跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/17 11:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李羿頡
研究生(外文):Yi-Chieh Lee
論文名稱:探討CTUT2和CTUT3對細胞葡萄糖攝取及訊息傳遞的研究
論文名稱(外文):The effects of CTUT2 and CTUT3 on glucose uptake and associated signaling in C2C12 cells
指導教授:王祥光王祥光引用關係
指導教授(外文):Shyang-Guang Wang
學位類別:碩士
校院名稱:中臺科技大學
系所名稱:醫學檢驗生物技術系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:代謝症候群
外文關鍵詞:PKC δMetabolic syndromeAMPKGLUT4
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來隨著人們生活飲食的改變,高血壓、高血脂、高血糖等代謝病越益增高,因此WHO (World Health Organization)為此定義了代謝症候群,代謝症候群是一種綜合型的內分泌疾病,會增加發展中的心血管疾病以及糖尿病的風險。而第二型糖尿病症狀與高濃度的游離脂肪酸有關,會降低肌肉細胞對葡萄糖的攝取,增加血液中葡萄糖含量和對胰島素抗性。AMPK-activate protein kinase (AMPK)是感應細胞內能量代謝的關鍵調控者,磷酸化AMPK可減少脂肪的合成和增加脂肪酸代謝,此外,AMPK也被廣泛運用為第二型糖尿病的標靶分子。近年來研究發現,甜菊可以改善第二型糖尿病的症狀。在本篇研究當中透過Glucose uptake實驗,對數十種甜菊修飾後的化合物進行篩選,並從中選出效果最佳的兩個化合物CTUT2和CTUT3進行機轉的探討。CTUT2和CTUT3增加細胞對葡萄糖攝取量與胰島素依賴性路徑無關。CTUT2和CTUT3可增加AMPK及下游ACC蛋白磷酸化,也可促進PKC δ蛋白的磷酸化;當本篇研究將C2C12細胞以AMPK抑制劑(Compound C) 預處理後,發現可以抑制CTUT3誘發的PKC δ蛋白質磷酸化,且抑制CTUT2對葡萄糖的攝取;最後,透過免疫螢光染色發現CTUT2和CTUT3可促進GLUT4從細胞質轉移到細胞膜上,而增進葡萄糖的攝取。綜合以上結果本篇研究認為CTUT2和CTUT3可以透過AMPK調控PKCδ並促進GLUT4轉移到細胞膜上而增加葡萄糖的攝取。
Metabolic syndrome is a combination of medical disorders that increase the risk of developing cardiovascular disease and diabetes. The World Health Organization (WHO) defines Metabolic syndrome with the characetistics of elevated blood fatty-acid concentrations, reduced glucose uptake in muscle, and increased insulin resistance and high blood sugar, which is highly associated with diabetes mellitus type II. AMP-activated protein kinase (AMPK) is a key sensor regulating intracellular and whole body energy metabolism. Phosphorylation of AMPK suppresses lipid synthesis and increase fatty acid β-oxidation, so AMPK has been a therapeutic molecular target for diabetes. Recent studies suggested that stevioside may exert therapeutic beneficial effects for type-2 diabetes. In our studies, screening of compounds derived from stevioside for glucose uptake was performed using C2C12 myotube. We found that CTUT2 and CTUT3 have significantly effects and we further investigated the mechanism. CTUT2 and CTUT3 stimulates glucose uptake in insulin independent pathway. CTUST2 and CTUT3 increased AMPK and the downstream ACC phosphorylation in a concentration-dependent manner in C2C12 myotubes. CTUST2 and CTUT3 also increased PKCδ phosphorylation. When we pretreated the cells by compound C (AMPK inhibitor), the increases of PKCδ phosphorylation and glucose uptake by CTUT2 and CTUT3 were reduced. Finally, CTUT2 and CTUT3 promoted GLUT4 transporting to membrane from cytoplasm and increased glucose uptake. These results indicate that CTUT2 and CTUT3 promoted the transportation of GLUT4 from cytoplasm to membrane and glucose uptake via increasing AMPK and the downstream PKCδ phosphorylation.
中文摘要 5
Abstract 6
縮寫表 12
背景 14
代謝性症候群(Metabolic syndrome) 14
糖尿病(Diabetes mellitus) 14
胰島素抗性 (Insulin Resistance) 16
胰島素訊息傳遞路徑 (Insulin signaling pathway) 16
AMP-activated protein kinase (AMPK) 17
Acetyl CoA carboxylase (ACC) 18
Protein Kinase C δ (PKC δ) 19
Glucose transporter (GLUT) 20
Glucose transporter 4 (GLUT4) 20
甜菊(stevia) 21
研究動機 22
實驗方法與材料 23
一、 實驗材料 23
1. 藥品試劑 23
2. 常用儀器 25
3. 常用溶液 26
二、 實驗方法 28
1. C2C12細胞的培養 28
2. 細胞蛋白質的測定 28
3. 西方墨漬法 29
4. 葡萄糖攝取試驗 29
5. 免疫螢光染色 30
6. MTT細胞存活率實驗 31
7. 細胞膜及細胞質蛋白分離 31
實驗結果 33
一、 甜菊糖衍生物CTUT2及CTUT3可增加AMPK及下游ACC蛋白磷酸化表現 33
二、 甜菊糖衍生物CTUT2和CTUT3可增加葡萄糖攝取量 34
三、 CTUT2和CTUT3對於細胞存活率的影響 34
四、 CTUT2和CTUT3增加葡萄糖攝取與胰島素訊息路徑無關 35
五、 CTUT2和CTUT3不會增加AMPK下游的p38 MAPK蛋白磷酸化 36
六、 CTUT2和CTUT3透過AMPK調控下游的PKCδ蛋白的磷酸化 36
七、 CTUT2和CTUT3是透過AMPK來調控葡萄糖攝取量 37
八、 CTUT2和CTUT3增加GLUT4的蛋白表現 38
九、 CTUT2&3是透過AMPK使GLUT4從細胞質轉移到細胞膜上 39
討論 41
參考文獻 70
Azzi, A., Boscoboinik, D., and Hensey, C. (1992). The protein kinase C family. European journal of biochemistry / FEBS 208, 547-557.

