跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 22:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:巫佩樺
研究生(外文):Pei-Hua Wu
論文名稱:掃流過濾分離微藻懸浮液之研究
論文名稱(外文):A Study on Cross-Flow Microfiltration of Algae Suspension
指導教授:莊清榮莊清榮引用關係
指導教授(外文):Ching-Jung Chuang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:107
中文關鍵詞:微藻掃流過濾
外文關鍵詞:microalgaecross-flow filtration
相關次數:
  • 被引用被引用:1
  • 點閱點閱:404
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
由於全球經濟的蓬勃發展,使人類面臨了地球暖化與石油危機兩大問題,而利用藻類來吸收二氧化碳並轉換成生質柴油是目前最受矚目的方法。但藻類細胞相當微小,且比重與水接近,因此如何有效的回收藻類也成為一門值得研究的課題。
薄膜過濾為單純的物理性分離,較不會破壞被分離物質,因此已廣泛的應用於化工、食品、生化、水處理等程序中的濃縮分離。直接以薄膜過濾法處理微藻溶液阻擋率可達98%以上,但培養液中的微小顆粒、細胞代謝產生的大分子及細胞碎片容易造成膜阻塞,膜結垢是導致濾速大幅下降的主因,而形成結垢的因素眾多,包含了薄膜的材質與操作參數等。
本研究分別以0.22μm MCE、0.2μm PC及0.2μm PTFE三種不同材質與特性的薄膜來對擬球藻懸浮液進行掃流過濾實驗,不僅針對顆粒與薄膜之間的作用力,也藉由改變掃流速度、壓力等參數及外加電場產生的作用,分別對其通量及膜結垢的影響做一探討,並進行膜阻力、濾餅阻力等分析,以了解膜阻塞情形。實驗結果顯示,三種膜中MCE微濾膜有較大的通量,且當掃流速度從0.004m/s提高至0.052m/s時可使濾速明顯提高,且高掃流速度之擬穩態濾速也較高。過濾前後膜阻之變化率以流速0.017m/s疏水性PTFE膜865.1%為最高。而透膜壓力的改變並不會對濾速造成明顯之影響,但壓力的提高會降低膜阻的變化率、提升濾餅阻力。於所有過濾過濾實驗中,濾餅是主要的過濾阻力。
離心後、自由沉降及原始之微藻懸浮液等三種不同進料條件,其濾速及擬穩態濾速以離心後之溶液1.88 10-5 m/s為最高,而原始培養液及自由沉降之微藻懸浮液,其雜質、EOM含量較高,濾餅堆積較緻密,αav為1.93 1014 m/kg,約為離心後的6倍。
在過濾系統施加一外加電場,與無電場相比,電場的施加有效的提升了起始通量,但由於溶液的電導度很高及電極電解產生的氣泡影響了有效電場,因此操作50分鐘後,電場的效應則變的較不明顯。離心後之微藻懸浮液,其電導度降低,顆粒界達電位提高至 -39.5 mV,當外加電場強度為4900V/m時,其初始通量約為無電場的兩倍,因此利用外加電場提升過濾效能的效果非常顯著。
Global warming and energy crisis are currently major problems of the world, and in recent years the use of algae to absorb carbon dioxide and convert it into biodiesel has attracted many attentions. However, due to the algal cells have a quite small size and its bulk density is close to water, how to effective recovery of algae cell from fermentation suspension is very important on the practical applications. Although direct membrane filtration method for treatment of microalgae solution can remove more than 98% algae, but the small size of cells, the cellular metabolism of macromolecules and cell debris are likely to cause serious membrane fouling. To give a better understanding of the effect of operation conditions on the filtration rate and fouling resistance of this bio-suspension is important for algae harvesting by membrane separation.
In this study, 0.22 μm MCE, 0.20 μm PC and 0.20 μm PTFE three different membranes were used for cross-flow filtration experiments of Nannochloropsis oculata suspension. The effect of applied pressure, cross flow velocity and interactions between algae cell and membrane on the filtration rate and fouling resistance are analyzed. In addition, experiments with an electric field imposed on the filter chamber will also carried out to investigate the electrokinetic effect on the filtration performance.
Experimental results of 4000 ppm algae suspension with cross flow velocity ranging from 0.004 to 0.052 m/s and pressure drop of 0.4 bar showed that among the three membranes MCE membrane has a larger filtration rate and also has an obvious rise in filtration rate as the increase of cross flow velocity. After 1 hr of filtration, the PTFE membrane will exhibit significant increase in membrane resistance, even up to 8.6 times the virgin membrane. Transmembrane pressure applied in the range of 0.2~0.6 bar showed that the pressure variation will not cause obvious impact on the filtration rate, but the pressure increasing will make a raise in cake resistance and a decrease of fouled membrane resistance. All the experimental results of the study showed that the overall filtration resistance is mainly contributed by cake resistance.
Comparison of the filtration results between the feed with the original microalgae suspension and the feeds with pretreatments of the original suspension by centrifugation or gravity sedimentation showed that the centrifuged microalgae suspension has the highest filtration rate . Due to the original culture medium contains more impurities and EOM, the average specific cake filtration resistance exhibits a very high value as 1.93 x1014 m/kg which is about six times that with centrifugation pretreatment.
An external electric field imposed on the filtration system can effectively improve the initial flux. But, due to the high conductance of the solution will cause a large amount of bubbles generated by water electrolysis and therefore reduce the effective electric field strength, it appeared that after 50 min operation the influence of applying electric field on flux enhancement becomes less obvious. If the microalgae suspension was pretreated with centrifugation, the solution conductivity decreases and the zeta potential of algae cells increases to -39.5 mV. Therefore, there is a significant effect by applying electric field to enhance filtration rate for the pretreated suspension.
目錄
摘要 I
ABSTRACT III
致謝 V
目錄 VI
圖索引 X
表索引 XIII
第一章 緒論 1
第二章 文獻回顧 4
2-1 藻類簡介 4
2-1-1 藻類表面特性 7
2-1-2 藻類胞外產物 7
2-1-3 藻類應用 9
2-2 藻類收集方式 11
2-2-1 預氧化 11
2-2-2 物理預處理 12
2-2-3 沉降 13
2-2-4 離心 13
2-2-5 過濾 14
2-2-6 浮除 (flotation) 15
2-2-7 氣浮 (flocculation-flotation) 15
2-3 薄膜過濾簡介 17
2-4 掃流過濾特性 20
2-4-2 操作參數對過濾之影響 23
2-4-3 胞外有機物質(EOM)對過濾之影響 26
2-5 電場膜過濾 29
第三章 理論背景 33
3-1 過濾之基本式 33
3-2 膜阻計算 34
3-3 電雙層 35
3-4 顆粒電泳 37
第四章 實驗設備與步驟 39
4-1 實驗材料 39
4-1-1 膜材特性 42
4-2 實驗裝置 44
4-2-1 掃流過濾裝置系統 44
4-2-2 膜面流線電位量測系統 48
4-3 實驗儀器 50
4-4 實驗步驟 52
4-4-1 膜面流線電位量測實驗 52
4-4-2 掃流微過濾實驗 53
4-4-3 接觸角量測實驗 55
第五章 結果與討論 57
5-1 擬球藻懸浮液掃流微過濾 57
5-1-1 膜孔大小對過濾之影響 57
5-1-2 膜材對過濾之影響 59
5-1-3 掃流速度對過濾之影響 61
5-1-4 透膜壓力對過濾之影響 73
5-1-5 改變進料條件對過濾之影響 75
5-2 外加電場對過濾之影響 79
第六章 結論 83
符號說明 86
參考文獻 89

