跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 07:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李美慧
研究生(外文):Mei-Hui Lee
論文名稱:聚酯纖維針織物骨支架製程設計與特性評估
論文名稱(外文):Manufacturing Design and Characteristic Evaluation of Polyester Knitted Fabrics as Bone Scaffold
指導教授:樓靜文
指導教授(外文):Ching-Wen Lou
學位類別:碩士
校院名稱:中臺科技大學
系所名稱:醫學工程暨材料研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:180
中文關鍵詞:骨支架模擬體液磷灰石電化學針織物幾丁聚糖鈦棒聚酯
外文關鍵詞:bone scaffoldssimulated body fluid (SBF)hydroxylapatiteelectrochemical depositionknitted fabricschitosantitanium (Ti) barPolyethylene terephthalate (PET)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:552
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
生醫材料廣泛應用於製造體內或體外的醫學資材,體內的生醫材料可應用於人工血管、人工骨骼與關節等等。而使用於骨支架之材料,需具備良好生物相容性且需製備成具有適當的機械強度與孔洞大小,以利於骨組織貼附和向內生長之骨支架。因聚酯纖維與鈦棒皆具有良好的機械性質,幾丁聚醣則具有良好的生物相容性及無毒性,故本研究將設計以聚酯纖維與鈦棒製成具有適當的機械強度與孔洞大小之人工複合骨支架,並添加幾丁聚醣藉以增加支架和組織之間的相容性。
本研究將以聚酯長絲為包覆材,鈦棒為芯材,並修正兩種材料後處理的最佳參數值製備成複合人工骨支架。首先將聚酯長絲經併股與加撚加工製備成PET股線,再分別織成多孔性3 D針織物並作層數的變化及鹼處理,再將針織物浸泡於幾丁聚醣溶液中,以冷凍乾燥方式製備成3 D多孔PET/幾丁聚醣圓管針織物。接著將鈦棒作鹼、熱處理,再以電化學法來沉積氫氧基磷灰石後,將樣本浸泡不同天數之模擬體液,增加氫氧基磷灰石之鈣磷比。最後PET/Ti/幾丁聚醣經最佳化參數後處理製程的加工成複合人工骨支架後,分別進行一系列機械性質、實體顯微鏡、SEM、EDS、XRD、FTIR、降解率、重量增加率、pH值測試評估後,最後再進行骨母細胞(MG63)培養及體內測試評估。
研究結果顯示,藉由PET長絲織成3 D圓管針織物,再進行層數的變化及以1wt %的幾丁聚醣溶液處理,使針織物具備3 D多孔與穩定的結構;而鈦棒經由鹼熱處理及電化學沉積60分鐘後,得知在熱處理400 ℃時具有良好的沉積量及鈣磷比;以此兩者最佳參數進行複合,製備成3 D多孔複合PET/Ti/幾丁聚醣人工骨支架,細胞培養結果顯示具有良好的細胞存活率與貼附性。最後以大鼠脛骨鑽孔直徑2 mm,並將本研究研製之複合支架植入六週後,經x光判讀實驗結果顯示脛骨鑽孔的孔洞大小有明顯的縮小情形,發現在第六週組織切片顯示PET/Ti/幾丁聚醣人工複合骨支架已有良好的生物相容性及骨誘導性。
Biomaterials are commonly used as in vitro or in vivo. Synthetic vascular prostheses, artificial bones, and artificial joints are used in vitro. Bone scaffolds demand components with good biocompatibility, mechanical strength, and pore size to help the bone tissue attach to them and allow them to be ingrown. Polyethylene terephthalate (PET) filaments and titanium (Ti) bars both have good mechanical properties while chitosan has good biocompatibility and is non-toxic. Therefore, this study combines these two materials to make the bone scaffolds with appropriate mechanical strength and pore size, after which they are immersed in chitosan solution for a better biocompatibility between the bone scaffolds and tissues.
