跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 15:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠合
研究生(外文):Guan-He Chen
論文名稱:混合溶劑DETA + PZ水溶液吸收二氧化碳反應動力學數據量測研究
論文名稱(外文):Kinetics of Absorption of Carbon Dioxide into Aqueous Solutions of Diethylenetriamine and Piperazine
指導教授:李夢輝李夢輝引用關係
指導教授(外文):Meng-Hui Li
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:130
中文關鍵詞:量測動力學混合溶劑二氧化碳吸收
外文關鍵詞:absorptionkineticspiperazinecarbon dioxidediethylenetriamine
相關次數:
  • 被引用被引用:1
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討二氧化碳與DETA水溶液及混合溶液PZ/DETA水溶液的吸收反應動力學,實驗是使用濕壁柱來量測二氧化碳的吸收,系統濃度範圍DETA (530 wt%) + H2O以及PZ (4 wt%) + DETA (26 wt%) + H2O、PZ (8 wt%) + DETA (22 wt%) + H2O和PZ (12 wt%) + DETA (18 wt%) + H2O三個系統,溫度是30、35和40°C。而研究的實驗結果以混合擬一級及兩性離子機構的反應動力學模式來探討,反應機構模式的參數由實驗結果以數值迴歸方法得到。
此外本研究同時有量測相關的物理性質如密度、黏度、亨利常數及擴散係數等相關數據,只是二氧化碳在醇胺水溶液中的亨利常數及擴散係數無法直接量測得到,所以我們必須使用N2O類比理論來求得亨利常數及擴散係數。為有效設計酸性氣體的吸收設備,亨利常數及擴散係數的數據是相當重要的,而且正確的亨利常數及擴散係數值也是化學吸收模式探討的重要基礎。
研究結果發現混合溶劑DETA + PZ水溶液能有效增加系統吸收二氧化碳的吸收速率。
The reaction kinetics for the absorption of CO2 into aqueous solutions of Diethylenetriamine (DETA) and into mixed aqueous solutions of DETA and Piperazine (PZ) were investigated by a wetted wall column at 30, 35 and 40°C. The systems studied were: DETA (5, 10, 15, 20, 25, and 30 wt%) + H2O and DETA (26 wt%) + PZ (4 wt%) + H2O, DETA (22 wt%) + PZ (8 wt%) + H2O, DETA (18 wt%) + PZ (12 wt%) + H2O. The physical properties such as density, viscosity, Henry’s constant and diffusivity of the studied systems were also measured. Due to the reactivity of CO2 to the amine system, an N2O analogy was used to estimate the solubility and diffusivity of CO2 in the aqueous amine solutions.
From the kinetics measurements, the absorption rates of CO2 in the aqueous blended DETA/PZ solutions were found to be significantly faster than in conventional amine systems. The reaction rate constants were calculated by applying a hybrid model which combines a pseudo-first-order model with a zwitterion mechanism. This model was found to satisfactorily represent the absorption of CO2 in both the aqueous DETA and aqueous blended DETA/PZ systems. It can be concluded that the results of this study can be used in the design of absorption processes which employ aqueous solutions of DETA or DETA/PZ as absorbents.
目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 醇胺的使用 2
1-3 DETA與PZ的熱物性質 3
1-3.1 Diethylenetriamine 3
1-3.2 Piperazine 4
1-4 醇胺水溶液混合及添加PZ的文獻探討 4
1-4.1 DETA + H2O系統 5
1-4.2 PZ + H2O系統 5
1-4.3 PZ + MDEA + H2O系統 6
1-4.4 PZ + AMP + H2O系統 7
1-5 研究動機 8
第二章 二氧化碳與醇胺的反應機構 12
2-1 CO2與各級醇胺水溶液以及PZ的反應機構 12
2-1.1 CO2與水的反應 12
2-1.2 CO2與一、二級醇胺的反應 13
2-1.3 CO2與三級醇胺的反應 15
2-1.4 CO2與PZ的反應 16
2-2 CO2與醇胺溶液的吸收模式探討 17
2-2.1 物理吸收模式 17
2-2.2 單一醇胺化學吸收模式 19
2-2.3 快速擬一級(Fast pseudo-first order)反應的解析解 24
2-3 本實驗所使用的動力學模式 30
2-3.1 CO2 + DETA + H2O 30
2-3.2 CO2 + DETA + PZ + H2O 30
2-4 N2O類比理論 32
2-5 物理性質數據之迴歸模式 34
2-5.1 密度計算的迴歸模式 34
2-5.2 黏度計算的迴歸模式 35
2-5.3 亨利常數計算的迴歸模式 36
2-5.4 擴散係數計算的迴歸模式 38
第三章 實驗 40
3-1 實驗藥品 40
3-2 密度的量測 40
3-3 黏度的量測 41
3-4 亨利常數的量測 43
3-5 擴散係數的量測 44
3-6 二氧化碳吸收的量測 46
第四章 結果與討論 50
4-1 CO2 + DETA + H2O 50
4-1.1 密度和黏度的量測結果 50
4-1.2 亨利常數的量測結果 59
4-1.3 擴散係數的量測結果 65
4-1.4 CO2 + DETA + H2O化學吸收的量測結果 70
4-2 CO2 + DETA + PZ + H2O 80
4-2.1 密度和黏度的量測結果 80
4-2.2 亨利常數的量測結果 87
4-2.3 擴散係數的量測結果 91
4-2.4 化學吸收的量測結果 95
第五章 結論 108
符號說明 109
參考文獻 112