圖索引
第一章
Fig.1- 1 Bio-fuel and CO2 capture by micro-algae. 2

第二章
Fig. 2- 1 Typical flotation diagram 16
Fig. 2-2 Schematic representation of microfiltration, ultrafiltration, nanofiltration, and reverse osmosis (Van Der Bruggen et al., 2003). 17
Fig. 2- 3 The filtration specturm 19
Fig. 2-4 Comparison of dead-end filtration and cross-flow filtration 22
Fig. 2-5 Force analysis on a depositing particle in the cross-flow microfiltration system. (Yoon et al. 1999) 22
Fig. 2- 6 Mechanism depicting filtration when algal release EOM ( Sandhya and Satoshi,2011) 27
Fig. 2- 7 Effects of interfacial characteristics on the membrane fouling by algal EOM during UF and the fouling mechanisms. (Fangshu et al.,2011) 28
第三章
Fig. 3- 1 Schematic diagram of the electric double layer theory 36
Fig. 3- 2 Schematic illustration of electro-filtration when an electric field is applied across a flat sheet membrane.【Huotari等人,1999】 38
Fig. 3- 3 Variation of the constant with for various zeta potentials. 38
第四章
Fig. 4- 1 Particle size distribution of algae suspension 41
Fig. 4- 2 Zeta potential of MCE,PC and PTFE membranes determined by tangential streaming potential (TSP) measurement under various pH values. 43
Fig. 4- 3 Schematic diagram of the electro-microfiltration system 45
Fig. 4- 4 Schematic diagram of the filtration cell 46
Fig. 4- 5 Details of the filtration chamber 47
Fig. 4- 6 Schematic diagram of the system for streaming potential at membrane surfaces. 49