This study uses PET filaments to wrap the titanium bar, forming the composite artificial bone scaffold with optimum parameters. First, the PET filaments are combined and twisted into plied yarns, and then braided into three-dimensional knitted fabrics. The knitted fabrics, made with various layers, undergo alkali treatment, immersed in chitosan solution, and then freeze-dried, forming the three-dimensional, porous and hollow PET/chitosan knitted fabrics. Second, by electrochemical deposition method, Ti bars that receive alkali treatment and heat treatment can attract phosphate, and are then immersed in the simulated body fluid (SBF) for different days to increase the calcium-phosphorus (Ca/P) ratio of hydroxyapatite. Third, PET knitted fabrics and Ti bars with the optimal parameters are combined and then immersed in chitosan solution, forming the PET/Ti/chitosan bone scaffolds. The resulting bone scaffolds are observed or tested by a stereo microscope, scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and then evaluated for mechanical properties, degradation, weight increase rate, and pH value. Finally, the bone scaffolds are co-cultured with osteosarcoma cells (MG63) and in vivo test.
According to the experimental results, the change in layer number and the immersion in 1 wt% chitosan solution give the PET knitted fabrics a stable structure. Ti bars yield good deposition amount of hydroxyapatite and Ca/P ratio after the alkali treatment, heat treatment, and electrochemical deposition method for 60 minutes, determining the optimal temperature for heat treatment is 400℃.These two materials of optimal parameters are then combined to form the three-dimensional, hollow bone scaffolds. The result of cell culture shows that the resulting bone scaffolds have good cell viability and cell attachment.
Finally, the rats are drilled a hole of a 2-mm diameter in their tibia bones and then implanted with the bone scaffolds. After six weeks, X-ray interpretation shows that the holes in the bones significantly become smaller; at the same time, the tissue slice indicates that PET/Ti/chitosan bone scaffolds have desired biocompatibility and osteoinduction.
中文摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XII
第一章 緒論 1
1.1前言 1
1.2研究背景 2
1.2.1骨骼的形成 2
1.2.2骨骼的組成物 5
1.2.3骨的礦物質生成 6
1.2.4骨骼重建機制 7
1.2.5自然性骨科材料 8
1.2.6人工骨科材料之分類 9
1.2.6.1金屬材料 9
1.2.6.2高分子材料 11
1.2.6.3陶瓷材料 15
1.2.6.4複合材料 16
1.3文獻回顧 19
1.4骨科材料專利 22
1.5研究動機與目的 26
第二章原理 28
2.1轉筒式撚線機加撚原理 28
2.3電化學原理 32
2.3.1鹼熱處理對鈦金屬離子交換反應之原理 32
2.4 冷凍乾燥原理 34
2.5 專有名詞解釋 35
第三章實驗材料與方法 37
3.1 實驗流程與說明 37
3.2模擬體液的製備 44
3.3實驗參數設計 45
3.4分析測試方法 46
3.4.1紗線拉伸強力、強度測試 46
3.4.2針織物拉伸強度測試 46
3.4.3幾丁聚醣降解率測試 46
3.4.4重量增加率 47
3.4.5 結晶型態分析 47
3.4.6傅立葉紅外線光譜儀(FTIR) 測試分析 47
3.4.7掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 48
3.4.8能量散佈光譜儀 (Energy Dispersive Spectrometer, EDS) 48
3.4.9 pH值測試 48
3.5體外測試-細胞培養 49
3.5.1細胞解凍與分盤 49
3.5.2細胞相容性分析 49
3.5.3細胞貼附性分析 50
3.5.4細胞毒性分析(MTT Assay) 50
3.6體內測試-動物實驗 51
3.6.1動物實驗步驟 51
3.6.2 X光影像判讀 53
3.6.3組織切片分析 53
3.7實驗材料及藥品 54
3.8實驗器材與設備 55
第四章 結果與討論 56
4.1不同股數與撚係數對PET紗線最大斷裂強度 57
4.2 不同股數與撚係數對PET圓管針織物機械性質之影響 59
4.3 PET單、雙層圓管針織物之機械性質 61
4.4 PET單、雙層圓管針織物之實體顯微鏡觀察 62
4.5 PET圓管針織物經NaOH處理後之最大斷裂拉伸強力 64
4.6 PET/幾丁聚醣圓管針織物之實體顯微鏡分析 66
4.7 PET/幾丁聚醣圓管針織物之SEM觀察 67
4.8 PET/幾丁聚醣圓管針織物之最大斷裂拉伸強力 71
4.9 幾丁聚醣在針織物中之含量 73
4.10 幾丁聚醣薄膜經由NaOH處理後之FTIR分析 75
4.11幾丁聚醣經NaOH處理後之降解率 77
4.12鈦棒電化學處理之SEM觀察 80
4.13鈦棒電化學處理後之FTIR分析 88
4.14鈦棒經由不同高溫處理電化學之重量增加率 90
4.15鈦棒經由電化學處理後浸泡模擬體液之重量增加率 92
4.16鈦棒不同溫度處理以電化學處理後浸泡模擬體液之表面觀察 97
4.17鈦棒浸泡21天模擬體液之結晶分析 116
4.18鈦棒浸泡模擬體液之鈣磷比 120
4.19 PET/Ti/幾丁聚醣複合人工骨支架之pH值分析 122
4.20細胞共培養與細胞存活率 124
4.21細胞貼附性 129
4.22 動物實驗 133
4.23 X光影像判讀 135
4.24 組織學分析 137
第五章結論 148
第六章建議 151
參考文獻 152
1.高材、林康平、林峰輝、陳家進,生物醫學工程導論,滄海書局,556-585頁,2010。
2.王盈錦,生物醫學材料,合記書局,192-196頁,2007。
3.Meyer U, Wiesmann H P, Bone and cartilage engineering , Berlin,springer, (2006).
