跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 08:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游宗霖
研究生(外文):Tsung-Lin Yu
論文名稱:以鐵錳汙泥改質石英砂除砷之研究
論文名稱(外文):The study of arsenic removal using iron-manganese coated sand derived from water treatment sludge
指導教授:萬孟瑋萬孟瑋引用關係
指導教授(外文):Meng-Wei Wan
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:103
中文關鍵詞:五價砷吸附石英砂地下水
外文關鍵詞:groundwaterquartz sandadsorptionpentavalent arsenic
相關次數:
  • 被引用被引用:1
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本試驗是以淨水廠產出之鐵錳污泥所改質之石英砂(Fe-Mn sludge sand, FMSS)作為吸附劑,探討FMSS在不同克數、不同pH及水公司實場地下水原水中對As(V)的吸附作用。在不同克數及不同pH之試驗使用人工配製原水,砷濃度約為500ppb上下進行試驗。結果顯示隨吸附劑量增加,對砷之去除率隨之提升,但吸附劑對砷之單位吸附量卻隨吸附劑量之增加而減少。此外,在低pH的環境下有助於去除水體中的As(V),pH為12之試驗顯示砷之去除率極低,主要因FMSS在高pH下因高於其等電位點,導致表面帶負電性。而高pH下存在水中砷之物種亦帶負電荷,電性斥力導致砷不易被吸附。在實場含砷地下水之試驗部分,次氯酸鈉的添加可以加速對砷之吸附,並較未加氯者有較高之砷去除率。評估Freundlich及Langmuir等溫吸附模式後,發現單層吸附之Langmuir模式較為符合FMSS對砷之吸附作用;另外吸附動力學之評估,顯示本吸附較符合擬二階動力吸附,屬化學性吸附。
In this study, the adsorptive removal of arsenate from aqueous solution using iron-manganese coated sand (FMSS) derived from drinking water treatment sludge was investigated. Under a constant initial concentration of 500 ppb, the effect of mass of FMSS (0.125 to 0.4 g), contact time (1 to 23 h) and initial pH (pH 4 to 12) on the % removal and adsorption capacity of As(V) was examined. Results showed that as the mass of FMSS was increased, the adsorption capacity decreases and % As(V) removal were observed to increase as well. Meanwhile, the adsorption capacity and % As(V) removal would both increase due to increase in contact time and as the initial pH becomes more acidic. The removal of As(V) was observed to decrease as the pH becomes more basic. This is due to the negative surface charge of FMSS at pH 12, which is above its isoelectric point. Under a basic pH, the existing forms of As(V) are HAsO42- and AsO43-, which is also negatively charged. The approaching ions of As(V) will exert a repulsive form towards the surface of FMSS, therefore lower removal and adsorption capacity were obtained. The equilibrium data was analyzed using the Langmuir and Freundlich isotherm, where the Langmuir model correlated well with the experimental data. This implies that the adsorption of As(V) onto FMSS could be described as a monolayer adsorption onto binding sites with the same energy levels. Kinetic equations such as pseudo-first order and pseudo-second order equation were used to evaluate the kinetics data. The experimental data agreed well with pseudo-second order equation, which implies that chemisorption is the rate controlling step. This indicates the formation of a covalent bond between As(V) and binding sites of FMSS by sharing a pair of electrons. The removal of As(V) from real groundwater samples were studied, where a higher % removal could be achieved by application of a pre-treatment method, which is oxidation using NaOCl.
摘要 I
Abstract II
目錄 IV
表目錄 VI
圖目錄 VII
第一章 前言 1
1.1研究緣起 1
1.2研究動機及目的 3
第二章 文獻回顧 5
2.1 砷之危害及流變 5
2.1.1 砷化學 6
2.1.2 砷污染流佈現況 13
2.1.3 砷之用途與危害 20
2.2 水中砷去除技術評析 25
2.2.1 含砷廢水處理技術 25
2.2.2 自來水中砷之去除技術 27
2.3等溫吸附模式(Adsorption isotherm model) 33
2.3.1 Langmuir Isotherm 36
2.3.2 Freundlich Isotherm 37
2.4吸附動力學 37
2.4.1擬一階吸附動力模式(Pseudo-first order kinetic model) 38
2.4.2擬二階吸附動力模式(Pseudo-second order kinetic model) 39
2.5物理/化學吸附 40
2.5.1物理吸附(physical adsorption) 40
2.5.2化學吸附(chemical adsorption) 41
第三章 研究材料及方法 42
3.1實驗架構及流程 42
3.2 鐵錳污泥覆膜石英砂之製備 43
3.3實驗方法與步驟 44
3.4 鐵錳污泥之特性分析 45
3.5實驗器材及設備 47
3.5.1 實驗藥品 47
3.5.2 實驗儀器設備 48
第四章 結果與討論 49
4.1 FMSS之基本特性 49
4.1.1改質濾料表面型態分析 49
4.1.2表面元素成份之分析 53
4.2石英砂與FMSS對As(V)之吸附效果評估 55
4.3 FMSS對As(V)之吸附效果評估 56
4.3.1 本試驗之最適添加劑量 56
4.2.2不同起始砷濃度對FMSS吸附砷去除之影響 58
4.2.3 等溫吸附模式與吸附動力學 60
4.3不同pH下之吸附結果 70
4.4自製FMSS應用於北港地下水除砷之結果 72
第五章 結論與建議 75
5.1結論 75
5.2建議 76
參考文獻 77
Abdullah, M.I., Shiyu, Z., Mosgren, K.(1995) Arsenic and selenium species in the oxic and anoxic waters of the Oslofjord, Norway. Mar. Pollut. Bull. 31, 116–126.