第五章
Fig. 5- 1 Normalized permeate fluxes of algae suspension with 0.2μm and 0.4μm PC membrane. 58
Fig. 5- 2 Flux of algae suspension with MCE、PC and PTFE membrane. 60
Fig. 5- 3 Permeate fluxes of algae at various cross-flow velocity with MCE membrane. 63
Fig. 5- 4 SEM micrographs (magnification×1000) for fouling MCE membrane after surface flushing at various cross-flow velocity 64
Fig. 5- 5 Permeate fluxes of algae suspension at various cross-flow velocity with PC membrane. 67
Fig. 5- 6 SEM micrographs (magnification×10K) for fouling PC membrane after surface flushing. 68
Fig. 5- 7 Permeate fluxes of algae at various cross-flow velocity with PTFE membrane. 71
Fig. 5- 8 SEM micrographs (magnification×1000 and×5000) for fouled PTFE membrane after surface flushing. 72
Fig. 5- 9 Flux of algae suspension with various pressure with MCE membrane. 74
Fig. 5- 10 Flux of non-centrifugated,centrifugated and settlement algae suspension with MCE membrane. 78
Fig. 5- 11 Flux of algae suspension with electric field and non-electric field with MCE membrane. 80
Fig. 5- 12 Flux of centrifugated and non-centrifugated algae suspension in electrio-crossflow with MCE membrane. 82

表索引
第二章
Table 2- 1 Characteristic of some algae (Rita et al., 2008) 6
Table 2-2 微藻產量與應用(Pauline et al., 2006) 10
Table 2- 3 Overview of pressure-driven membrane processes and their characteristics. (Van Der Bruggen et al., 2003). 23

第四章
Table 4- 1 微藻培養基組成 41
Table 4- 2 Average contact angles of membranes 43

第五章
Table 5- 1 Filter resistance of PC membrane after one hour filtration of algae suspension, and then surface flushing. 58
Table 5- 2 Filter cake resistance after 2hr filtration with MCE membrane and the membrane resistance after surface flushing of the fouled membrane. 63
Table 5- 3 Filter cake resistance after 2hr filtration with PC membrane and the membrane resistance after surface flushing of the fouled membrane. 68
Table 5- 4 Filter cake resistance after 2hr filtration with PTFE membrane and the membrane resistance after surface flushing of the fouled membrane. 71
Table 5- 5 Filter cake resistance after 2hr filtration with MCE membrane and the membrane resistance after surface flushing of the fouled membrane. 74
Table 5- 6 Filter cake resistance and characteristics of filter cake in the case of various condition algae suspension with MCE membrane. 78
參考文獻
Bernhardt, H., O. Hoyer, H. Schell, and B. Lusse, “Reaction mechanism involved in the influence of algogenic organic matter on flocculation,” Z Wasser-Abwasser-Forsch, 18, 18-30 (1985)

Bold, H. C. and Wynne, M. J., “Introduction to the Algae,” Prentice-Hall, New Jersey, (1978)

Bruggen, V. D., B. Vandecasteele, C. Van Gestel, T. Doyen, and R. Leysen, “A review of pressure-driven membrane processes in wastewater treatment and drinking water production,” Environmental Progress, 22, 46-56 (2003)

Chen, J. J., H. H. Yeh, and C. Tseng, “Effect of Ozone and Permanganate on Algae Coagulation Removal - Pilot and Bench Scale Tests,” Chemosphere, 74, 840-846 (2009)

Chisti, Y., “Biodiesel from microalgae,” Biotechnology Advances, 25, 294-306 (2007)

Clasen, J., U. Mischke, M. Drikas, and C. Chow, “An Improved Method for Detecting Electrophoretic Mobility of Algae during the Destabilisation Process of Flocculation: Flocculant Demand of Different Species and the Impact of DOC,” J. Water SRT-Aqua, 49, 89-101, (2000)

Do H. Kim., H.K. Shon, G. Sharma, and J. Cho, “Charge effect of natural organic matter for ultrafiltration and nanofiltration membranes, ” Journal of Industrial and Engineering Chemistry, 17, 109-113 (2011)

