跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/24 18:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李憶妤
研究生(外文):Yi-Yu Lee
論文名稱:結合創新型神經導管與大面積低功率雷射光治療對於截斷大鼠坐骨神經之神經再生影響評估
論文名稱(外文):Effects of a novel nerve conduit combined with a large-area irradiation of low-level laser phototherapy on neural regeneration of the transected sciatic nerve in rats
指導教授:劉百栓劉百栓引用關係
指導教授(外文):Bai-Shuan Liu
學位類別:碩士
校院名稱:中臺科技大學
系所名稱:醫學影像暨放射科學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:121
中文關鍵詞:機械強度大面積低功率雷射周邊神經修復神經接合導管生物降解
外文關鍵詞:peripheral nerve injuryneural regenerationLow-level laser therapysciatic nerve
相關次數:
  • 被引用被引用:0
  • 點閱點閱:345
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究開發了一種新的可生物降解性的神經導管,此神經導管是具可吸收性的天然高分子材料--明膠(Gelatin)作為神經接合導管基材。將明膠並添加三鈣磷酸鹽(TCP)以強化神經導管的機械強度;最後將此神經接合導管浸泡於交聯劑—1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)溶液中,使其與明膠產生交聯反應,以減緩神經接合導管的降解速率(簡稱EGT神經導管)。在本篇研究中,將EGT神經導管植入神經受損的大鼠體內中結合大面積低功率雷射,波長為660 nm及功率為50 mW,其雷射探頭組成由鋁鎵銦磷組成之二極體雷射照射,治療一長斷端1.5公分的神經受損的研究。
EGT神經導管可以觀察到神經導管皆呈現完整的中空同心圓狀,外觀則較粗糙、顏色接近象牙白。吸水率測試試驗顯示了EGT神經導管有較高的穩定性,並不會因為管壁吸水而造成導管崩解或塌陷。在本篇研究中,關於體外酶降解試驗中,EGT導管增加了結構穩定度。其結果顯示了使用EDC交聯明膠基質並且添加三鈣磷酸鹽陶瓷粉末其機械強度可以提供一神經通道足以作為神經導管。將大鼠隨機放入下列三組:EGT/Sham、EGT/Laser、Autografts。隨機分別放入:EGT/Sham、EGT/Laser、Autografts。其中EGT/Sham組為將坐骨神經切斷後縫合EGT神經導管,且接受模擬照射低功率雷射組;EGT/Laser組為將坐骨神經切斷後縫合EGT神經導管並且接受大面積低功率雷射治療組;Autografts組為自體移植對照組,將動物的坐骨神經切斷後,立即將神經的近端與遠端縫合。EGT/Laser組立即以大面積低功率雷射照射治療,術後第一天傷口尚未縫合前進行雷射照射30分鐘,第二天起連續照射9天,每日照射5分鐘,而EGT/Sham組與EGT/Laser組使用相同方式照射大面積雷射,但大面積雷射刺激探頭則為關閉狀態。
神經導管植入大鼠體內12週後,EGT/Laser組與Autografts組之坐骨神經功能指數(P < 0.05)皆高於EGT/sham組。電生理測量方面,EGT/Laser組與Autografts組之複合肌肉電位(CAMP)的平均峰值與波下面積值皆顯著高於EGT/Sham組(P < 0.05)。與EGT/Sham組相比之下,EGT/Laser組和Autografts組明顯可以減少肌肉萎縮。組織形態學評估顯示,EGT/Laser組和Autografts組的神經再生比EGT/Sham更為快速,而雷射治療組表明雷射可以加速神經再生、刺激軸突發芽與繁殖並使髓鞘的厚度,比無治療雷射組修復的更為良好。本篇研究結果表明了周邊神經的損傷利用大面積低功率雷射治療結合EGT神經導管可以改善運動功能,增強電生理反應,減少肌肉萎縮,及加速神經的再生與修復。
This paper proposes a novel biodegradable nerve conduit comprising 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) cross-linked gelatin, annexed with β-tricalcium phosphate (TCP) ceramic particles (EDC-Gelatin-TCP, EGT). In this study the EGT-implant site in rats was irradiated using a large-area 660 nm aluminum-gallium-indium phosphide (AlGaInP) diode laser (50 mW) to investigate the feasibility of laser stimulation in the regeneration of a 15-mm transected sciatic nerve.
