., Moore, T.R., Humphreys, E.R., Bubier, J.L., (2007). Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology 13, 397-411.
(37)Roulet, N.T., (2000). Peatland, carbon storage, greenhouse gases, and Kyoto Protocol: prospects and significance for Canada. Wetlands 20, 605-615.
(38)Sharon M.L. Ewe, Evelyn E. Gaiser , Daniel L. Childers, David Iwaniec,Victor H. Rivera-Monroy & Robert R. Twilley., (2006). Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida Coastal. Everglades.Hydrobiologia 569:459–474
(39)Sasitorn Poungparn, Akira Komiyama, Aki Tanaka, Tanuwong Sangtiean, Chatree Maknual, Shogo Kato, Paisarn Tanapermpool and Pipat Patanaponpaiboon.Carbon dioxide emission through soil respiration in a secondary mangrove forest of eastern Thailand., (2009). Journal of Tropical Ecology .25(4) , pp 393-400 . DOI 10.1017/S0266467409006154.
(40)Trumbore, S.E., Bubier, J.L., Harden, J.W., Grill, P.M., (1999). Carbon cycling in boreal wetlands: A comparison of three approaches. Journal of Geophysical Research 104 (D22), 27,673-27,682.
(41)Worrall, F., Reed, M., Warburton, J., Burt, T., (2003). Carbon budget for British upland peat catchment. The Science of the Total Environment 312, 133-146.
(42)王銀波、謝學武,(1997)。台灣中南部水稻田、旱田、濕地、林地、及坡地土壤甲烷之釋出及其影響因子,台灣地區大氣環境變遷(呂世宗、柳中明、楊盛行編),pp.99-121,國立台灣大學農業化學系和國立台灣大學全球變遷中心,台北台灣。
(43)范貴珠,(2007)。台南縣急水溪海茄苳林分枯落物量及養分之動態變化,台灣林業科學 22(4),441-454。
(44)莊建和,(2010)。人工濕地碳質量收支平衡及碳吸存能力之研究,嘉南藥理科技大學環境工程與科學系碩士論文。
(45)薛美莉,(1995)。消失中的濕地森林-記台灣的紅樹林,台灣特有生物研究保育中心,第65~80頁。
(46)薛美莉,(1995)。台灣紅樹林重要生育地調查,紅樹林生態系研討會論文集,第93~99頁。
(47)內政部營建署城鄉發展分署,(2011)。國家重要濕地碳吸存功能調查計畫,結案報告。
(48)王巧萍,(2005)。氣候變遷下之森林生態系碳循環,森林與環境變遷研討會論文集,國立中興大學森林學系主辦,國立中興大學農業暨自然資源學院十樓國際會議廳,第226頁。
(49)珍妮絲,(2008)。羅浮博士的文章「創刊十週年評論︰氣候變遷對珊瑚礁的影響」10th Anniversary Review: A Changing Climate for Coral Reefs),《環境監測期刊》(Journal of Environmental Monitoring),第10期,第21至29頁,www.rsc.org/jem。
(50)雲林縣環境保護局,喬木碳吸存調查,減碳見成效,(http://www.ylepb.gov.tw/pda/news/index-1.asp?m2=325&id=2050)。
(51)紅樹林銳減,氣候變遷惡化,(2011)。大紀元,(http://www.epochtimes.com/gb/11/4/4/n3218019.htm)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top