Barber, M.C., Price, N.T., and Travers, M.T. (2005). Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochimica et biophysica acta 1733, 1-28.

Bergeron, R., Russell, R.R., 3rd, Young, L.H., Ren, J.M., Marcucci, M., Lee, A., and Shulman, G.I. (1999). Effect of AMPK activation on muscle glucose metabolism in conscious rats. The American journal of physiology 276, E938-944.

Braiman, L., Alt, A., Kuroki, T., Ohba, M., Bak, A., Tennenbaum, T., and Sampson, S.R. (1999). Protein kinase Cdelta mediates insulin-induced glucose transport in primary cultures of rat skeletal muscle. Mol Endocrinol 13, 2002-2012.

Brand, C., Cipok, M., Attali, V., Bak, A., and Sampson, S.R. (2006). Protein kinase Cdelta participates in insulin-induced activation of PKB via PDK1. Biochem Biophys Res Commun 349, 954-962.

Brusick, D.J. (2008). A critical review of the genetic toxicity of steviol and steviol glycosides. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 46 Suppl 7, S83-91.

Cai, F., Gyulkhandanyan, A.V., Wheeler, M.B., and Belsham, D.D. (2007). Glucose regulates AMP-activated protein kinase activity and gene expression in clonal, hypothalamic neurons expressing proopiomelanocortin: additive effects of leptin or insulin. J Endocrinol 192, 605-614.

Carling, D., Aguan, K., Woods, A., Verhoeven, A.J., Beri, R.K., Brennan, C.H., Sidebottom, C., Davison, M.D., and Scott, J. (1994). Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J Biol Chem 269, 11442-11448.

Carling, D., Zammit, V.A., and Hardie, D.G. (1987). A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS letters 223, 217-222.

Chatsudthipong, V., and Muanprasat, C. (2009). Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacology & therapeutics 121, 41-54.

Cheng, Z., Pang, T., Gu, M., Gao, A.H., Xie, C.M., Li, J.Y., Nan, F.J., and Li, J. (2006). Berberine-stimulated glucose uptake in L6 myotubes involves both AMPK and p38 MAPK. Biochimica et biophysica acta 1760, 1682-1689.

Cho, Y.S., Lee, J.I., Shin, D., Kim, H.T., Jung, H.Y., Lee, T.G., Kang, L.W., Ahn, Y.J., Cho, H.S., and Heo, Y.S. (2010). Molecular mechanism for the regulation of human ACC2 through phosphorylation by AMPK. Biochem Biophys Res Commun 391, 187-192.

Dale, S., Wilson, W.A., Edelman, A.M., and Hardie, D.G. (1995). Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett 361, 191-195.

Feng, L., Song, Y.F., Guan, Q.B., Liu, H.J., Ban, B., Dong, H.X., Hou, X.L., Lee, K.O., Gao, L., and Zhao, J.J. (2010). Long-term ethanol exposure inhibits glucose transporter 4 expression via an AMPK-dependent pathway in adipocytes. Acta pharmacologica Sinica 31, 329-340.

