1.高材、林康平、林峰輝、陳家進,生物醫學工程導論,滄海書局,556-585頁,2010。
2.王盈錦,生物醫學材料,合記書局,192-196頁,2007。
3.Meyer U, Wiesmann H P, Bone and cartilage engineering , Berlin,springer, (2006).
4.Dempster D W, Bone Remodeling, In:Coe F L, Favus M J, eds, Disorder of Bone and Mineral Metabolism, Raven Press, New York, 355-380, (1992).
5.Parfitt A M, The physiological and clinical significance of bone histomorphometric data, In: Recker RR, ed. Bone histomorphometry: techniques and interpretation, Boca Raton, FL: CRC, 143-223, (1993) .
6.Gerard J T, Principles of Human Anatomy, Chap.6, (2004).
7.顏克中,β-磷酸三鈣/聚乳酸複合支架仿骨雙層結構之製備技術,逢甲大學紡織工程研究所碩士論文,2007。8.http://www.lookfordiagnosis.com/mesh_info.php?term=Bone+Remodeling&lang=1
9.Gisep A, Research on ceramic bone substitutes: current status, Injury, Vol. 33, 88-92 (2002).
10.Fujibayashi S, Kim H M, Neo M, Uchida M, Kokubo T, Nakamura T, Repair of segmental long bone defect in rabbit femur using bioactive titanium cylindrical mesh cage, Biomaterials, Vol. 24, 3445-3451 (2003).
11.Alam M I, Asahina I, Ohmamiuda K, Takahashi K, Yokota S, Enomoto S, Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2, Biomaterials, Vol. 22, 1643-1651 (2001).
12.Saito N, Takaoka T, New synthetic biodegradable polymers as BMP carriers for bone tissue engineering, Biomaterials, Vol. 24, 2287-2293 (2003).
13.Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J, Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo,Biomaterials, Vol. 22, 1705-1711 (2001).
14.Kline J, Handbook of biomedical engineering, Journal of Clinical Engineering, Vol. 13, 259-260 (1998).
15.Bothe R T, Beaton L E, Davenport H A, Reaction of bone to multiplemetallic implants,ArchGynecology Obstetrics, Vol. 71, 598-602 (1940).
16.Clarke E G C, Hickman J,An investigation into the correlation between the electrical potentials of metals and their behaviour in biological fluids, Journal of bone and joint surgery, Vol. 35, 467-473 (1953).
17.Erli H J, Marx R, Paar O, Niethard F U, Weber M, Wirtz D C, Surface pretreatments for medical application of adhesion, Biomed Eng online, Vol. 2 (2003).
18.Rading J, Peterson L, Clinical experience with the Leeds-Keio artificial ligament in anterior cruciate ligament reconstruction. A prospective two-year follow-up study, Am J Sports Med, Vol. 23, 316-319 (1995).
19.Yonezawa I, Arai Y, Tsuji T, Takahashi M, Kanosawa H, Atlantoaxial transarticular screw fixation and posterior fusion using ultra-highmolecular-weight polyethylene cable, J Spinal Disord Tech, Vol. 18, 392-395 (2005).
20.Ito H, Neo M, Fujibayashi S, Miyata M, Yoshitomi H, Nakamura T, Atlantoaxial transarticular screw fixation with posterior wiring using polyethylene cable – facet fusion despite posterior graft resorption in rheumatoid patients, Spine, Vol. 33, 1655–1661 (2008).
21.Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T, Chung U, Nakamura K, KawaguchiH, Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis, Nat Mater, Vol. 3, 829-836 (2004).
22.Kakisis J D, Liapis C D, Breuer C, Sumpio B E, Artificial blood vessel: the Holy Grail of peripheral vascular surgery, J Vasc Surg, Vol. 41, 349-354 (2005).
23.http://www.plassky.com/PET/index.htm
24.劉建國、徐執揚、齊欣,三維多孔生物降解活性支架材料在軟骨組織工程中的應用,醫學骨科學分冊,第22卷,45-47頁,2001。
25.Knill C J, Kennedy J F, Mistry J, Miraftab M, Smart G, Groocock M R, Williams H J, Alginate fibres modified with unhydrolysed and hydrolysed chitosans for wound dressings, Carbohydrate Polymers, Vol.55, 65-76 (2004).