The proposed EGT conduit has a cylindrical shape, ivory-like color, and a rough, compact outer surface. A water uptake test indicates that the unique properties of EGT noticeably increase the stability of the artificial nerve graft in water; and the hydrated conduit does not collapse or stenose. The cross-linked structure of the EGT conduit resists enzymatic hydrolysis, which led to improved structural properties in studies on in vitro degradation. Results show that the adherence of TCP ceramic particles to the EDC-cross-linked gelatin matrix provided a framework with mechanical strength sufficient to serve as a nerve conduit. The animals were divided into three groups: a sham-irradiated group (EGT/Sham); an experimental group undergoing low-level laser (LLL) therapy (EGT/Laser); a control group undergoing autologous nerve grafts (autografts). LLL therapy was applied for 30 min immediately following surgery, focusing on the area of nerve damage. The surgical site was then treated transcutaneously for 5 min daily for 9 consecutive days.
Twelve weeks after implantation, walking track analysis showed a significantly higher sciatic functional index (SFI) (P < 0.05) and improved toe spreading development in the EGT/Laser and autograft groups than in the EGT/Sham group. In electrophysiological measurement, both the mean peak amplitude and the area under the compound muscle action potential (CMAP) curves in the EGT/Laser and autograft groups showed significantly improved functional recovery than the EGT/Sham group (P < 0.05). Compared with the EGT/Sham group, the EGT/Laser and autograft groups displayed a reduction in muscular atrophy. Histomorphometric assessments revealed that the EGT/Laser group had undergone more rapid nerve regeneration than the EGT/Sham group. The laser-treated group also presented greater neural tissue area as well as larger axon diameter and thicker myelin sheath than the tube group without the laser treatment, indicating improved nerve regeneration.
Thus, motor function, electrophysiologic reaction, muscular reinnervation, and histomorphometric assessments demonstrate that LLL therapy can accelerate the repair of a transected peripheral nerve in rats after being bridged with EGT conduit.
中文摘要 I
英文摘要 III
目錄 V
表目錄 VIII
圖目錄 IX
壹、緒論 1
1-1前言 1
1-2研究動機與目的 3
貳、文獻回顧 5
2-1組織工程的定義與基本概念 5
2-2生物醫學材料簡介 6
2-3神經系統與神經修復之生理學簡介 9
2-3-1神經系統的介紹 9
2-3-2周邊神經損傷 15
2-3-3周邊神經損傷修復 18
2-4實驗材料介紹 22
2-4-1明膠(Gelatin) 22
2-4-2 EDC交聯劑 24
2-4-3三鈣磷酸鹽陶瓷粉末(Tricalcium phosphate, TCP) 25
2-5神經導管材料介紹 27
2-6低功率雷射 29
參、研究方法 31
3-1實驗流程 31
3-2實驗材料製備方法 34
3-3材料特性分析 36
3-3-1表面形態觀察 36
3-3-2吸水率測試(Water uptake ratio) 36
3-3-3體外酶降解試驗(In vitro enzymatic degradation test) 37
3-3-4機械性質分析 37
3-4坐骨神經再生修復實驗 40
3-4-1坐骨神經縫合手術 40
3-5-2低功率雷射架設與雷射刺激 44
3-4-3坐骨神經修復評估方法 46
3-4-3.1實驗大鼠表面之巨觀觀察 46
3-4-3.2坐骨功能指數(SFI)分析 46
3-4-3.3複合肌肉動作電位(CMAP)測試 49
3-4-3.4實驗大鼠體內之巨觀觀察 52
3-4-3.5實驗大鼠之肌肉萎縮評估 52
3-4-3.6神經組織的再生評估 52
肆、研究結果 55
4-1材料特性分析結果 55
4-1-1EG與EGT神經導管之表面型態觀察 55
4-1-2吸水率測試結果 58
4-1-3酶降解失重比率測定結果 60
4-1-3機械性質分析結果 62
4-2坐骨神經再生修復實驗結果 64
4-2-1大鼠手術後巨觀觀察 64
4-2-2坐骨神經功能指數分析結果 68
4-2-3複合肌肉動作電位(CMAPs)測試結果 71
4-2-4 EGT導管生物適應性與生物可降解性 73
4-2-5 坐骨神經的再生 75
4-2-6 腓腸肌重量評估結果 77
4-2-7 免疫組織染色分析結果 79
4-2-8鋨酸染色分析結果 82
伍、討論 86
5-1材料特性分析 86
5-2 坐骨神經再生修復評估 89
六、結論 95
參考文獻 97
1.Inserra MM, Bloch DA, Terris DJ. Functional indices for sciatic, peronal, and posterior tibial nerve lesions in the mouse. Microsurgery 1998; 18:119-124.