4.Dempster D W, Bone Remodeling, In:Coe F L, Favus M J, eds, Disorder of Bone and Mineral Metabolism, Raven Press, New York, 355-380, (1992).
5.Parfitt A M, The physiological and clinical significance of bone histomorphometric data, In: Recker RR, ed. Bone histomorphometry: techniques and interpretation, Boca Raton, FL: CRC, 143-223, (1993) .
6.Gerard J T, Principles of Human Anatomy, Chap.6, (2004).
7.顏克中,β-磷酸三鈣/聚乳酸複合支架仿骨雙層結構之製備技術,逢甲大學紡織工程研究所碩士論文,2007。
8.http://www.lookfordiagnosis.com/mesh_info.php?term=Bone+Remodeling&lang=1
9.Gisep A, Research on ceramic bone substitutes: current status, Injury, Vol. 33, 88-92 (2002).
10.Fujibayashi S, Kim H M, Neo M, Uchida M, Kokubo T, Nakamura T, Repair of segmental long bone defect in rabbit femur using bioactive titanium cylindrical mesh cage, Biomaterials, Vol. 24, 3445-3451 (2003).
11.Alam M I, Asahina I, Ohmamiuda K, Takahashi K, Yokota S, Enomoto S, Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2, Biomaterials, Vol. 22, 1643-1651 (2001).
12.Saito N, Takaoka T, New synthetic biodegradable polymers as BMP carriers for bone tissue engineering, Biomaterials, Vol. 24, 2287-2293 (2003).
13.Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J, Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo,Biomaterials, Vol. 22, 1705-1711 (2001).
14.Kline J, Handbook of biomedical engineering, Journal of Clinical Engineering, Vol. 13, 259-260 (1998).
15.Bothe R T, Beaton L E, Davenport H A, Reaction of bone to multiplemetallic implants,ArchGynecology Obstetrics, Vol. 71, 598-602 (1940).
16.Clarke E G C, Hickman J,An investigation into the correlation between the electrical potentials of metals and their behaviour in biological fluids, Journal of bone and joint surgery, Vol. 35, 467-473 (1953).
17.Erli H J, Marx R, Paar O, Niethard F U, Weber M, Wirtz D C, Surface pretreatments for medical application of adhesion, Biomed Eng online, Vol. 2 (2003).
18.Rading J, Peterson L, Clinical experience with the Leeds-Keio artificial ligament in anterior cruciate ligament reconstruction. A prospective two-year follow-up study, Am J Sports Med, Vol. 23, 316-319 (1995).
19.Yonezawa I, Arai Y, Tsuji T, Takahashi M, Kanosawa H, Atlantoaxial transarticular screw fixation and posterior fusion using ultra-highmolecular-weight polyethylene cable, J Spinal Disord Tech, Vol. 18, 392-395 (2005).
20.Ito H, Neo M, Fujibayashi S, Miyata M, Yoshitomi H, Nakamura T, Atlantoaxial transarticular screw fixation with posterior wiring using polyethylene cable – facet fusion despite posterior graft resorption in rheumatoid patients, Spine, Vol. 33, 1655–1661 (2008).
21.Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T, Chung U, Nakamura K, KawaguchiH, Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis, Nat Mater, Vol. 3, 829-836 (2004).