表目錄
Table 1- 1 Commonly used alkanolamines 10
Table 1- 2 Literature review on the reaction of CO2 with aqueous blended amine solutions 11

Table 4- 1 Densities and viscosities of DETA + H2O solutions 52
Table 4- 2 Parameters of equation for the density of pure DETA and H2O 55
Table 4- 3 Parameters of Redlich-Kister-type equation for the density DETA + H2O 55
Table 4- 4 Parameters of viscosity equations a 56
Table 4- 5 Estimated solubility of CO2 in DETA + H2O using N2O analogy 62
Table 4- 6 Parameters of the Henry’s constant equation 63
Table 4- 7 Estimated diffusivity of CO2 in DETA + H2O using N2O analogy 67
Table 4- 8 Parameters of the diffusivity equation 68
Table 4- 9 Kinetics data obtained for CO2 in DETA + H2O solutions 73
Table 4- 10 Kinetic data for the absorption of CO2 in DETA + H2O solutions 74
Table 4- 11 Diffusivity of amines in solutions used to calculate instantaneous enhancement factor for CO2 in DETA + H2O solutions 75
Table 4- 12 Kinetic constants of DETA aqueous solutions 76
Table 4- 13 Parameters of kinetic constants in DETA aqueous solutions 77
Table 4- 14 Densities and viscosities of DETA + PZ + H2O solutions 81
Table 4- 15 Parameters for the densities of pure fluids 83
Table 4- 16 Parameters of the densities equation 83
Table 4- 17 Parameters of the viscosities equation a 84
Table 4- 18 Estimated solubility of CO2 in DETA + PZ + H2O using N2O analogy 88
Table 4- 19 Parameters of the Henry’s constant equation 89
Table 4- 20 Estimated diffusivity of CO2 in DETA + PZ + H2O using N2O analogy 92
Table 4- 21 Parameters of the diffusivity equation 93
Table 4- 22 Kinetics data of CO2 in aqueous DETA + PZ solutions 98
Table 4- 23 Kinetics data for the absorption of CO2 in aqueous DETA + PZ solutions 99
Table 4- 24 Diffusivity of amine in solutions used to calculate instantaneous enhancement factor for CO2 in aqueous DETA + PZ solutions 100
Table 4- 25 Compare results in aqueous DETA + PZ solutions for Eq. 4-8 101
Table 4- 26 Kinetic constants of aqueous DETA + PZ solutions 102
Table 4- 27 Kinetic parameters of aqueous DETA + PZ solutions 103