26.Kumar M N V R , A review of chitin and chitosan applications, React Funct Polym, Vol. 46 , 1-27(2000).
27.Duan B, Yuan X, Zhu Y, Zhang Y, Li X, Zhang Y, A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning, Eur Polym J, Vol. 42,2013-2022 (2006).
28.Ravi Kumar M N V, A review of chitin and chitosan applications, React Funct Polym, Vol. 46, 1–27 (2000).
29.Krajewska B, Application of chitin- and chitosanbased materials for enzyme immobilization: a review, Enzyme Microb Tech, Vol. 35 , 126-139 (2004).
30.Jayakumar R, Menon D, Manzoor K, Nair S V, Tamura H, Biomedical applications of chitin and chitosan based nanomaterials—A short review, Carbohydr Polym, Vol. 82,227-232 (2010).
31.Martino D A., Sittinger M, Risbud M V, Chitosan: a versatile biopolymer for orthopaedic tissue-engineering, Biomaterials, Vol. 26, 5983-5990 (2005).
32.Senel S, McClure S J, Potential applications of chitosan in veterinarymedicine, Adv Drug Deliv Rev, Vol. 56, 1467-1480(2004).
33.Mi F L, Tan Y C, Liang H F, Sung H W, In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant, Biomaterials, Vol. 23, 181-191 (2002).
34.Aoki H, Medical application of hydroxyapatite, Takayama Press , 1-12 (1994).
35.Asada M, Miura Y, Osaka A, Oukami K, Nakamura S, Hydroxyapatite crystal growth on calcium hydroxyapatite ceramics, Journal of Materials Science, Vol. 23, 3202-3205 (1988).
36.Kim C Y, Clark A E, Hench L L, Early stages of calcium-phosphate layer formation in bioglasses, J Non-Cryst Solids, Vol. 113, 195-202 (1989).
37.Roy D M, Linnehan S K, Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange, Nature, Vol. 247, 220-222 (1974).
38.Hench L L, Jones J R, Artificial organs and tissue engineering, Biomaterials, CRC Press, 45-48 (2005).
39.Feinberg S E, Hollister S J, Halloran J W, Chu T M G, Krebsbach P H,Image-based biomimetic approach to reconstruction of the temporomandibular Joint, Cell Tissues Organs, Vol. 169, 309-321 (2001).
40.Ducheyne P, Raemdonck WV, Heughebaert J C, Heughebaert M, Structural analysis of hydroxyapatite coatings on titanium, Biomaterials, Vol. 7, 97-103 (1986).
41.Cook S D, Thomas K A, Kay J F, Jarcho M, Hydroxyapatite-coated titanium for orthopedic implant applications, Clin Orthop Relat Res, Vol. 232, 225-243 (1988).
42.Jansen J A, Waerden J P, Wolke J G, de Groot K, Histologic evaluation of the osseous adaptation to titanium and hydroxyapatite-coated titanium implants, J Biomed Mater Res, Vol. 25, 973-989 (1991).
43.Freed L E, Marquis J C, Nohria A, Emmanual J, Mikos A G, Langer R, Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers, J Biomed Mater Res, Vol. 27, 11-23 (1993).
44.Yao C H, Chang Y L, Lin F H, Preparation and evaluation of β-TCP powder and crosslinked gelatin composite as bone substitute, Chinese J Med Bioeng, Vol.14, 47-51 (1994).
45.Zhang Y, Zhang M, Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants,JBiomed Mater Res, Vol. 61, 1-8 (2002).
46.Sikavitsas V I, van den Dolder J, Bancroft G N, Jansen J A, Mikos A G, Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue-engineered constructs using a rat cranial critical size defect model, J Biomed Mater Res A, Vol. 67, 944-951 (2003).
47.Venkataraman G, Redepenning J, Chen J, Stafford N, Electrochemical preparation of chitosan/hydroxyapatite composite coatings on titanium substrates, J Biomed Mater Res A, Vol. 66, 411-416 (2003).
48.Arinzeh T L, Tran T, Mcalary J, Daculsi G, A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation, Biomaterials, Vol. 26, 3631-3638 (2005).