Edzwald, J. K. “Algae, Bubles, Coagulants, and Dissolved Air Flotation, ” Water Science and Technology, 27, 67-81 (1993)

Fangshu, Qu., L. Heng, W. Zhaozhi, W. Hui, Y. Huarong,and L. Guibai, “Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: Influences of interfacial characteristics of foulants and fouling mechanisms,” Water Research, 46, 1490-1500 (2012)

Grahamn, J. D., V.E. Wardlaw, and R. Perry, “The Significance of Algae as Trihalomethane Precursors,” Water Science and Technology, 37, 83-89 (1998)

Hamid, R., F. Z. Ashtiani, and A. Fouladitajar, “Effects of operatingparameters on foulingmechanism and membraneflux in cross-flowmicrofiltration of whey, ” Desalination, 274, 262–271 (2011)

Heasman, M., J. Diemar, W. O'Connor, T. Sushames, and L. Foulkes, “Development of Extended Shelf-life Microalgae Concentrate Diets Harvested by Centrifugation for Bivalve Mollusks -A Summary,” Aquacultural Research, 31, 637-659 (2000)

Henderson R., S. A. Parsons, and B. Jefferson, “The Impact of Algal Properties and Pre-oxidation on Solid−Liquid Separation of Algae,” Water Research, 42, 1827−1845(2008)

Hiamtup, P., A. Sirivat, and A. M. Jamieson, “Electrorheological properties of polyaniline suspensions: Field-induced liquid to solid transition and residual gel structure,” Journal of Colloid and Interface Science, 295, 270-278 (2006)

Hiemenz, P. C., “Electrophores and other Electrokinetic Phenomena,” Principles of Colloid and Surface Chemistry, (1986)

Hongchen, S., S. Jiahui, H. Yiliang, H. Juan, C. Wenpo, “Natural organic matter removal and flux decline with charged ultrafiltration and nanofiltration membranes,” Journal of Membrane Science, 376, 179-187 (2011)

Hrudey, S. S., “Chlorinationdisinfection by-products, publichealthrisk tradeoffs and me,” Water Research, 43, 2057-2091 (2009)

Hsieh, L. H. C., Yu-Hsiang Weng,Chin-Pao Huang and Kung-Cheh Li, “Removal of arsenic from groundwater by electro-ultrafiltration,” Desalination, 234, 402-408 (2008).

Hung, M. T. and J. C. Liu, “Microfiltration for separation of green algae from water,” Colloids and Surfaces B: Biointerfaces, 51, 157-164, (2006)
Hunter, R. J., “Fundattions of Colloid Science,” Oxford University Press, New York (1992)

Huotari, H.M., G. Trägårdh, and I. H. Huisman, “Crossflow membrane filtration enhanced by an external dc electric field: A review,” Chemical Engineering Research and Design, 77, 461-468 (1999)

Hwang, K. J., and H. C. Hwang, “The purification of protein in cross-flow microfiltration of microbe/protein mixtures, ” Separation and Purification Technology, 51, 416–423 (2006)

Hwang, K. J., and P. S. Huang, “Cross-flow microfiltration of dilute macromolecular suspension,” Separation and Purification Technology, 68, 328–334 (2009)

Jiang, J. Q., N. Graham, C. Andre, G. H. Kelsall, and N. Brandon,” Laboratory Study of Electro−Coagulation−Flotation for Water Treatment,” Water Research, 36, 4064-4078 (2002)

Jodlowski, A., “Effect of Pre-oxidation on Flocculated Algal Cells Autoflotation ,” Environment Protection Engineering, 28, 57-68 (2002)

Kobayashi,K., Yukawa, H.,Iwata,M. and Hosoda ,T.,“Fundamental Study of Electroosmotic Flow Through Perforated Membrane,”Journal of Chemical Engineering of Japan, 12, 466-471 (1979)

Kreger, D. R., “Cell Walls.,” Physiology and Biochemistry of Alage, Lewin , (1962)

Lentsch, S., P. Aimar, and J. L. Orozco, “Enhanced separation of albumin-poly (ethylene glycol) by combination of ultrafiltration and electrophoresis,” Journal of Membrane Science, 80, 221–232 (1993)

Lazarova, Z., and W. Serro, “Electromembrane separation of mineral suspensions: Influence of process parameters,” Separation Science and Technology, 37, 515-534 (2002)