2.Rochkind S, Nissan M, Alon M, Shamir M, Salame K. Effects of laser irradiation on the spinal cord for the regeneration of crushed peripheral nerve in rats. Lasers Surg Med 2001; 28:216-219.
3.Rochkind S, Quaknine GE. New trend in neuroscience: low-power laser effect on peripheral and central nervous system (basic science, preclinical and clinical studies). Neurol Res 1992; 14:2-11.
4.Rodriguez FJ, Valero-Cabré A, Navarro X. Regeneration and functional recovery following peripheral nerve injury. Drug Discov Today Dis Models 2004; 1:177-185.
5.IJkema-Paassen J, Jansen K, Gramsbergen A, Meek MF. Transection of peripheral nerves, bridging strategies and effect evaluation. Biomaterials 2004; 25:1583-1592.
6.Nichols CM, Brenner MJ, Fox IK, Tung TH, Hunter DA, Rickman, SR, Mackinnon SE. Effects of motor versus sensory nerve grafts on peripheral nerve regeneration. Exp Neurol 2004; 190:347-355.
7.Bini TB, Gao S, Xu X, Wang S, Ramakrishna S, Leong KW. Peripheral nerve regeneration by microbraided poly(L-lactide-co-glycolide) biodegradable polymer fibers. J Biomed Mater Res A 2004; 68:286-295.
8.Mackinnon SE, Dellon AL. Clinical nerve reconstruction with a bioabsorbable polyglycolic acid tube. Plast Reconstr Surg 1990; 85(3):419-424.
9.Evans PJ, Mackinnon SE, Levi ADO, Wade JA, Hunter DA, Nakao Y, Midha R. Cold preserved nerve allografts: changes in basement membrane, viability, immunogenicity, and regeneration. Muscle Nerve 1998; 21(11):1507-1522.
10.Dahlin LB, Anagnostaki L, Lundborg G. Tissue response to silicone tubes used to repair human median and ulnar nerves. Scand J Plast Reconstr Hand Surg 2001; 35:29-34.
11.Sufan W, Suzuki Y, Tanihara M, Ohnishi K, Suzuki K, Endo K, Nishimura Y. Sciatic nerve regeneration through alginate with tubulation or nontubulation repair in the cat. J Neurotrauma 2001; 18:329-338.
12.Gigo-Benato D, Geuna S, Rochkind S. Phototherapy for enhancing peripheral nerve repair: a review of the literature. Muscle Nerve 2005; 31:694-701.
13.Mendonça AC, Barbieri CH, Mazzer N. Directly applied low intensity direct electric current enhances peripheral nerve regeneration in rats. J Neurosci Methods 2003; 129:183-190.
14.Raso VVM, Barbieri CH, Mazzer N, Fasan VS. Can therapeutic ultrasound influence the regeneration of the peripheral nerves? J Neurosci Methods 2005; 142:185-192.
15.Gigo-Benato D, Geuna S, Rochkind S. Phototherapy for enhancing peripheral nerve repair: A review of the literature. Muscle Nerve 2005; 31:694-701.
16.Amat A, Rigau J, Waynant RW, Ilev IK, Anders JJ. The electric field induced by light can explain cellular responses to electromagnetic energy: a hypothesis of mechanism. Photochem Photobiol 2006; 82:152-160.
17.Fields RD, Le Beau JM, Longo FM, Ellisman MH. Nerve regeneration through artificial tubular implants. Prog Neurobiol 1989; 33:87-134.
18.Bigia A, Cojazzib G, Panzavolta S, Rubinia K, Roveria N. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 2001; 22:763-768.
19.李宜書:淺談組織工程。物理雙月刊 2001;24卷3期;430-435。
20.Fields RD, Le Beau JM, Longo FM, Ellisman MH. Nerve regeneration through artificial tubular implants. Prog Neurobiol 1989; 33:87-134.
21.Kingsley RE. Concise test of neuroscience. 2nd Edition. Lippincott Williams & Wilkins 1999; 1-90.