49.Zhensheng L, Ramay H R, Hauch K D, Xiao D, Zhang M, Chitosan-alginate hybrid scaffolds for bone tissue engineering, Biomaterials, Vol. 26, 3919–3928 (2005).
50.Ng R, Zhang X, Liu N, Yang S T, Modifications of nonwoven polyethylene terephthalate fibrous matrices viaNaOH hydrolysis: Effects on pore size, fiber diameter, cell seeding and proliferation, Process Biochem, Vol. 44, 992-998 (2009).
51.Saito T, Takemoto M, Fukuda A, Kuroda Y, Fujibayashi S, Neo M, Honjoh D, Hiraide T, Kizuki T, Kokubo T, Nakamura T, Effect of titania-based surface modification of polyethylene terephthalate on bone-implant bonding and peri-implant tissue reaction,Acta Biomater, Effect of titania-based surface modification of polyethylene terephthalate on bone-implant bonding and peri-implant tissue reaction,Vol. 7, 1558-1569 (2010).
52.Li H, Ge Y, Wu Y, Jiang J, Gao K, Zhang P, Wu L, Chen S, Hydroxyapatite coating enhances polyethylene terephthalate artificial ligament graft osseointegration in the bone tunnel, Int Orthop,Vol. 35,1561-1567 (2011).
53.Ravanetti F, Borghetti P, Angelis E D, Chiesa R, Martini F M, Gabbi C, Cacchioli A, In vitro cellular response and in vivo primary osteointegration of electrochemically modified titanium, Acta Biomaterialia, Vol. 6, 1014-1024 (2010).
54.Dey A, Nandi S K, Kundu B, Kumar C, Mukherjee P, Roy S, Mukhopadhyay A K, Sinha M K, Basu D, Evaluation of hydroxyapatite and β-tri calcium phosphate microplasma spray coated pin intra-medullary for bone repair in a rabbit model, Ceramics International, Vol. 37, 1377-1391 (2011).
55.Process D, Rajkamal B, Sampath K T S, Mineralization of pristine chitosan film through biomimetic, Int J Biol Macromol, Vol.49,385-389 (2011).
56.Kim H W, Koh Y H, Li L H, Lee S, Kim H E, Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method ,Biomaterials, Vol. 25, 2533-2538 (2004).
57.Maehara H, Sotome S, Yoshii T, Torigoe I, Kawasaki Y, Sugata Y, Yuasa M, Hirano M, Mochizuki N, Kikuchi M, Shinomiya K, Okawa A, Repair of large osteochondral defects in rabbits using porous hydroxyapatite/collagen (HAp/Col) and fibroblast growth factor-2 (FGF-2), J Orthop Res, Vol. 28, 677-686 (2010).
58.Xue D, Zheng Q, Zong C, Li Q, Li H, Qian S, Zhang B, Yu L, Pan Z, Osteochondral repair using porous poly (lactide-co-glycolide)/ nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model, J Biomed Mater Res A, Vol. 94, 259-270 (2010).
59.Suh J K, Matthew H W, Application of chitosan-based polysaccharidebiomaterials in cartilage tissue engineering: a review, Biomaterials, Vol. 21, 2589-2598 (2000).
60.Hutmacher D W, Goh JC, Teoh S H, An introduction to biodegradable materials for tissue engineering applications, Ann Acad Med Singapore, Vol. 30, 183-191 (2001).
61.Lou C W, Hu J J, Chen Y S, Wen S P, Lin K C , Lin J H, Manufacturing technology of 316L stainless steel/poly(lactic acid)composite braids and the induction of hydroxyapatite formation on the braid, Advanced Materials Research, Vol. 287-290,2669-2672 (2011).
62.J. H. Lin, I. S. Tsai, and W. H. Hsing. Introduction to an Innovative Rotor Twister. The Journal of The Textile Institute Vol.89, 266-273 (1988).
63.蔡名騏,複合針織包芯紗製備PET/PP高模數加勁格網之加工技術,逢甲大學紡織工程研究所碩士論文,2010。64.Kokubo T, Ito S, Huang Z T, Hayashi T, Sakka S, Kitsugi T, Yamamuro T, CaP-rich layer formed on high-strength bioactive glass-ceramic A-W, J Biomed Mater Res, Vol.24, 331-343 (1990).