Liang, H., J. Nan, W. J. He, and L. Guibai, “Algae Removal by Ultrasonic Irradiation−Coagulation ,” Desalination, 239, 191-197 (2009)

Lim, A. L., and B. Renbi, “Membrane fouling and cleaning in microfiltration of activated sludge wastewater,” Journal of Membrane Science, 216, 279-290 (2003)

Maruyama, H, H. Seki, and A.Suzuki, “Flotation of Blue-green Algae Using Methylated Egg Ovalbumin,” Chemical Engineering Journal, 155, 49-54 (2009)

Myklestad, S. M., “Release of Extracellular Products by Phytoplankton with Special Emphasis on Polysaccharides,” The Science of the Total Environment, 165, 155-164 (1995)

Nguyen, M. T., and S. Ripperger, “Investigation on the Effect of Flocculants on the Filtration Behavior in Microfiltration of Fine Particles,” Desalination, 147, 37-42 (2002)

Oussedik, S., D. Belhocine, H. Grib, H. Lounici, D. L. Piron, and N. Mameri, “Enhanced ultrafiltration of bovine serum albumin with pulsed electric field and fluidized activated alumina,” Desalination, 127, 59-58 (2000)

Pauline, S., J.C. Claire, D. Elie, and I. Arsene, “Commercial application of microalgae,” Journal of Bioscience and Bioengineering, 101, 87-96 (2006)

Phoochinda, W., and D. A. White, “Removal of algae using froth flotation,” Environmental Technology, 24, 87-96 (2003)

Ratledge, C. and Z. Cohen, “Microbial and algal oils: do they have a future for biodiesel or as commodity oils?,” Lipid Technology, 20, 155-160 (2008)

Rice, C. L., and R. Whitehead, “Electrokinetic Flow in a Narrow Cylindrical Capillary,” Journal of Physical Chemistry, 69, 4017-4024 (1965)

Sandhya, B., and S. Takizawa, “Microfiltration membrane fouling and cake behavior during algal filtration, ” Desalination, 261, 46-51 (2010)

Sandhya, B., and S. Takizawa, “Chemical pretreatment for reduction of membrane fouling caused by algae, ” Desalination, 274, 171-176 (2011)

Sarkar, B., Sunando DasGupta and Sirshendu De, “Prediction of permeate flux during osmotic pressure-controlled electric field-enhanced cross-flow ultrafiltration,” Journal of Colloid and Interface Science, 319, 236-246 (2008)

Schenk, P. M., S. R. Thomas-Hall, E. Stephens, U. C. Marx, J. H. Mussgnug, C. Posten, O. Kruse, and B. Hankamer, “Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production,” Bioenergy Research, 1, 43(2008)

Vandamme, D., I. Foubert, B. Meesschaert, and K. Muylaert, “Flocculation of microalgae using cationic starch,” Journal of Applied Phycology, 22, 525-530 (2010)

Weber, K., and W. Stahl., “Improvement of filtration kinetics by pressure
electrifiltration,” Separation and Purification Technology, 26, 69-80 (2002).

Xuezhi, Z., H. Qiang, S. Milton,P. Emil, and C. Yongsheng, “Harvesting algal biomass for biofuels using ultrafiltration membranes, ” Bioresource Technology, 101, 5297-5304 (2010)

Yan, Y. D., and G. J. Jameson, “Application of the Jameson Cell Technology for Algae and Phosphorus Removal from Maturation Ponds,” International Journal of Mineral Processing, 73, 23-28 (2004)

Yoon, S. H., C. H. Lee, K. J. Kim, and A. G. Fane, “Three-dimensional simulation of the deposition of multi-dispersed charged particles and prediction of resulting flux during cross-flow microfiltration,” Journal of Membrane Science, 161, 7-20 (1999)

龔文富,“以電場掃流過濾分離酵母菌懸浮液”,碩士學位論文,私立中原大學化工所,中壢市 (1998)

連俊旭,“電滲透脫水床脫水率及含水率分佈的探討”,碩士學位論文,私立中原大學化工所,中壢市 (1998)

鄭毅,“藍藻的培養和氣浮採收研究”,北京化工大學 (2003)

陳志文,“以流線電位法分析薄膜過濾程序之結構”,碩士學位論文,中原大學化工所 (2009)
賴文亮,“Chodatella sp.、Chlorella sp. 與Navicula sp釋出液有機物性質之差異性”,大仁科技大學教師研究計畫成果報告,計畫編號:仁研 96006
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top