跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 03:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李俊毅
研究生(外文):Chun-Yi Lee
論文名稱:層狀無機材料在高分子分散液晶之光電特性應用與奈米複合材之製備
論文名稱(外文):Application of Layered Inorganic Materials in Rectification of Electro-optical Properties of Polymer-dispersed Liquid Crystals and Preparation of Penta-aniline/Clay Nanocomposites
指導教授:蔡宗燕
指導教授(外文):Tsung-Yen Tsai
學位類別:博士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:203
中文關鍵詞:層狀材料苯胺五聚體高分子分散液晶奈米複合材
外文關鍵詞:Layered materialsnanocompositesPDLCpenta-aniline
相關次數:
  • 被引用被引用:4
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要針對高分子分散液晶(polymer-dispersed liquid crystal, PDLC)薄膜的液晶球滴型態與光電效應之探討。其薄膜組成為向列型液晶E7、光敏感型高分子NOA65與不同無機奈米粒子,以365 nm紫外光照射樣品進行光聚合相分離法(photopolymerization-induced phase separation)形成液晶球滴於高分子中。無機奈米粒子分別為天然蒙脫土(CL42, CL120, CL88)和二氧化鈦(UV100)摻雜於PDLC中並外加適當電場量測光電特性。廣角X-ray繞射儀(wide angle X-ray diffraction, XRD)可以檢測無機奈米粒子於PDLC中的分散性與增加E7於混合液中的結晶性。液晶滴的型態以電子掃描顯微鏡(scanning electron microscope, SEM) 觀察摻雜PDLC樣品其粒徑大小與均一性會隨著添加量增加而增加。穿透式電子顯微鏡(transmission electron microscopy, TEM)與變溫XRD證明蒙脫土存在於高分子與液晶滴中。CL120最適當摻雜濃度為3 wt%於PDLC中可以降低驅動電壓約45.4% (64.92 Vrms到35.45 Vrms)和閾值電壓約25.0% (9.43 Vrms到7.07 Vrms)並改善光學特性如 τon 降低約34.6% (4.56 ms到2.98 ms),提升對比度(contrast rate, CR)約182.2% (4.05 到11.43)。
以蒙脫土CL120改質苯胺五聚體(POA)於層間並以硫酸質子化POA形成導電態的emeraldine salt (ES) form成為功能型導電層狀材料。POA/CL120改質蒙脫土以XRD觀察POA插入後蒙脫土造成層間距撐開距離並以FTIR (Fourier transform infrared)鑑定改質蒙脫土層間之有機與無機的官能基,證明POA改質於蒙脫土層間及其氧化還原形態。以高解析度TGA對於改質蒙脫土中的POA定量,鑑定改質劑於存在於蒙脫土層間的數量,換算出POA於層間之理論插層率。根據上述可以證明POA成功改質於蒙脫土中,並控制質子化的pKa值引導POA插入於層間形成摻層型或脫層型分散。將POA-1/CL120改質蒙脫土摻雜於PDLC中,以適當1 wt%摻雜濃度與未摻雜之PDLC樣品相比較可以降低驅動電壓70% (64.92 Vrms到19.29 Vrms),增加CR 500% (4.05 到21.39),降低瞬態時變光電特性的升起時間於25 Vrms達0.7 ms,以及在不同的入射角和200 Vrms外加電場下與未摻雜樣品相似的光穿透度。


The morphology and the electro-optical properties of polymer-dispersed liquid crystals (PDLC) were performed in this study. These consist of nematic liquid crystal (LC) E7 filled with different types of inorganic nanoparticles in norland optical adhesive (NOA65) polymer matrices. The PDLC film is prepared by the photopolymerization-induced phase separation (PIPS) method using UV light irradiation at 635 nm. Natural clay CL42, CL120, CL88, and titanium dioxides UV-100 are used as nanofillers in the PDLC film through application filed. Wide angle X-ray diffraction (XRD) is used to learn the dispersion of the inorganic nanoparticles in the PDLC and improved the crystalline of E7 in the mixture. The morphology of LC droplets in the hybridization PDLC film was larger and more uniform than an undoping comparison by loading of increased with the diagram of scanning electron microscope (SEM). The clay is existed in the LC droplets and polymer by the transmission electron microscopy (TEM) and temperature dependence WAXD. It has been observed that the appropriate doping of 3 wt% of CL120 in PDLC can effectively reduce the driving (threshold) voltage and improve the optical properties. The threshold voltage, driving voltage, τon, and contrast rate are improved 45.4% (from 64.92 Vrms to 35.45 Vrms), 25.0% (from 9.43 Vrms to 7.07 Vrms), 34.6% (from 4.56 ms to 2.98 ms), and 182.2% (from 4.05 to 11.43), respectively.