圖目錄
Figure 1- 1 Diethylenetriamine (DETA) 4
Figure 1- 2 Piperazine (PZ) 4

Figure 2- 1 Enhancement factor for second order reaction plotted against Hatta number (Drew et al., 1981) 27
Figure 2- 2 Liquid-phase concentration profiles for mass transfer with chemical reaction film theory (Drew et al., 1981) 28
Figure 2- 3 Enhancement factor for second order reaction for Hatta number greater than 3 (Van Krevelen and Hoftijzer, 1948) 29

Figure 3- 1 Schematic drawing of physical gas absorption apparatus 48
Figure 3- 2 Schematic drawing of wetted-wall column apparatus 49

Figure 4- 1 Density of aqueous DETA solutions at 30-70°C 57
Figure 4- 2 Viscosity of aqueous DETA solutions at 30-70°C 58
Figure 4- 3 Solubility of N2O in H2O as a function of temperature 61
Figure 4- 4 Solubility of N2O in aqueous DETA solutions 64
Figure 4- 5 Diffusivity of CO2 in H2O as a function of temperature 66
Figure 4- 6 Diffusivity of N2O in aqueous DETA solutions 69
Figure 4- 7 Pseudo-first-order apparent reaction rate constant for the reaction of CO2 with DETA + H2O solutions 78
Figure 4- 8 Arrhenius plot of k2,DETA as function of temperature 79
Figure 4- 9 Density of aqueous DETA + PZ solutions 85
Figure 4- 10 Viscosity of aqueous DETA + PZ solutions 86
Figure 4- 11 Solubility of N2O in aqueous DETA + PZ solutions 90
Figure 4- 12 Diffusivity of N2O in aqueous DETA + PZ solutions 94
Figure 4- 13 Pseudo-first-order apparent reaction rate constant for the reaction of CO2 with DETA + PZ + H2O solutions 104
Figure 4- 14 The calculated kapp as function of concentration of PZ at 18 wt% DETA at 40°C 105
Figure 4- 15 The calculated kapp as function of concentration of DETA at 8 wt% PZ at 40°C 106
Figure 4- 16 Specific apparent reaction rate constant change as function of CDETA 107
Al-Ghawas, H. A., D. P. Hagewiesche, G. Ruiz-Ibanez and O. C. Sandall. Physicochemical properties important for carbon dioxide absorption in aqueous methyldiethanolamine. J. Chem. Eng. Data 1989, 34, 385-391.

Alper, E. and W. Bouhamra. Reaction kinetics of carbonyl sulfide with aqueous ethylenediamine and diethylenetriamine. Gas Separ. &; Purific. 1994, 8, 4, 237-240.

Alvarez-Fuster, C., N. Midoux, A. Laurent and J. C. Charpentier. Chemical kinetics of the reaction of carbon dioxide with amine in pseudo m-nth order condition in aqueous and organic solutions. Chem. Eng. Sci. 1980, 35, 1717-1723.

Appl, M., U. Wanger, H. J. Henrici, K. Kuessner, F. Volkamer and N. E. Neust. Remove of CO2 and / or H2S and / or COS from gases containing these constituents. U. S. Patent:4336233 1982, 22,

Astarita, G., D. W. Savage and A. Bisio. Gas treating with chemical solvents. New York, John Wiley, 1983.

Barth, D., C. Tondre and J.-J. Delpuech. Kinetics and mechanisms of the reactions of carbon dioxide with alkanolamines: a discussion concerning the cases of MDEA and DEA. Chem. Eng. Sci. 1984, 39, 12, 1753-1757.