22.Marieb EN. Human Anatomy & Physiology. 4th Edition. TheBenjamin/Cummings Science Publishing 1998; 362-403.
23.Robert M, Benre, Matthew N, Lery. Principles of Physiology. International Student Edition. Wolfe Publishing Ltd. 1990; pp. 56-68.
24.Haines DE. Fundamental Neuroscience. Churchill Livingstone Inc., 1997; 1-8.
25.Nicoli AN, Perego G, Cella GD, Maltarello MC, Fini M, Rocca M, Giardino R. Effectiveness of a bioabsorbable conduit in the repair of peripheral nerves. Biomaterials. 1996; 17(10):959-962.
26.Paul R, Wheater HGB, Peter Lancaster (劉國鈞譯)。(組織學彩色圖譜)。臺北:力大圖書。(民79)
27.吳禹利、胡朝乾、張淑鳳。組織學圖譜。臺北:合記圖書。(民74)
28.醫源世界:2006
29.Lodish HF. Molecular cell biology (4th ed.). New York: W.H. Freeman 2000.
30.Pansky B, Allen DJ, Budd GC. Review of neuroscience 108 (2nd ed.): Collier Macmillan 1988.
31.Seddon H J. Three types of nerve injury. Brain.1943; 66(4), 237-288.
32.Sedden H. Surgical disorders of the peripheral nerves. Edinburgh: Churchill Livingstone 1972.
33.Sunderland S. A classification of peripheral nerve injuries producing loss of function. Brain. 1951; 74(4), 491-516.
34.Sunderland S. Nerves and nerve injuries (2nd ed.). Edinburgh; New York: Churchill Livingstone 1978.
35.顧玉東。周圍神經缺損的基本概念與治療原則。中華手外科雜誌 ,2002; 18(3)。
36.Keilhoff G, Goihl A, Stang F, Wolf G, Fansa H. Peripheral nerve tissue engineering: autologous Schwann cells vs. transdifferentiated mesenchymal stem cells. Tissue Eng 2006; 12(6), 1451-1465.
37.Millesi H. Nerve transplantation for reconstruction of peripheral nerves injured by the use of the microsurgical technic. Minerva Chir 1967; 22(17), 950-951.
38.Satoshi I, Yuji I, Tatsuo N. Artificial nerve tubes and their application for repair of peripheral nerve injury: an update of current concepts. Injury 2008; 39, 29-39.
39.Millesi H. Nerve grafts: indications, techniques and prognosis. In G. E. Omer & M. Spinner (Eds.), Management of peripheral nerve problems. Philadelphia: Saunders 1980; 401-430.
40.Ohbayashi K, Inoue HK, Awaya A, Kobayashi S, Kohga H, Nakamura M, Ohye C. Peripheral nerve regeneration in a silicone tube: effect of collagen sponge prosthesis, laminin, and pyrimidine compound administration. Neurologia medico-chirurgica (Tokyo) 1996; 36(7), 428-433.
41.Urabe T, Zhao Q, Danielsen N, Lundborg G. Regeneration across a partial defect in rat sciatic nerve encased in a silicone chamber. Scand J Plast Reconstr Surg Hand Surg 1996; 30(1), 7-15.
42.Panseri S, Cunha C, Lowery J, Del Carro U, Taraballi F, Amadio S, Vescovi A, Gelain F. Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnology 2008; 8(1), 39.
43.陳俊男。神經修復導管發展之現況。化工資訊,2002;40-45。
44.Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell. Molecular Cell Biology. 4th Edition. W.H. Freeman and Company 1999; 849-913, 1002-1053.
45.Lundborg G. Nerve Injury and Repair. Churchill Livingstone Inc., 1988; 1-277.
46.Junqueira LC, Carneiro J. Basic Histology 3rd Edition: Nerve Tissue; Chapter 9.
47.Pansky B, Allen DJ, Budd Gc. Review of Neuroscience. 2nd Edition. Maclillan Publishing Company 1988; 55-59.
48.A Bigi, S Panzavolta, K Rubini. Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterial 2004; 25:5675-5680.
49.Liang HC, Chang WH, Lin KJ, Sung HW. Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: In vitro and in vivo studies. Journal of Biomedical Materials Research Part A 2003; 65A(2), 271-282.
50.Sung HW, Chang Y, Chiu CT, Chen CN, Liang HC. Mechanical properties of a porcine aortic valve fixed with a naturally occurring crosslinking agent. Biomaterials 1999; 20(19), 1759-1772.