In the other hand, a montmorillonite CL120 was studied via pentamerous oligo-aniline (POA), which was protonated with a sulfuric acid to emeraldine salts (ES) form, intercalating to form a functional conductive organo-layered material. The characteristics of modified clay—POA/CL120 identified exhaustive by XRD for the d-spacing of the montmorillonite layer, Fourier transform infrared (FTIR) for the oligoaniline and montmorillonite function group, and high-resolution thermogravimetric analyzer (TGA) for the theoretical intercalation capacity of the modified agent in the clay. Therefore, it successfully intercalated the POA into the montmorillonite by ionic exchange reaction and controlled the type dispersion of the modified clay with commanding the pKa of a protonated solution. PDLC composites were prepared from the modified clay loading in the matrix. There is no denying that improves in the electro–optical properties of PDLCs, which hybridization of POA-1/CL120 at 1wt% used in this work, lowers driving voltage by almost 70% ( from 64.92 Vrms to 19.29 Vrms), increases transmission of contrast ratio by 500% (from 4.05 to 21.39), rapid polarizes the LC directors at 25 Vrms by 0.7 ms, and approaching to the undoped PDLC of view angle at 200 Vrms in manner that depends on applied field.


目錄
中文摘要 I
Abstract III
謝誌 V
目錄 V
圖目錄 XIII
表目錄 XXI
第一章 緒論 1
1.1 文獻回顧 3
1.2 專利分析 9
1.3 商情情報 14
1.4 研究動機 17
第二章 基礎理論 19
2.1液晶之簡介 19
2.1.1 棒狀液晶的分類 22
2.1.2液晶的光電特性 26
2.2 高分子分散液晶之簡介 32
2.2.1高分子分散液晶工作原理 36
2.2.2高分子分散液晶製作方法 37
2.2.3光聚合高分子之結構與機制 39
2.2.4 高分子分散液晶光電理論 42
2.3共軛結構之電活性苯胺寡聚物之簡介 45
2.4 無機層狀材料 47
第三章 製備共軛苯胺寡聚物改質無機層狀材料與高分子複合物 54
3.1 前言 54
3.2 實驗藥品與儀器 56
3.2.1藥品 56
3.2.2 儀器設備 60
3.2.3 實驗方法 64
3.3 結果與討論 67
3.3.1 無機層狀材料改質共軛苯胺五聚物之鑑定 67
3.3.2 無機層狀材料改質共軛苯胺三聚體 90
3.3.3 無機層狀材料改質共軛苯胺五聚物之奈米複合物 92
3.4結論 102
第四章 液晶–高分子–無機粒子奈米複合材料之結構與特性 104
4.1 前言 104
4.2 實驗藥品與儀器 105
4.2.1藥品 105
4.2.2 儀器設備 110
4.2.3 實驗方法 112
4.3 結果與討論 116
4.3.1 直流電壓驅動液晶–高分子–不同無機奈米粒子複合材之光電特性 116