Amstaetter, K., Borch, T., Larese-Casanova, P. and Kappler, A. (2010) Redox transformation of arsenic by Fe(II)-activated goethite (alpha-FeOOH). Environmental Science & Technology 44(1), 102-108.

An, B., Liang, Q. and Zhao, D. (2011) Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles. Water Res 45(5), 1961-1972.

Andreae, M.O., Andreae, T.W.(1989) Dissolved arsenic species in the Schelde estuary and watershed, Belgium. Estuar. Coast. Shelf Sci. 29, 421–433.

Azcue, J.M., Murdoch, A., Rosa, F., Hall, G.E.M.(1994) Effects of abandoned gold mine tailings on the arsenic concentrations in water and sediments of Jack of Clubs Lake, BC. Environ. Technol. 15, 669–678.

Azcue, J.M., Mudroch, A., Rosa, F., Hall, G.E.M., Jackson, T.A., Reynoldson, T.( 1995) Trace elements in water, sediments, porewater, and biota polluted by tailings from an abandoned gold mine in Briti

Azcue, J.M., Nriagu, J.O.(1995) Impact of abandoned mine tailings on the arsenic concentrations in Moira Lake, Ontario. J. Geochem. Explor. 52, 81–89.

Basha, C.A., Selvi, S.J., Ramasamy, E. and Chellammal, S. (2008) Removal of arsenic and sulphate from the copper smelting industrial effluent. Chemical Engineering Journal 141(1-3), 89-98.

Baur, W.H., Onishi, B.-M.H.(1969) Arsenic. In: Wedepohl, K.H. (Ed.), Handbook of Geochemistry. Springer-Verlag, Berlin. pp. 33-A-1–33-0-5.

Berger J. et al. (2004), “Structure and interaction in covalently and ionically crosslinked chittosan hydrogels for biomedical applications” EuropeanJournal of Pharmaceutics and Biopharmaceutics 57, pp.19-34.

Berg, M., Tran, H.C., Nguyen, T.C., Pham, H.V., Schertenleib, R., Giger, W.(2001)Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ. Sci. Technol. 35(13), 2621-2626.

Bissen M., Frimmel F. H. (2003) Arsenic- a review. Part I: Occurrence, toxicity, speciation, mobility, Acta hydrochim. hydrobiol., 31, 1, 9-18.

Chang, F., Qu, J., Liu, H., Liu, R. and Zhao, X. (2009) Fe-Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal: preparation and evaluation. J Colloid Interface Sci 338(2), 353-358.

Chang, F., Qu, J., Liu, R., Zhao, X. and Lei, P. (2010) Practical performance and its efficiency of arsenic removal from groundwater using Fe-Mn binary oxide. J Environ Sci (China) 22(1), 1-6.

Chen, C. J., Chuang, Y. C., Lin, T. M., Wu, H. Y.(1985) Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers. Cancer Res. 45, 5895-5899.

Chen, C. J., Chuang, Y. C., You, S. L., Lin, T. M., Wu, H. Y.(1986) A retrospective study on malignant neoplasms of bladder, lung and liver in blackfoot disease endemic area in Taiwan. Br. J. Cancer. 53, 399-405.