Barth, D., C. Tondre, G. Lappai and J. J. Delpuech. Kinetic study of carbon dioxide reaction with tertiary amines in aqueous solutions. J. Phys. Chem. 1981, 85, 24, 3660-3667.

Bishnoi, S. and G. T. Rochelle. Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. Chem. Eng. Sci. 2000, 55, 5531-5543.

Bishnoi, S. and G. T. Rochelle. Thermodynamics of piperazine/methyldiethanolamine/water/carbon dioxide. Ind. Eng. Chem. Res. 2002, 41, 604-612.

Blauwhoff, P. M. M., G. F. Versteeg and W. P. M. Van Swaaij. A study on the reaction between CO2 and alkanolamines in aqueous solutions. Chem. Eng. Sci. 1983, 38, 9, 1411-1429.

Caplow, M. Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc. 1968, 90, 24, 6795-6803.

Chakraborty, A. K., G. Astarita and K. B. Bischoff. Reaction of acid gases with mixtures of amines. Chem. Eng. Sci. 1986, 41, 997-1003.

Civan, F. Use exponential functions to correlate temperature dependence. Chem. Eng. Prog. 2008, 104, 7, 46-52.

Clarke, J. K. A. Kinetics of absorption of cardon dioxide in monoethanolamine solutions at short contact times. Ind. Eng. Chem. Fundam. 1964, 3, 3, 239-245.

Danckwerts, P. V. Significance of liquid-film coefficients in gas absorption. Ind. Eng. Chem. 1951, 43, 6, 1460-1467.

Danckwerts, P. V. Gas-liquid reactions. New York, McGraw-Hill Book Co., 1970.

Danckwerts, P. V. The reaction of CO2 with ethanolamines. Chem. Eng. Sci. 1979, 34, 4, 443-446.

Diaz, J. M., A. Vega and J. Coca. Diffusivities of carbon dioxide and nitrous oxide in aqueous alcohol solutions. J. Chem. Eng. Data 1988, 33, 1, 10-12.

Donaldson, T. L. and Y. N. Nguyen. Carbon dioxide reaction kinetics and transport in aqueous amine membranes. Ind. Eng. Chem. Fundam. 1980, 19, 3, 260-266.

Doraiswamy, L. K. Heterogeneous reactions : analysis, examples, and reactor design / L.K. Doraiswamy and M.M. Sharma. New York :, Wiley, 1984.

Drew, T. B., J. W. Hoopes Jr, G. R. Cokelet and T. Vermeulen. Preface. Advances in chemical engineering. G. R. C. J. W. H. Thomas B. Drew and V. Theodore, Academic Press. Volume 11, 1981.

Edward, B. R., S. S. Ashour and O. C. Sandall. Kinetics and modeling of carbon dioxide absorption into aqueous solutions of diethanolamine. Ind. Eng. Chem. Res. 1996, 35, 1107-1114,

Glasscock, D. A., J. E. Critchfield and G. T. Rochelle. CO2 absorption/desorption in mixtures of methyldiethanolamine with monoethanolamine or diethanolamine. Chem. Eng. Sci. 1991, 46, 11, 2829-2845.

Hagewiesche, D. P., S. S. Ashour, H. A. Al-Ghawas and O. C. Sandall. Absorption of carbon dioxide into aqueous blends of monoethanolamine and N-methyldiethanolamine. Chem. Eng. Sci. 1995, 50, 7, 1071-1079.

Haimour, N. and O. C. Sandall. Absorption of carbon dioxide into aqueous methyldiethanolamine. Chem. Eng. Sci. 1984, 39, 12, 1791-1796.

Haimour, N. M. Solubility of nitrous oxide in aqueous solutions of diethanolamine at different temperatures. J. Chem. Eng. Data 1990, 35, 2, 177-178.

Hartono, A., E. F. da Silva and H. F. Svendsen. Kinetics of carbon dioxide absorption in aqueous solution of diethylenetriamine (DETA). Chem. Eng. Sci. 2009, 64, 14, 3205-3213.