Fengyang, L., Yunhe, F., Bo, L., Zhicheng, L., Depeng, L., Dejie, L., Wen, Z., Yongguo, C., Naisheng, Z., Xichen, Z., et al. (2012). Stevioside Suppressed Inflammatory Cytokine Secretion by Downregulation of NF-kappaB and MAPK Signaling Pathways in LPS-Stimulated RAW264.7 Cells. Inflammation.

Geuns, J.M. (2007). Comments to the paper by Nunes et al. (2007), Analysis of genotoxic potentiality of stevioside by comet assay, Food and Chemical Toxicology 45 (2007) 662-666. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 45, 2601-2602; author reply 2603-2604.

Granberry, M.C., and Fonseca, V.A. (2005). Cardiovascular risk factors associated with insulin resistance: effects of oral antidiabetic agents. Am J Cardiovasc Drugs 5, 201-209.

Hardie, D.G., Scott, J.W., Pan, D.A., and Hudson, E.R. (2003). Management of cellular energy by the AMP-activated protein kinase system. FEBS letters 546, 113-120.

Heled, Y., Shapiro, Y., Shani, Y., Moran, D.S., Langzam, L., Braiman, L., Sampson, S.R., and Meyerovitch, J. (2002). Physical exercise prevents the development of type 2 diabetes mellitus in Psammomys obesus. Am J Physiol Endocrinol Metab 282, E370-375.

Hill, M.J., Metcalfe, D., and McTernan, P.G. (2009). Obesity and diabetes: lipids, ''nowhere to run to''. Clin Sci (Lond) 116, 113-123.

Holmes, B., and Dohm, G.L. (2004). Regulation of GLUT4 gene expression during exercise. Medicine and science in sports and exercise 36, 1202-1206.

Horman, S., Browne, G., Krause, U., Patel, J., Vertommen, D., Bertrand, L., Lavoinne, A., Hue, L., Proud, C., and Rider, M. (2002). Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 12, 1419-1423.

Hwang, L.C., Bai, C.H., Sun, C.A., and Chen, C.J. (2012). Prevalence of metabolically healthy obesity and its impacts on incidences of hypertension, diabetes and the metabolic syndrome in Taiwan. Asia Pacific journal of clinical nutrition 21, 227-233.

Janghorbani, M., and Amini, M. (2012). Incidence of Metabolic Syndrome and Its Risk Factors among Type 2 Diabetes Clinic Attenders in Isfahan, Iran. ISRN endocrinology 2012, 167318.

Joost, H.G., and Thorens, B. (2001). The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Molecular membrane biology 18, 247-256.

Jorgensen, S.B., Treebak, J.T., Viollet, B., Schjerling, P., Vaulont, S., Wojtaszewski, J.F., and Richter, E.A. (2007). Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle. Am J Physiol Endocrinol Metab 292, E331-339.

Kataev, V.E., Strobykina, I., Andreeva, O.V., Garifullin, B.F., Sharipova, R.R., Mironov, V.F., and Chestnova, R.V. (2011). [Synthesis and antituberculosis activity of the derivatives of glycoside steviolbioside from the plant Stevia rebaudiana and diterpenoid isosteviol containing hydrazone, hydrazide and pyridinoyl moieties]. Bioorganicheskaia khimiia 37, 542-551.

Kelly, I.E., Han, T.S., Walsh, K., and Lean, M.E. (1999). Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes. Diabetes care 22, 288-293.

Kemp, B.E., Mitchelhill, K.I., Stapleton, D., Michell, B.J., Chen, Z.P., and Witters, L.A. (1999). Dealing with energy demand: the AMP-activated protein kinase. Trends in biochemical sciences 24, 22-25.

Kengne, A.P., Limen, S.N., Sobngwi, E., Djouogo, C.F., and Nouedoui, C. (2012). Metabolic syndrome in type 2 diabetes: comparative prevalence according to two sets of diagnostic criteria in sub-Saharan Africans. Diabetology & metabolic syndrome 4, 22.

Kim, E.J., Jung, S.N., Son, K.H., Kim, S.R., Ha, T.Y., Park, M.G., Jo, I.G., Park, J.G., Choe, W., Kim, S.S., et al. (2007). Antidiabetes and antiobesity effect of cryptotanshinone via activation of AMP-activated protein kinase. Molecular pharmacology 72, 62-72.

Kim, J.H., Lee, J.O., Lee, S.K., Moon, J.W., You, G.Y., Kim, S.J., Park, S.H., Park, J.M., Lim, S.Y., Suh, P.G., et al. (2011). The glutamate agonist homocysteine sulfinic acid stimulates glucose uptake through the calcium-dependent AMPK-p38 MAPK-protein kinase C zeta pathway in skeletal muscle cells. J Biol Chem 286, 7567-7576.