Chwirka, J.D., Thomson, B.M. and Stomp, J.M. (2000) Removing arsenic from groundwater. Journal American Water Works Association 92(3), 79-88.

Cotruvo, J. A., Vogt, C. O.(1990) Rationale for water quality standard and goals, In Water Quality and Trearment, 4thed. By Pontius, F., American Water Works Association.

Cullen, W.R., Reimer, K.J.(1989) Arsenic speciation in the environment. Chem. Rev. 89, 713–764.

Das, D., Chatterjee, A., Mandal, B.K., Samanta, G., Chakraborti, D., Chanda, B.(1995) Arsenic in ground-water in 6 districts of West Bengal, India—the biggest arsenic calamity in the world. 2. Arsenic concentration in drinking-water, hair, nails, urine, skin-scale and liver-tissue, biopsy of the affected people. Analyst 120, 917–924.

Dixit, S. and Hering, J.G. (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental Science & Technology 37(18), 4182-4189.

Ellis, A.J., Mahon, W.A.J.(1977) Chemistry and Geothermal Systems. Academic Press, New York.

Fogarassy, E., Galambos, I., Bekassy-Molnar, E. and Vatai, G. (2009) Treatment of high arsenic content wastewater by membrane filtration. Desalination 240(1-3), 270-273.

Gerrnwood, N.N. Earnshaw. (1984) Chemistry of Elements, Pergamon Press, Oxford,Chapter 13.

Ho, Y.S. (2006), “Review of second-order models for adsorption systems” Journal of Hazardous Materials B136, pp. 681-689.


Hsu, K.-H., Froines, J.R., Chen, C.-J.(1997) Studies of arsenic ingestion from drinking water in northeastern Taiwan: chemical speciation and urinary metabolites. In: Abernathy, C.O., Calderon, R.L., Chappell, W.R. (Eds.), Arsenic Exposure and Health Effects. Chapman Hall, London, pp. 190–209.

Huang Zibo, Lin Jieling.(2007)The Experiments on the Efficiency of Arseic Removal by Iron Chloride Coagulation Combin with Sodium Hypochlorite Pre-oxidation. water purification technology Vol.26 No.2,25-28.

Jain, C.K., Ali, I.(2000) Arsenic: occurrence, toxicity and speciation techniques. Water Res. 34(17), 4304-4312.

Jiang, J.Q.(2001) Removing arsenic from groundwater for the developing world-a review. Water Sci. Technol. 44(6), 89-98.

Lenhart, J.J., Yang, Y.(2004) Arsenic binding by natural organic matter, Manuscript in preparation for Applied Geochemistry.

Lenvik, K., Steinnes, E., Pappas, A.C.(1978) Contents of some heavy metals in Norwegian rivers. Nord. Hydrol. 9, 197–206.

Li, Y.R., Wang, J., Luan, Z.K. and Liang, Z. (2010) Arsenic removal from aqueous solution using ferrous based red mud sludge. Journal of Hazardous Materials 177(1-3), 131-137.

Lin, M.C., Liao, C.M., Liu, C.W., and Singh, S.(2001) Bioaccumulation of arsenic in aquacultural large-scale mullet Liza macrolepis from the blackfoot disease area in Taiwan. Bull. Environ. Contamin. Toxicol. 67: 91-97.

Liu, C.W., Lin, K.H., Kuo, Y.M.(2003) Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. The Science of the Total Environment 313, 77–89.

Liu, R.P., Sun, L.H., Qu, J.H. and Li, G.B. (2009) Arsenic removal through adsorption, sand filtration and ultrafiltration: In situ precipitated ferric and manganese binary oxides as adsorbents. Desalination 249(3), 1233-1237.

Luzi, S., Berg, M., Trang, P.T.K., Viet, P.H., Schertenleib, R.(2003) Household sand filters for arsenic removal. An option to mitigate arsenic from iron-rich groundwater. Chimia 57, 529-536.

McNeill, L.S. and Edwards, M. (1997) Predicting as removal during metal hydroxide precipitation. Journal American Water Works Association 89(1), 75-86.

Makris, K.C., Sarkar, D. and Datta, R. (2006) Evaluating a drinking-water waste by-product as a novel sorbent for arsenic. Chemosphere 64(5), 730-741.

Mandal, B.K., Suzuki, K.T.(2002) Arsenic round the world: a review. Talanta. 58, 201-235.