Hartono, A., O. Juliussen and H. F. Svendsen. Solubility of N2O in aqueous solution of diethylenetriamine. J. Chem. Eng. Data 2008, 53, 11, 2696-2700.

Hartono, A. and H. F. Svendsen. Density, viscosity, and excess properties of aqueous solution of diethylenetriamine (DETA). J. Chem. Thermodyn. 2009, 41, 9, 973-979.

Higbie, R. The rate of absorption of a pure gas into still liquid during short periods of exposure. Trans. Am. Inst. Chem. Eng. 1935, 35, 36-60.

Hikita, H., H. Ishikawa, K. Uku and T. Murakami. Diffusivities of mono-, di-, and triethanolamines in aqueous solutions. J. Chem. Eng. Data 1980, 25, 4, 324-325.

Horng, S.-Y. and M.-H. Li. Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine + triethanolamine. Ind. Eng. Chem. Res. 2002, 41, 2, 257-266.

Hsu, C.-H. and M.-H. Li. Densities of aqueous blended amines. J. Chem. Eng. Data 1997a, 42, 3, 502-507.

Hsu, C.-H. and M.-H. Li. Viscosities of aqueous blended amines. J. Chem. Eng. Data 1997b, 42, 4, 714-720.

Laddha, S. S. and P. V. Danckwerts. Reaction of CO2 with ethanolamines: kinetics from gas-absorption. Chem. Eng. Sci. 1981, 36, 3, 479-482.

Li, M.-H. and M.-D. Lai. Solubility and diffusivity of N2O and CO2 in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-1-propanol + water). J. Chem. Eng. Data 1995, 40, 2, 486-492.

Li, M.-H. and W.-C. Lee. Solubility and diffusivity of N2O and CO2 in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water). J. Chem. Eng. Data 1996, 41, 3, 551-556.

Liao, C.-H. and M.-H. Li. Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine+N-methyldiethanolamine. Chem. Eng. Sci. 2002, 57, 21, 4569-4582.

Littel, R. J., G. F. Versteeg and W. P. M. Van Swaaij. Solubility and diffusivity data for the absorption of carbonyl sulfide, carbon dioxide, and nitrous oxide in amine solutions. J. Chem. Eng. Data 1992, 37, 1, 49-55.

Mandal, B. P., M. Kundu and S. S. Bandyopadhyay. Physical solubility and diffusivity of N2O and CO2 into aqueous solutions of (2-amino-2-methyl-1-propanol + monoethanolamine) and (N-methyldiethanolamine + monoethanolamine). J. Chem. Eng. Data 2005, 50, 2, 352-358.

Pikkarainen, L. Densities and viscosities of binary solvent mixtures of N-methylacetamide with aliphatic alcohols. J. Chem. Eng. Data 1983, 28, 4, 381-383.

Pinsent, B. R. W., L. Pearson and F. J. W. Roughton. The kinetics of combination of carbon dioxide with hydroxide ions. Trans. Faraday Soc. 1956, 52, 1512-1520.

Prausnitz, J. M., R. N. Lichtenthaler and E. G. d. Azevedo. Molecular thermodynamics of fluid-phase equilibria. Englewood Cliffs, N.J., Prentice-Hall, 1986.

Rangwala, H. A., B. R. Morrell, A. E. Mather and F. D. Otto. Absorption of CO2 into aqueous tertiary amine/mea solutions. Can. J. Chem. Eng 1992, 70, 3, 482-490.

Sada, E., H. Kumazawa and M. A. Butt. Solubility and diffusivity of gases in aqueous solutions of amines. J. Chem. Eng. Data 1978, 23, 2, 161-163.

Saha, A. K., S. S. Bandyopadhyay and A. K. Biswas. Solubility and diffusivity of nitrous oxide and carbon dioxide in aqueous solutions of 2-amino-2-methyl-1-propanol. J. Chem. Eng. Data 1993, 38, 1, 78-82.