22.Kakisis J D, Liapis C D, Breuer C, Sumpio B E, Artificial blood vessel: the Holy Grail of peripheral vascular surgery, J Vasc Surg, Vol. 41, 349-354 (2005).
23.http://www.plassky.com/PET/index.htm
24.劉建國、徐執揚、齊欣,三維多孔生物降解活性支架材料在軟骨組織工程中的應用,醫學骨科學分冊,第22卷,45-47頁,2001。
25.Knill C J, Kennedy J F, Mistry J, Miraftab M, Smart G, Groocock M R, Williams H J, Alginate fibres modified with unhydrolysed and hydrolysed chitosans for wound dressings, Carbohydrate Polymers, Vol.55, 65-76 (2004).
26.Kumar M N V R , A review of chitin and chitosan applications, React Funct Polym, Vol. 46 , 1-27(2000).
27.Duan B, Yuan X, Zhu Y, Zhang Y, Li X, Zhang Y, A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning, Eur Polym J, Vol. 42,2013-2022 (2006).
28.Ravi Kumar M N V, A review of chitin and chitosan applications, React Funct Polym, Vol. 46, 1–27 (2000).
29.Krajewska B, Application of chitin- and chitosanbased materials for enzyme immobilization: a review, Enzyme Microb Tech, Vol. 35 , 126-139 (2004).
30.Jayakumar R, Menon D, Manzoor K, Nair S V, Tamura H, Biomedical applications of chitin and chitosan based nanomaterials—A short review, Carbohydr Polym, Vol. 82,227-232 (2010).
31.Martino D A., Sittinger M, Risbud M V, Chitosan: a versatile biopolymer for orthopaedic tissue-engineering, Biomaterials, Vol. 26, 5983-5990 (2005).
32.Senel S, McClure S J, Potential applications of chitosan in veterinarymedicine, Adv Drug Deliv Rev, Vol. 56, 1467-1480(2004).
33.Mi F L, Tan Y C, Liang H F, Sung H W, In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant, Biomaterials, Vol. 23, 181-191 (2002).
34.Aoki H, Medical application of hydroxyapatite, Takayama Press , 1-12 (1994).
35.Asada M, Miura Y, Osaka A, Oukami K, Nakamura S, Hydroxyapatite crystal growth on calcium hydroxyapatite ceramics, Journal of Materials Science, Vol. 23, 3202-3205 (1988).
36.Kim C Y, Clark A E, Hench L L, Early stages of calcium-phosphate layer formation in bioglasses, J Non-Cryst Solids, Vol. 113, 195-202 (1989).
37.Roy D M, Linnehan S K, Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange, Nature, Vol. 247, 220-222 (1974).
38.Hench L L, Jones J R, Artificial organs and tissue engineering, Biomaterials, CRC Press, 45-48 (2005).
39.Feinberg S E, Hollister S J, Halloran J W, Chu T M G, Krebsbach P H,Image-based biomimetic approach to reconstruction of the temporomandibular Joint, Cell Tissues Organs, Vol. 169, 309-321 (2001).
40.Ducheyne P, Raemdonck WV, Heughebaert J C, Heughebaert M, Structural analysis of hydroxyapatite coatings on titanium, Biomaterials, Vol. 7, 97-103 (1986).
41.Cook S D, Thomas K A, Kay J F, Jarcho M, Hydroxyapatite-coated titanium for orthopedic implant applications, Clin Orthop Relat Res, Vol. 232, 225-243 (1988).
42.Jansen J A, Waerden J P, Wolke J G, de Groot K, Histologic evaluation of the osseous adaptation to titanium and hydroxyapatite-coated titanium implants, J Biomed Mater Res, Vol. 25, 973-989 (1991).
43.Freed L E, Marquis J C, Nohria A, Emmanual J, Mikos A G, Langer R, Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers, J Biomed Mater Res, Vol. 27, 11-23 (1993).
44.Yao C H, Chang Y L, Lin F H, Preparation and evaluation of β-TCP powder and crosslinked gelatin composite as bone substitute, Chinese J Med Bioeng, Vol.14, 47-51 (1994).
45.Zhang Y, Zhang M, Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants,JBiomed Mater Res, Vol. 61, 1-8 (2002).