51.Lee JM, Edwards HHL, Pereira CA, Samii SI. Crosslinking of tissue-derived biomaterials in 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide(EDC). J. Biomed. Mater. Res. in medicine 1996; 7, 531-541.
52.Olde Damink LHH, Dijkstra PJ, Luyn MJA, van Wachem PB, van Nieuwenhuis P, Feijen J. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials 1996; 17, 765-773.
53.Sung HW, Huang DM, Chang WH, Huang RN, Hsu JC. Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: In vitro study. J. Biomed. Mater Res. 1999; 520-530.
54.De Groot K. Bioceramics consisting of calcium phosphate salts. Biomaterials 1980; 47-50.
55.Merle M, Dellon AL, Campbell JN, Chang PS. Complications from silicone-polymerintubulation of nerves. Microsurgery 1989; 10:130-133.
56.Basford JR. Low intensity laser therapy: still not an established clinical tool.Lasers Surg Med 1995; 16:331-342.
57.Amat A, Rigau J, Waynant RW, Llev LK, Anders JJ. The electric field induced by light canexplain cellular responses to electromagnetic energy: a hypothesis of mechanism. Photochem Photobiol 2006; 82:152-160.
58.Belkin M, Zaturunsky B, Schwartz M. A critical review of low energy laser bioeffects. Lasers Light Ophthalmol 1988; 2:63-71.,
59.Karu T. Photobiology of low-power laser effect. Health Physiol.1989; 56:691-704.
60.Mester E, Mester AF, Mester A . The biomedical effects of laser application. Lasers Surg Med 1985; 5:31-39.
61.Conlan MJ, Rapley JW, Cobb CM. Biostimulation of wound healing by low-energy laser irradiation. A review. Journal of clinical Periodontology 1996; 23:492-496.
62.Yaakobi T, Maltz L, Oron U. Promotion of bone repair in the cortical bone of the tibia in rats by low energy laser (He-Ne) irradiation. Calcif Tissue Int 1996; 59:297-300.
63.Davilene Gigo-Benato, Thiago Luiz Russo, Erika Harumi Tanaka, Lı´via Assis, MS,Tania Fa´tima Salvini, Nivaldo Antonio Parizotto. Effects of 660 and 780 nm Low-Level Laser Therapy on Neuromuscular Recovery After Crush Injury in Rat Sciatic Nerve. Lasers in Surgery and Medicine 2010; 42:673-682.
64.Rochkind S, Nissan M, Alon M, Shamir M, Salame K. Effects of laser irradiation on the spinal cord for the regeneration of crushed peripheral nerve in rats. Lasers Surg Med 2001; 28:216-219.
65.Rochkind S, Nissan M, Lubart R, Avram J, Bartal A. The in-vivo nerve response to direct low-energy-laser irradiation. Acta Neurochir (Wien) 1988; 94:74-77.
66.Rochkind S, Vogler I, Barr-Nea L. Spinal cord response to laser treatment of injured peripheral nerve Spine. 1990; 15:6-10.
67.Anders JJ, Borke RC, Woolery SK, Merwe WPV. Low power laser irradiation alters the rate of regeneration of the facial nerve. Lasers Surg Med 1993; 13:72-82.
68.Basford JR. Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med 1995; 16:331-342.
69.Lin CH, Su JM, Hsu SH. Evaluation of Type II Collagen Scaffolds Reinforced by Poly(ε-Caprolactone) as Tissue-Engineered Trachea. Tissue Engineering Part C: Methods 2008 ;14(1), 69-77.
70.Madduri S, Feldman K, Tervoort T, Papaloizos M, Gander B. Collagen nerve conduits releasing the neurotrophic factors GDNF and NGF. J Control Release 2010; 143(2), 168-174.
71.Seliktar D, Black RA, Vito RP, Nerem RM. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann Biomed Eng 2000; 28(4), 351-362.
72.Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg 1989; 83:129-138.
73.Plikk P, Målberg S, Albertsson A. Design of Resorbable Porous Tubular Copolyester Scaffolds for Use in Nerve Regeneration. Biomacromolecules 2009; 10(5): 1259-1264.
74.Keilhoff G, Stang F, Wolf G, Fansa H. Bio-compatibility of type I/III collagen matrix for peripheral nerve reconstruction. Biomaterials 2003; 24:2779-2787.