65.Kokubo T, Aaptite formation on surface of ceramics, metals and polymers in body environment, Acta Mater, Vol.46, 2519-2527 (1998).
66.張志純,冰凍乾燥法,台北市,徐氏基金會,1983。
67.張家豪,利用模擬體液製程誘導金屬纖維表面生成類骨磷灰石之研究,逢甲大學紡織工程研究所博士論文,2006。68.温仕鵬,磷酸三鈣/聚乳酸多孔複合人工骨支架之製備技術與特性評估,逢甲大學纖維與複合材料學系碩士論文,2012。69.Hutmacher D W, Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives, J Biomater Sci Polym ,Vol.12,107–24 (2001).
70.Karageorgiou V, Kaplan D, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials ,Vol. 26, 5474–91(2005).
71.Hulbert S F, Morrison S J, Klawitter J J, Tissue reaction to three ceramics of porous and non-porous structures, J Biomed Mater Res,Vol.6,347-74 (1972).
72.Hadjizadeh A, Acetaldehyde plasma polymer-coated PET fibers for endothelial cell patterning: Chemical, topographical, and biological analysis, Journal of Biomedical Materials Research: Part BApplied Biomaterials, Vol. 94 , 11-21 (2010).
73.Hadjizadeh A, Doillon C J, Vermette P, Bioactive polymer fibers to direct endothelial cell growth in a three-dimensional environment, Biomacromolecules, Vol. 8, 864-873 (2007).
74.Basu S, Yang S T, Astrocyte growth and glial cell line-derived neurotrophic factor secretion in three-dimensional polyethylene terephthalatefibrous matrices,Tissue Eng, Vol. 11, 940-952 (2005).
75.Li M H, Lou C W, Lu C T, Wen S P,Lin J H,Manufacturing Technique and Characteristic Evaluation of PET Composite Knitted Fabrics ,The 11th Asian Textile Conference,Vol. 11,110-114 (2011).
76.Afra H, Abdellah A, Martin N B, Preparation and characterization of NaOH treated micro-fibrous polyethylene terephthalate nonwovens for biomedical application, J Mech Behav Biomed Mater,Vol. 3,574-583 (2010).
77.Baksh D, Davies J E, Kim S,Three-dimensional matrices of calcium polyphosphates support bone growth in vitro and in vivo, J Mater Sci Mater Med,Vol. 9:743-748 (1998).
78.Lee S J, Lee I W, Lee Y M, Lee H B, Khang G, Macroporous biodegradable natural/ synthetic hybrid scaffolds as small intestine submucosa impregnated poly- (D, L-lactide-co-glycolide) for tissue-engineered bone. J Biomater Sci Polym , Vol. 15,1003-1017 (2004).
79.Nehrer S, Breinan H A, Ramappa A, Young G, Shortkroff S, Louie L K, Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes, Biomaterials Vol. 18,769-1776 (1997).
80.Hulbert S F, Young F A, Mathews R S, Klawitter J J, Talbert C D, Stelling F H, Potential of ceramic materials as permanently implantable skeletal prostheses, J Biomed Mater Res , Vol. 4,433-456 (1970).
81.Klawitter J J, Bagwell J G, Weinstein A M, Sauer B W, An evaluation of bone growth into porous high density polyethylene. J Biomed Mater Res,Vol. 10,311–323 (1976).
82.Karageorgiou V, Kaplan D, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, Vol.26, 5474-5491 (2005).
83.Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y, Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem ,Vol. 121,317-324 (1997).
84.MurphyCM,HaughMG,O''BrienFJ,The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering, Biomaterials,Vol. 31, 461-466 (2010).
85.Prapaporn J, Narattaphol C, Nateetip K, Jirawan T, I-Ming T, Rassmidara H, Siwaporn M S, Weeraphat P, In vitro study of the SBF and osteoblast-like cells on hydroxyapatite/chitosan–silica nanocomposite, Materials Science and Engineering C,Vol. 31, 290-299 (2011).