46.Sikavitsas V I, van den Dolder J, Bancroft G N, Jansen J A, Mikos A G, Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue-engineered constructs using a rat cranial critical size defect model, J Biomed Mater Res A, Vol. 67, 944-951 (2003).
47.Venkataraman G, Redepenning J, Chen J, Stafford N, Electrochemical preparation of chitosan/hydroxyapatite composite coatings on titanium substrates, J Biomed Mater Res A, Vol. 66, 411-416 (2003).
48.Arinzeh T L, Tran T, Mcalary J, Daculsi G, A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation, Biomaterials, Vol. 26, 3631-3638 (2005).
49.Zhensheng L, Ramay H R, Hauch K D, Xiao D, Zhang M, Chitosan-alginate hybrid scaffolds for bone tissue engineering, Biomaterials, Vol. 26, 3919–3928 (2005).
50.Ng R, Zhang X, Liu N, Yang S T, Modifications of nonwoven polyethylene terephthalate fibrous matrices viaNaOH hydrolysis: Effects on pore size, fiber diameter, cell seeding and proliferation, Process Biochem, Vol. 44, 992-998 (2009).
51.Saito T, Takemoto M, Fukuda A, Kuroda Y, Fujibayashi S, Neo M, Honjoh D, Hiraide T, Kizuki T, Kokubo T, Nakamura T, Effect of titania-based surface modification of polyethylene terephthalate on bone-implant bonding and peri-implant tissue reaction,Acta Biomater, Effect of titania-based surface modification of polyethylene terephthalate on bone-implant bonding and peri-implant tissue reaction,Vol. 7, 1558-1569 (2010).
52.Li H, Ge Y, Wu Y, Jiang J, Gao K, Zhang P, Wu L, Chen S, Hydroxyapatite coating enhances polyethylene terephthalate artificial ligament graft osseointegration in the bone tunnel, Int Orthop,Vol. 35,1561-1567 (2011).
53.Ravanetti F, Borghetti P, Angelis E D, Chiesa R, Martini F M, Gabbi C, Cacchioli A, In vitro cellular response and in vivo primary osteointegration of electrochemically modified titanium, Acta Biomaterialia, Vol. 6, 1014-1024 (2010).
54.Dey A, Nandi S K, Kundu B, Kumar C, Mukherjee P, Roy S, Mukhopadhyay A K, Sinha M K, Basu D, Evaluation of hydroxyapatite and β-tri calcium phosphate microplasma spray coated pin intra-medullary for bone repair in a rabbit model, Ceramics International, Vol. 37, 1377-1391 (2011).
55.Process D, Rajkamal B, Sampath K T S, Mineralization of pristine chitosan film through biomimetic, Int J Biol Macromol, Vol.49,385-389 (2011).
56.Kim H W, Koh Y H, Li L H, Lee S, Kim H E, Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method ,Biomaterials, Vol. 25, 2533-2538 (2004).
57.Maehara H, Sotome S, Yoshii T, Torigoe I, Kawasaki Y, Sugata Y, Yuasa M, Hirano M, Mochizuki N, Kikuchi M, Shinomiya K, Okawa A, Repair of large osteochondral defects in rabbits using porous hydroxyapatite/collagen (HAp/Col) and fibroblast growth factor-2 (FGF-2), J Orthop Res, Vol. 28, 677-686 (2010).
58.Xue D, Zheng Q, Zong C, Li Q, Li H, Qian S, Zhang B, Yu L, Pan Z, Osteochondral repair using porous poly (lactide-co-glycolide)/ nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model, J Biomed Mater Res A, Vol. 94, 259-270 (2010).
59.Suh J K, Matthew H W, Application of chitosan-based polysaccharidebiomaterials in cartilage tissue engineering: a review, Biomaterials, Vol. 21, 2589-2598 (2000).
60.Hutmacher D W, Goh JC, Teoh S H, An introduction to biodegradable materials for tissue engineering applications, Ann Acad Med Singapore, Vol. 30, 183-191 (2001).
61.Lou C W, Hu J J, Chen Y S, Wen S P, Lin K C , Lin J H, Manufacturing technology of 316L stainless steel/poly(lactic acid)composite braids and the induction of hydroxyapatite formation on the braid, Advanced Materials Research, Vol. 287-290,2669-2672 (2011).
62.J. H. Lin, I. S. Tsai, and W. H. Hsing. Introduction to an Innovative Rotor Twister. The Journal of The Textile Institute Vol.89, 266-273 (1988).