Mohan, D., Singh, K.P.(2002) Single- and Multi- component adsorption of cadmium and zinc using activated carbon derived from bagasse-an agricultural waste. Water Res. 36, 2304-2318.

Mohan, D. and Pittman, C.U., Jr. (2007) Arsenic removal from water/wastewater using adsorbents - A critical review. Journal of Hazardous Materials 142(1-2), 1-53.

Namasivayam, C., Yamuna, R.T., Arasi, D.J.S.E.(2001) Removal of acid violet from wastewater by adsorption on red mud. Environmental Geology 41, 269-273.

Nguyen, C.M., Bang, S., Cho, J. and Kim, K.W. (2009) Performance and mechanism of arsenic removal from water by a nanofiltration membrane. Desalination 245(1-3), 82-94.
Nicolli, H.B., Suriano, J.M., Peral, M.A.G., Ferpozzi, L.H., Baleani, O.A.(1989) Groundwater contamination with arsenic and other trace-elements in an area of the Pampa, province of Co´rdoba, Argentina. Environ. Geol. Water Sci.
14, 3–16.

Noll, K.E.(1992),"Adsorption Technology for Air and Water Pollution Control",LewisPublishers.

O’Connor, J.T(2002) Arsenic in drinking water Part2: Human exposure and health effects. Water Eng. Manag. 149, 35-37.

Peterson, M.L., Carpenter, R.(1983) Biogeochemical processes affecting total arsenic and arsenic species distributions in an intermittently anoxic Fjord. Mar. Chem. 12, 295–321.

Quentin, K.E., Winkler, H.A.(1974) Occurrence and determination of inorganic polluting agents. Z. fu¨r Bakteriol. und Hygiene 158, 514–523.

Reuther, R.(1992) Geochemical mobility of arsenic in a flowthrough water-sediment system. Environ. Technol. 13, 813–823.

Sampat, P.(2000) Groundwater Shock. World Watch 2, 10-22.

Schulthes, C.P., Key, D.(1996) Estimation of Langmuir constants using linear and nonlinear least squares regression analyses. Soil Science Society of America Journal 60, 433-442.

Sen, M., Manna, A. and Pal, P. (2010) Removal of arsenic from contaminated groundwater by membrane-integrated hybrid treatment system. Journal of Membrane Science 354(1-2), 108-113.


Seyler, P., Martin, J.-M.(1989) Biogeochemical processes affecting arsenic species distribution in a permanently strati-fied lake. Environ. Sci. Technol. 23, 1258–1263.

Seyler, P., Martin, J.-M.(1990) Distribution of arsenite and total dissolved arsenic in major French estuaries: dependence on biogeochemical processes and anthropogenic inputs. Mar. Chem. 29, 277–294.

Smedley, P.L. and Kinniburgh, D.G. (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry 17(5), 517-568.

Smedley, P.L., Kinniburgh, D.G., Macdonald, D.M.J., Nicolli, H.B., Barros, A.J., Tullio, J.O., Pearce, J.M. and Alonso, M.S. (2005) Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Applied Geochemistry 20(5), 989-1016.

Sonderegger, J.L., Ohguchi, T.(1988) Irrigation related arsenic contamination of a thin, alluvial aquifer, Madison River Valley, Montana, USA. Environ. Geol. Water Sci. 11, 153–161.

Thirunavukkarasu, O.S., Viraraghavan, T., Subramanian, K.S., Chaalal, O. and Islam, M.R. (2005) Arsenic removal in drinking water - Impacts and novel removal technologies. Energy Sources 27(1-2), 209-219.

USEPA (1984) Ambient Water Quality Criteria Doc: Arsenic. EPA, 40/5-80-021.

USEPA (The United States Environmental Protection Agency)(2001) National Primary Drinking Water Regulations; Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring. Federal Register, 66:14, 6975-7066, US EPA, Washington, DC.


Van der Bruggen, B., Vandecasteele, C., Van Gestel, T., Doyen, W. and Leysen, R. (2003) A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environmental Progress 22(1), 46-56.

Vu, K.B., Kaminski, M.D., Nunez, L.(2003) Review of Arsenic Removal Technologies.

Waslenchuk, D.G.(1979) The geochemical controls on arsenic concentrations in southeastern United States rivers. Chem. Geol. 24, 315–325.

Welch, A.H., Lico, M.S., Hughes, J.L.(1988) Arsenic in ground-water of the Western United States. Ground Water 26, 333–347.