86.Madhumathi K, Binulal NS, Nagahama H, Tamura H, Shalumon KT, Selvamurugan N, Nair SV, Jayakumar R, Preparation and characterization of novel beta-chitin-hydroxyapatite composite membranes for tissue engineering applications, Int J Biol Macromol,Vol. 44,1-5 (2009).
87.陳一帆,以磁場梯度核磁共振技術測定幾丁聚醣分子量,朝陽科技大學,2006。
88.陳信吉,交聯幾丁聚醣薄膜在奈米過濾的應用,中原大學化學工程學系碩士學位論文,2005。89.Lin J H, Lou C W, Chang C H, Chen Y S, Lin G T , Lee C H,In vitro study of bone-like apatite coatings on metallic fiber braids, J Mater Process Technol, Vol. 192-193,97-100 (2007).
90.88. Lin J H, Chang C H, Chen Y S, Lin G T, Formation of bone-like apatite on titanium filament by a simulated body fluid inducing process, Composites: Part A, Vol. 38,535-539 (2007).
91.Smith D , Pilhar R, Murrary C, preliminary studies of the surface characterization of dental implant materials, biomaterials, (1985).
92.Xixue H, Hong S, Kegang S, Enwei Z, Yanjie B, Yan C, Xiaoling X, Shenguo W, Jing F, Shicheng W, Surface bioactivity modification of titanium by CO2 plasma treatment and induction of hydroxyapatite: In vitro and in vivo studies, Applied Surface Science,Vol. 257, 1813–1823 (2011).
93.Ban S, Maruno S, Deposition of calcium phosphate on titanium by electrochemical process in simulated body fluid, Jpn J Appl Phys, Vol. 32 ,1577-1580 (1993).
94.Sauer G R, Wuthier RE, Fourier transform infrared characterization of mineral phases formed during induction of mineralization by collagenase-released matrix vesicles in vitro, J Biol Chem, Vol. 263 , 13718-13724 (1988).
95.Zhao X, Yang L, Zuo Y, Xiong J, Hydroxyapatite coatings on titanium prepared by electrodeposition in a modified simulated body fluid, Chinese Journal of Chemical Engineering,Vol. 17,667-671 (2007).
96.Gu Y W , Khor K A, Cheang P, In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid (SBF), Biomaterials,Vo. 24,1603-1611 (2003).
97.Li P, Kangasniemi I, de Groot K, Bonelike hydroxyapatite induction by a gel-derived titania on a titanium substrate, J Am Ceram Soc,Vol. 77,1307–1312 (1994).
98.Qiuhua Y, Teresa D G, Electrochemical study of hydroxyapatite coatings on stainless steel substrates, Thin Solid Films, Vol. 518, 55-60 (2009).
99.Liu D.M, Chou H.M, Wu J D, Mater S J, Plasma-sprayed hydroxyapatite coatings: effect of different calcium phosphate ceramics, Mater. Med, Vol. 5 , 147-153 (1994).
100.Huang, L.Y, Xu, K. W, Lu J , Mater S J, Mater. Med, Astudyoftheprocessandkineticsofelectrochemicaldepositionandthehydrothermalsynthesisofhydroxyapatitecoatings, J Mater Sci-Mater M,Vol. 11 , 667-673 (2000).
101.Yen S.K, Lin C.M, Cathodic reactions of electrolytic hydroxyapatite coating on pure titanium, Mater. Chem. Phys., Vol. 77,70-76 (2002).
102.Switzer J A, Electrochemical synthesis of ceramic films and powders, Am Ceram Soc Bull, Vol. 66 , 1521-1525 (1987).
103.VERT M, Biodegradation of PLA/PGA polymers:increasing complexity, Biomaterials, Vol. 15 ,1209-1213 (1994).
104.徐淑媛、陳金山,彩色圖解基礎人體解剖與生理學,合記圖書出版社,2000。
105.Caixia X, Peiqiang S , Xiaofeng C, Yongchun M, Weihua Y,Andy P X, Yingjun W, Biocompatibility and osteogenesis of biomimetic bioglass-collagen-phosphatidylserine composite scaffolds for bone tissue engineering, Biomaterials,Vol. 32, 1051-1058 (2011).