Saha, A. K., S. S. Bandyopadhyay and A. K. Biswas. Kinetics of absorption of CO2 into aqueous solutions of 2-amino-2-methyl-1-propanol. Chem. Eng. Sci. 1995, 50, 3587-3598.

Sartori, G. and D. W. Savage. Sterically hindered amine for CO2 removed from gases. Ind. Eng. Chem. Fundam. 1983, 22, 239-249.

Seo, D. J. and W. H. Hong. Effect of piperazine on the kinetics of carbon dioxide with aqueous solutions of 2-amino-2-methyl-1-propanol. Ind. Eng. Chem. Res. 2000, 39, 2062-2067.

Snijder, E. D., M. J. M. te Riele, G. F. Versteeg and W. P. M. van Swaaij. Diffusion coefficients of several aqueous alkanolamine solutions. J. Chem. Eng. Data 1993, 38, 3, 475-480.

SUNTSMAN (2007-2008). "Technical Bulletin - DIETHYLENETRIAMINE." from www.huntsman.com.

Van Krevelen, D. W. and P. J. Hoftijzer. Kinetics of gas-liquid reactions part I. General theory. Recueil des Travaux Chimiques des Pays-Bas 1948, 67, 7, 563-586.

Versteeg, G. F. and W. van Swaaij. Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions. J. Chem. Eng. Data 1988a, 33, 1, 29-34.

Versteeg, G. F. and W. P. M. van Swaaij. On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions—I. Primary and secondary amines. Chem. Eng. Sci. 1988b, 43, 3, 573-585.

Wang, Y. W., S. Xu, F. D. Otto and A. E. Mather. Solubility of N2O in alkanolamines and in mixed solvents. Chem. Eng. J. 1992, 48, 1, 31-40.

Xiao, J., C.-W. Li and M.-H. Li. Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1-propanol + monoethanolamine. Chem. Eng. Sci. 2000, 55, 1, 161-175.

Xu, G.-W., C.-F. Zhang, S.-J. Qin, W.-H. Gao and H.-B. Liu. Gas-liquid equilibrium in a CO2-MDEA-H2O system and the effect of piperazine on it. Ind. Eng. Chem. Res. 1998, 37, 1473-1477.

Xu, G.-W., C.-F. Zhang, S.-J. Qin and Y.-W. Wang. Kinetics study on absorption of carbon dioxide into solutions of actived methyldiethanolamine. Ind. Eng. Chem. Res. 1992, 31, 921-927.

Xu, S., F. D. Otto and A. E. Mather. Physical properties of aqueous AMP solutions. J. Chem. Eng. Data 1991, 36, 1, 71-75.

Yih, S.-M. and K.-P. Shen. Kinetics of carbon dioxide reaction with sterically hindered 2-amino-2-methyl-1-p ropanol aqueous solutions. Ind. Eng. Chem. Res. 1988, 27, 2237-2241.

Yong, C.-B. and M.-H. Li. Kinetics of the absorption of carbon dioxide into mixed aqueous solutions of piperazine and triethanolamine. J. Chem. Eng. Jpn. 2009, 42, 1, 29-38.

Yu, C.-H., H.-H. Cheng and C.-S. Tan. CO2 capture by alkanolamine solutions containing diethylenetriamine and piperazine in a rotating packed bed. Int. J. Greenh Gas Con. 2012, 9, 136-147.

Yu, W.-C. and G. Astarita. Selective absorption of hydrogen sulphide in tertiary amine solutions. Chem. Eng. Sci. 1987, 42, 3, 419-424.

Zhang, X., C.-F. Zhang, S.-J. Qin and Z.-S. Zheng. A kinetics study on the absorption of carbon dioxide into a mixed aqueous solution of methyldiethanolamine and piperazine. Ind. Eng. Chem. Res. 2001, 40, 3785-3791.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