Kim, M.S., Hur, H.J., Kwon, D.Y., and Hwang, J.T. (2012). Tangeretin stimulates glucose uptake via regulation of AMPK signaling pathways in C2C12 myotubes and improves glucose tolerance in high-fat diet-induced obese mice. Molecular and cellular endocrinology 358, 127-134.

Krishnapuram, R., Kirk-Ballard, H., Dhurandhar, E.J., Dubuisson, O., Messier, V., Rabasa-Lhoret, R., Hegde, V., Aggarwal, S., and Dhurandhar, N.V. (2012). Insulin receptor-independent upregulation of cellular glucose uptake. Int J Obes (Lond).

Kusunoki, J., Kanatani, A., and Moller, D.E. (2006). Modulation of fatty acid metabolism as a potential approach to the treatment of obesity and the metabolic syndrome. Endocrine 29, 91-100.

Lane, M.D., Hu, Z., Cha, S.H., Dai, Y., Wolfgang, M., and Sidhaye, A. (2005). Role of malonyl-CoA in the hypothalamic control of food intake and energy expenditure. Biochem Soc Trans 33, 1063-1067.

Lee, Y.M., Lee, J.O., Jung, J.H., Kim, J.H., Park, S.H., Park, J.M., Kim, E.K., Suh, P.G., and Kim, H.S. (2008). Retinoic acid leads to cytoskeletal rearrangement through AMPK-Rac1 and stimulates glucose uptake through AMPK-p38 MAPK in skeletal muscle cells. J Biol Chem 283, 33969-33974.

Lehmann, J.M., Moore, L.B., Smith-Oliver, T.A., Wilkison, W.O., Willson, T.M., and Kliewer, S.A. (1995). An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270, 12953-12956.

Li, L., Chen, H., and McGee, S.L. (2008). [Mechanism of AMPK regulating GLUT4 gene expression in skeletal muscle cells]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 25, 161-167.

Liu, L.Z., Cheung, S.C., Lan, L.L., Ho, S.K., Chan, J.C., and Tong, P.C. (2010). The pivotal role of protein kinase C zeta (PKCzeta) in insulin- and AMP-activated protein kinase (AMPK)-mediated glucose uptake in muscle cells. Cell Signal 22, 1513-1522.

Liu, L.Z., He, A.B., Liu, X.J., Li, Y., Chang, Y.S., and Fang, F.D. (2006). Protein kinase Czeta and glucose uptake. Biochemistry Biokhimiia 71, 701-706.

Manco, M., Calvani, M., and Mingrone, G. (2004). Effects of dietary fatty acids on insulin sensitivity and secretion. Diabetes Obes Metab 6, 402-413.

Misra, H., Soni, M., Silawat, N., Mehta, D., Mehta, B.K., and Jain, D.C. (2011). Antidiabetic activity of medium-polar extract from the leaves of Stevia rebaudiana Bert. (Bertoni) on alloxan-induced diabetic rats. Journal of pharmacy & bioallied sciences 3, 242-248.

Mueller, M., Beck, V., and Jungbauer, A. (2011). PPARalpha activation by culinary herbs and spices. Planta medica 77, 497-504.

Nishino, Y., Miura, T., Miki, T., Sakamoto, J., Nakamura, Y., Ikeda, Y., Kobayashi, H., and Shimamoto, K. (2004). Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection. Cardiovascular research 61, 610-619.

Nunes, A.P., Ferreira-Machado, S.C., Nunes, R.M., Dantas, F.J., De Mattos, J.C., and Caldeira-de-Araujo, A. (2007). Analysis of genotoxic potentiality of stevioside by comet assay. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 45, 662-666.

Oliveira, R.L., Ueno, M., de Souza, C.T., Pereira-da-Silva, M., Gasparetti, A.L., Bezzera, R.M., Alberici, L.C., Vercesi, A.E., Saad, M.J., and Velloso, L.A. (2004). Cold-induced PGC-1alpha expression modulates muscle glucose uptake through an insulin receptor/Akt-independent, AMPK-dependent pathway. Am J Physiol Endocrinol Metab 287, E686-695.

Russell, R.R., 3rd, Bergeron, R., Shulman, G.I., and Young, L.H. (1999). Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. The American journal of physiology 277, H643-649.

Rutherford, J.J. (2010). Biomedical engineering and the obesity epidemic: treatments for weight reduction. IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society 29, 24-30.