63.蔡名騏,複合針織包芯紗製備PET/PP高模數加勁格網之加工技術,逢甲大學紡織工程研究所碩士論文,2010。
64.Kokubo T, Ito S, Huang Z T, Hayashi T, Sakka S, Kitsugi T, Yamamuro T, CaP-rich layer formed on high-strength bioactive glass-ceramic A-W, J Biomed Mater Res, Vol.24, 331-343 (1990).
65.Kokubo T, Aaptite formation on surface of ceramics, metals and polymers in body environment, Acta Mater, Vol.46, 2519-2527 (1998).
66.張志純,冰凍乾燥法,台北市,徐氏基金會,1983。
67.張家豪,利用模擬體液製程誘導金屬纖維表面生成類骨磷灰石之研究,逢甲大學紡織工程研究所博士論文,2006。
68.温仕鵬,磷酸三鈣/聚乳酸多孔複合人工骨支架之製備技術與特性評估,逢甲大學纖維與複合材料學系碩士論文,2012。
69.Hutmacher D W, Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives, J Biomater Sci Polym ,Vol.12,107–24 (2001).
70.Karageorgiou V, Kaplan D, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials ,Vol. 26, 5474–91(2005).
71.Hulbert S F, Morrison S J, Klawitter J J, Tissue reaction to three ceramics of porous and non-porous structures, J Biomed Mater Res,Vol.6,347-74 (1972).
72.Hadjizadeh A, Acetaldehyde plasma polymer-coated PET fibers for endothelial cell patterning: Chemical, topographical, and biological analysis, Journal of Biomedical Materials Research: Part BApplied Biomaterials, Vol. 94 , 11-21 (2010).
73.Hadjizadeh A, Doillon C J, Vermette P, Bioactive polymer fibers to direct endothelial cell growth in a three-dimensional environment, Biomacromolecules, Vol. 8, 864-873 (2007).
74.Basu S, Yang S T, Astrocyte growth and glial cell line-derived neurotrophic factor secretion in three-dimensional polyethylene terephthalatefibrous matrices,Tissue Eng, Vol. 11, 940-952 (2005).
75.Li M H, Lou C W, Lu C T, Wen S P,Lin J H,Manufacturing Technique and Characteristic Evaluation of PET Composite Knitted Fabrics ,The 11th Asian Textile Conference,Vol. 11,110-114 (2011).
76.Afra H, Abdellah A, Martin N B, Preparation and characterization of NaOH treated micro-fibrous polyethylene terephthalate nonwovens for biomedical application, J Mech Behav Biomed Mater,Vol. 3,574-583 (2010).
77.Baksh D, Davies J E, Kim S,Three-dimensional matrices of calcium polyphosphates support bone growth in vitro and in vivo, J Mater Sci Mater Med,Vol. 9:743-748 (1998).
78.Lee S J, Lee I W, Lee Y M, Lee H B, Khang G, Macroporous biodegradable natural/ synthetic hybrid scaffolds as small intestine submucosa impregnated poly- (D, L-lactide-co-glycolide) for tissue-engineered bone. J Biomater Sci Polym , Vol. 15,1003-1017 (2004).
79.Nehrer S, Breinan H A, Ramappa A, Young G, Shortkroff S, Louie L K, Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes, Biomaterials Vol. 18,769-1776 (1997).
80.Hulbert S F, Young F A, Mathews R S, Klawitter J J, Talbert C D, Stelling F H, Potential of ceramic materials as permanently implantable skeletal prostheses, J Biomed Mater Res , Vol. 4,433-456 (1970).
81.Klawitter J J, Bagwell J G, Weinstein A M, Sauer B W, An evaluation of bone growth into porous high density polyethylene. J Biomed Mater Res,Vol. 10,311–323 (1976).
82.Karageorgiou V, Kaplan D, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, Vol.26, 5474-5491 (2005).
83.Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y, Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem ,Vol. 121,317-324 (1997).
84.MurphyCM,HaughMG,O''BrienFJ,The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering, Biomaterials,Vol. 31, 461-466 (2010).
85.Prapaporn J, Narattaphol C, Nateetip K, Jirawan T, I-Ming T, Rassmidara H, Siwaporn M S, Weeraphat P, In vitro study of the SBF and osteoblast-like cells on hydroxyapatite/chitosan–silica nanocomposite, Materials Science and Engineering C,Vol. 31, 290-299 (2011).