Wickramasinghe, S.R., Han, B.B., Zimbron, J., Shen, Z. and Karim, M.N. (2004) Arsenic removal by coagulation and filtration: comparison of groundwaters from the United States and Bangladesh. Desalination 169(3), 231-244.

Wilkie, J.A., Hering , J.G.(1996) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/ adsorbent ratios and co-occurring solutes. Colloids Surfaces A: Physicochemical and Engineering Aspects. 107, 97-110.

William, W.N., Lisa A. C.(2001) Environmental Engineering Science, John Wiley& Sons, INC., USA.

World Health Organization.(2000) Environmental health criteria: arsenic Geneva: World Health Organization.

Wu, M. M., Kuo, T. L., Hwang, Y. H., Chen, C. J.(1989) Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. American Journal of Epidemiology 130, 1123-1132.


Yamauchi, H., Fowler, B.A.(1994) Toxicity and metabolism of inorganicand methylated arsenicals, In: Jerome O. Nriagu (Eds.) Arsenic in the environment, Part II: 206 Human Health and Ecosystem Effetcs, John Wiley & Sons, Inc. 35-54.

Zhang, G.S., Qu, J.H., Liu, H.J., Liu, R.P. and Li, G.T. (2007) Removal mechanism of As(III) by a novel Fe-Mn binary oxide adsorbent: Oxidation and sorption. Environmental Science & Technology 41(13), 4613-4619.

Zhang, G.S., Qu, J.H., Liu, H.J., Liu, R.P. and Wu, R.C. (2007) Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Water Research 41(9), 1921-1928.


呂鋒洲、楊重光、林國煌(1975)。嘉南烏腳病患區飲用地下水之理化特徵。台灣醫誌,74, 596-605。

呂鋒洲(1978)。烏腳病地區水中飲水之螢光物質之研究與烏腳病致病原因之在探討。烏腳病之研究報告,6,1-27。

呂鋒洲、林信德、許隆隆、林國煌(1982)。烏腳病地區地下飲用水中螢光物質之研究與烏腳病致病原因之在探討。烏腳病之研究報告,12, 1-15。

呂鋒洲、郭浩然、江漢聲、洪清霖(1986)。烏腳病地區膀胱癌流行病學調查報告第五報 — 螢光強度與膀胱癌發病率的關係。中華癌醫會誌,2,14-23。

呂春華(2007)。光電廠高低濃度砷廢水處理流程之探討。碩士論文,國立中央大學環境工程研究所碩士在職專班,桃園縣。

郭宗禮(1996)。烏腳病盛行區井水砷含量之調查。中華衛誌。15, 116-124。

邱誌忠(2003)。半導體產業高濃度含砷廢水之處理-化學沉降法與活性炭吸附法之評估。碩士論文,國立中興大學環境工程學系,台中市。

邱彥斌(2008)。利用Fe3O4磁性奈米顆粒處理砷化鎵研磨廢水。碩士論文,國立中央大學環境工程研究所碩士在職專班,桃園縣。
行政院環境保護署(2010),水污染防治法-放流水標準。

行政院環境保護署(2010),環境水質監測年報。

徐毓蘭、林玉寶、劉傳崑、葉美、林畢修平、林秀局(2008),水中砷處理技術應用,環保技術e報,055期。

許嘉衿(2008)。回收氧化鐵覆膜石英砂之砷吸附動力與競爭行為探討。博士論文,國立高雄第一科技大學工程科技研究所環境與安全衛生工程組,高雄市。

陳建仁(2004)。 從台灣的砷經驗,展望世界未來。科學人9 月號。

宋瑩瑾(2011)。製備高鐵酸鉀(六價鐵)方法最適化之研究。碩士論文,嘉南藥理科技大學環境工程與科學研究所,台南市。

顏笠安(2009)。淨水場混凝污泥質量特性與脫水泥餅再利用初步評估。碩士論文,國立中央大學環境工程研究所,桃園縣。

吳佳正,謝汶興,王原璋,林財富,鄭仲凱(2005)。鐵氧化物吸附劑之開發與應用。

吳曉妮(2003)。自來水中低濃度砷的分析與去除。碩士論文,國立中興大學環境工程學系,台中市。

吳異琦(2003)。除臭吸附劑之開發。碩士論文,國立中正大學化學工程研究所,嘉義縣。

魏名軍(2011)。以鐵錳污泥除砷機制之探討。碩士論文,逢甲大學環境工程與科學學系,台中市。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top