Sakamoto, K., and Holman, G.D. (2008). Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am J Physiol Endocrinol Metab 295, E29-37.

Solomon, T.P., and Blannin, A.K. (2009). Changes in glucose tolerance and insulin sensitivity following 2 weeks of daily cinnamon ingestion in healthy humans. European journal of applied physiology 105, 969-976.

Song, G.Y., Gao, Y., Wang, C., Hu, S.G., Wang, J., Qu, D.M., and Ma, H.J. (2010). Rosiglitazone reduces fatty acid translocase and increases AMPK in skeletal muscle in aged rats: a possible mechanism to prevent high-fat-induced insulin resistance. Chinese medical journal 123, 2384-2391.

Sonntag, A.G., Dalle Pezze, P., Shanley, D.P., and Thedieck, K. (2012). A modelling-experimental approach reveals insulin receptor substrate (IRS)-dependent regulation of adenosine monosphosphate-dependent kinase (AMPK) by insulin. The FEBS journal.

Spiegelman, B.M. (1998). PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47, 507-514.

Standaert, M.L., Avignon, A., Yamada, K., Bandyopadhyay, G., and Farese, R.V. (1996). The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes. Biochem J 313 ( Pt 3), 1039-1046.

Stirban, A., Negrean, M., Stratmann, B., Gawlowski, T., Horstmann, T., Gotting, C., Kleesiek, K., Mueller-Roesel, M., Koschinsky, T., Uribarri, J., et al. (2006). Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes. Diabetes care 29, 2064-2071.

Suwa, M., Egashira, T., Nakano, H., Sasaki, H., and Kumagai, S. (2006). Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J Appl Physiol 101, 1685-1692.

Takahashi, K., Sun, Y., Yanagiuchi, I., Hosokawa, T., Saito, T., Komori, M., Okino, T., and Kurasaki, M. (2012). Stevioside enhances apoptosis induced by serum deprivation in PC12 cells. Toxicology mechanisms and methods 22, 243-249.

Taylor, C. (1969). Letter to the editor: stevioside, a natural sweetening agent. The American journal of clinical nutrition 22, 4.

Thorens, B. (1996). Glucose transporters in the regulation of intestinal, renal, and liver glucose fluxes. The American journal of physiology 270, G541-553.

Torok, D., Patel, N., Jebailey, L., Thong, F.S., Randhawa, V.K., Klip, A., and Rudich, A. (2004). Insulin but not PDGF relies on actin remodeling and on VAMP2 for GLUT4 translocation in myoblasts. J Cell Sci 117, 5447-5455.

Turban, S., Stretton, C., Drouin, O., Green, C.J., Watson, M.L., Gray, A., Ross, F., Lantier, L., Viollet, B., Hardie, D.G., et al. (2012). Defining the contribution of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) in regulation of glucose uptake by metformin in skeletal muscle cells. J Biol Chem 287, 20088-20099.

Turrell, H.E., Rodrigo, G.C., Norman, R.I., Dickens, M., and Standen, N.B. (2011). Phenylephrine preconditioning involves modulation of cardiac sarcolemmal K(ATP) current by PKC delta, AMPK and p38 MAPK. Journal of molecular and cellular cardiology 51, 370-380.

Ulbricht, C., Isaac, R., Milkin, T., Poole, E.A., Rusie, E., Grimes Serrano, J.M., Weissner, W., Windsor, R.C., and Woods, J. (2010). An evidence-based systematic review of stevia by the Natural Standard Research Collaboration. Cardiovascular & hematological agents in medicinal chemistry 8, 113-127.

Vegas-Valle, J.M., Garcia-Ruiz, J.M., Hernandez-Martin, E., and de la Hera, J.M. (2012). Metabolic syndrome, diabetes, and coronary artery disease: a very common association. Revista espanola de cardiologia 65, 108-109.

Viollet, B., Lantier, L., Devin-Leclerc, J., Hebrard, S., Amouyal, C., Mounier, R., Foretz, M., and Andreelli, F. (2009). Targeting the AMPK pathway for the treatment of Type 2 diabetes. Front Biosci 14, 3380-3400.

Winder, W.W., and Hardie, D.G. (1999). AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. The American journal of physiology 277, E1-10.

Woods, A., Munday, M.R., Scott, J., Yang, X., Carlson, M., and Carling, D. (1994). Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem 269, 19509-19515.

Zhang, B.B., Zhou, G., and Li, C. (2009). AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9, 407-416.

Zhang, L., He, H., and Balschi, J.A. (2007). Metformin and phenformin activate AMP-activated protein kinase in the heart by increasing cytosolic AMP concentration. Am J Physiol Heart Circ Physiol 293, H457-466.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