86.Madhumathi K, Binulal NS, Nagahama H, Tamura H, Shalumon KT, Selvamurugan N, Nair SV, Jayakumar R, Preparation and characterization of novel beta-chitin-hydroxyapatite composite membranes for tissue engineering applications, Int J Biol Macromol,Vol. 44,1-5 (2009).
87.陳一帆,以磁場梯度核磁共振技術測定幾丁聚醣分子量,朝陽科技大學,2006。
88.陳信吉,交聯幾丁聚醣薄膜在奈米過濾的應用,中原大學化學工程學系碩士學位論文,2005。
89.Lin J H, Lou C W, Chang C H, Chen Y S, Lin G T , Lee C H,In vitro study of bone-like apatite coatings on metallic fiber braids, J Mater Process Technol, Vol. 192-193,97-100 (2007).
90.88. Lin J H, Chang C H, Chen Y S, Lin G T, Formation of bone-like apatite on titanium filament by a simulated body fluid inducing process, Composites: Part A, Vol. 38,535-539 (2007).
91.Smith D , Pilhar R, Murrary C, preliminary studies of the surface characterization of dental implant materials, biomaterials, (1985).
92.Xixue H, Hong S, Kegang S, Enwei Z, Yanjie B, Yan C, Xiaoling X, Shenguo W, Jing F, Shicheng W, Surface bioactivity modification of titanium by CO2 plasma treatment and induction of hydroxyapatite: In vitro and in vivo studies, Applied Surface Science,Vol. 257, 1813–1823 (2011).
93.Ban S, Maruno S, Deposition of calcium phosphate on titanium by electrochemical process in simulated body fluid, Jpn J Appl Phys, Vol. 32 ,1577-1580 (1993).
94.Sauer G R, Wuthier RE, Fourier transform infrared characterization of mineral phases formed during induction of mineralization by collagenase-released matrix vesicles in vitro, J Biol Chem, Vol. 263 , 13718-13724 (1988).
95.Zhao X, Yang L, Zuo Y, Xiong J, Hydroxyapatite coatings on titanium prepared by electrodeposition in a modified simulated body fluid, Chinese Journal of Chemical Engineering,Vol. 17,667-671 (2007).
96.Gu Y W , Khor K A, Cheang P, In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid (SBF), Biomaterials,Vo. 24,1603-1611 (2003).
97.Li P, Kangasniemi I, de Groot K, Bonelike hydroxyapatite induction by a gel-derived titania on a titanium substrate, J Am Ceram Soc,Vol. 77,1307–1312 (1994).
98.Qiuhua Y, Teresa D G, Electrochemical study of hydroxyapatite coatings on stainless steel substrates, Thin Solid Films, Vol. 518, 55-60 (2009).
99.Liu D.M, Chou H.M, Wu J D, Mater S J, Plasma-sprayed hydroxyapatite coatings: effect of different calcium phosphate ceramics, Mater. Med, Vol. 5 , 147-153 (1994).
100.Huang, L.Y, Xu, K. W, Lu J , Mater S J, Mater. Med, Astudyoftheprocessandkineticsofelectrochemicaldepositionandthehydrothermalsynthesisofhydroxyapatitecoatings, J Mater Sci-Mater M,Vol. 11 , 667-673 (2000).
101.Yen S.K, Lin C.M, Cathodic reactions of electrolytic hydroxyapatite coating on pure titanium, Mater. Chem. Phys., Vol. 77,70-76 (2002).
102.Switzer J A, Electrochemical synthesis of ceramic films and powders, Am Ceram Soc Bull, Vol. 66 , 1521-1525 (1987).
103.VERT M, Biodegradation of PLA/PGA polymers:increasing complexity, Biomaterials, Vol. 15 ,1209-1213 (1994).
104.徐淑媛、陳金山,彩色圖解基礎人體解剖與生理學,合記圖書出版社,2000。
105.Caixia X, Peiqiang S , Xiaofeng C, Yongchun M, Weihua Y,Andy P X, Yingjun W, Biocompatibility and osteogenesis of biomimetic bioglass-collagen-phosphatidylserine composite scaffolds for bone tissue engineering, Biomaterials,Vol. 32, 1051-1058 (2011).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