75.Olde Damink LHH, Dijkstra PJ, van Luyn MJA, van Wachem PB, Nieuwenhuis P, Feijen J. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials 1996; 17:765-773.
76.Kim S, Nimni ME, Yang Z, Han B. Chitosan/gelatin-based films crosslinked by proanthocyanidin. J Biomed Mater Res B Appl Biomater 2005; 75:442-450.
77.Yang YC, Shen CC, Huang TB, Chang SH, Cheng HC, Liu BS. Characteristics and biocompatibility of a biodegradable genipin-crosslinked gelatin/β-tricalcium phosphate reinforced nerve guide conduit. J. Biomed. Mater. Res. Part B 2010; 95(1):207-217.
78.Bagis S, Comelekoglu U, Sahin G, Buyukakilli B, Erdogan C, Kanik A. Acute electrophysiologic effect of pulsed galliumarsenide low energy laser irradiation on configuration of compound nerve action potential and nerve excitability. Lasers Surg Med 2002; 30:376-380.
79.Vladimirov Yu A, Osipov AN, Klebanov GI. Photobiological principles of therapeutic applications of laser radiation. Biochemistry 2004; 69:81-90.
80.Abergel RP, Lyons RF, Castel JC, Dwyer RM, Uitto J. Biostimulation of wound healing by lasers: experimental approaches in animal models and in fibroblast cultures. J Dermatol Surg Oncol 1987; 13:127-133.
81.Walker J. Relief from chronic pain by low power laser irradiation. Neurosci Lett 1983; 43:339-344.
82.Monte-Raso VV, Barbieri CH, Mazzer N, Yamasita AC, Barbieri G. Is the sciatic functional index always reliable and reproducible? J Neurosci Methods 2008; 170:255-261.
83.Joel A, DeLisa BMG, Walsh NE. Physical medicine and rehabilitation: Principles and practice. Philadelphia, PA, 19106 USA: Lippincott Williams & Wilkins; 2005.
84.Dahlin LB. The biology of nerve injury and repair. J Am Soc Surg Hand 2004; 4:143-155.
85.Santiago LY, Clavijo-Alvarez J, Brayfield C, Rubin JP, Marra KG. Delivery of adipose-derived precursor cells for peripheral nerve repair. Cell Transplant 2009; 18:145-158.
86.Van Breugel HH, Bar PR. HeNe laser irradiation affects proliferation of cultured rat Schwann cells in a dose-dependent manner. J Neurocytol 1993; 22:185-190.
87.Schwartz F, Brodie C, Appel E, Kazimirsky G, Shainberg A. Effect of helium/neon laser irradiation on nerve growth factor synthesis and secretion in skeletal muscle cultures. J Photochem Photobiol B 2002; 66:195-200.
88.Karu T. Derepression of the genome after irradiation of human lymphocytes with HeNe laser. Laser Therapy 1992; 4:5-24.
89.Gulsoy M, Ozer GH, Bozkulak O, Tabakoglu HO, Aktas E, Deniz G, Ertan C. The biological effects of 632.8-nm low energy He-Ne laser on peripheral blood mononuclear cells in vitro. J Photochem Photobiol B 2006; 82:199-202.
90.Wollman Y, Rochkind S, Simantov R. Low power laser irradiation enhances migration and neurite sprouting of cultured rat embryonal brain cells. Neurol Res 1996; 18:467-470.
91.Elles JT, Henry MM, Summerfelt P, Wong-Riley MT, Buchmann EV, Kane M, Whelan NT, Whelan HT. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci USA 2003; 100:3439-3444.
92.Ehrlicher A, Betz T, Stuhrmann B, Koch D, Milner V, Raizen MG, Kas J. Guiding neuronal growth with light. Proc Natl Acad Sci USA 2002; 99:16024-16028.
93.Shin DH, Lee E, Hyun JK, Lee SJ, Chang YP, Kim JW, Choi YS, Kwon BS. Growth-associated protein-43 is elevated in the injured rat sciatic nerve after low power laser irradiation. Neurosci Lett 2003; 344:71-74.
94.Snyder SK, Byrnes KR, Borke RC, Sanchez A, Anders JJ. Quantification of calcitonin gene-related peptide mRNA and neuronal cell death in facial motor nuclei following axotomy and 633 nm low power laser treatment. Laser Surg Med 2002; 31:216-222.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top