4.3.2 交流電壓驅動液晶–高分子–不同無機奈米粒子複合材之光電特性 124
4.3.3 液晶–高分子–無機層狀材料複合材之鑑定 129
4.3.4 液晶–高分子–無機層狀材料複合材之瞬態時變光電特性 143
4.3.5 液晶–高分子–無機層狀材料複合材之光入射角與光穿透度之關係 149
4.4 結論 153
第五章 液晶–高分子–共軛寡聚物改質無機層狀材料奈米複合材 155
5.1 前言 155
5.2 實驗藥品與儀器 156
5.2.1 藥品 156
5.2.2 儀器設備 156
5.2.3 實驗方法 157
5.3 結果與討論 158
5.3.1改質蒙脫土複合材之鑑定 158
5.3.2 光電特性 167
5.3.3 介電特性 170
5.3.4 瞬態時變光電特性 177
5.3.5 光電特性光入射角與光穿透度之關係 179
5.4 結論 182
第六章 總結與未來展望 185
附錄一 符號表 188
參考文獻 190

圖目錄
圖 1-1 可調光液晶玻璃原理示意圖 2
圖 1-2 Electrolyte-PDLC-E48樣品(a) opaque and uncolored, (b) opaque and colored, (c) transparent and uncolored, (d) transparent and colored 8
圖 1-3 TW專利件數歷年趨勢分析圖 9
圖 1-4 TW技術生命週期分析圖 10
圖 1-5 TW公司別專利趨勢分析圖 10
圖 1-6 US專利件數歷年趨勢分析圖 12
圖 1-7 US技術生命週期分析圖 12
圖 1-8 US公司別專利趨勢分析圖 13
圖 1-9電可調光玻璃產品市場需求量分析 14
圖 2-1直鏈型液晶分子示意圖 21
圖 2-2常見液晶分子的排列型態(a)層列型液晶;(b)向列型液晶;(c)膽固醇液 24
圖 2-3不同層列型液晶的排列型態 24
圖 2-4連續彈性體之形變示意圖(a)斜展,(b)扭轉,(c)彎曲 25
圖 2-5膽固醇液晶分子螺距式意圖 25
圖 2-6棒狀液晶分子在三維空間中之折射率示意圖 28
圖 2-7 液晶相轉移與其相變溫度示意圖 29
圖 2-8向列型液晶折射率與溫度之關係圖 29
圖 2-9液晶分子感應電場的排列方向 31
圖 2-10 Reflective-mode PDLC Light Valve Display 32
圖 2-11 Polyvision Privacy™電子窗簾示意圖 32
圖 2-12 (a)PDLC,高分子占30 wt%以上;(b) PNLC,高分子占10–30 wt%;(c) PSLC,高分子占10 wt%以下 33
圖 2-13 PDLC工作原理示意圖 36
圖 2-14 NOA65光聚合反應機制 41
圖 2-15 苯胺五聚體之氧化還原態圖示 46
圖 2-16 苯胺五聚體循環伏安圖 46
圖 2-17 Smectite層狀結構 50
圖 2-18 LDHs結構示意圖 53
圖 2-19不同系列LDHs相對於AEC之值關係圖 53
圖 3-1純化蒙脫土CL120之XRD圖 68
圖 3-2 POA經不同系統酸化改質CL120之XRD圖 (a) HCl,(b) HNO3,(d) H2SO4 69
圖 3-3 POA在硫酸系統中以不同pH環境酸化改質CL120之XRD圖 (a) Neat CL120,(b) POA-1/CL120,(c) POA-4/CL120,(d) POA-3/CL120 70
圖 3-4 不同起始濃度之POA與CL120之CEC之比值所得之改質蒙脫土之XRD圖 (a) 0.6:1,(b) 0.8:1,(c) 1:1,(d) 1.2:1 70
圖 3-5 POA-3/CL120與其再質子化POA-3/CL120之XRD圖 (a) POA-3/CL120-1S,(b) POA-3/CL120 71
圖 3-6 Sericite和不同起始濃度之dodecylamine (DDA) 在70 °C內於不同的時間之XRD圖(a) DDA/K molar ratio = 1.0, (b) 3.0, (c) 8.0 73
圖 3-7 POA於不同pH質環境下質子化之FTIR光譜圖 75
圖 3-8 五聚體與聚苯胺質子化之FTIR圖譜 75
圖 3-9 CL120,POA-1/CL120與POA-3/CL120改質蒙脫土之FTIR圖譜 76
圖 3-10 脫層化POA-3/CL120再質子化之FTIR圖譜 77
圖 3-11 POA-3/CL120溶於NMP之Mass圖譜 78
圖 3-12 (a) 純化CL120, (b) POA-7/CL120, (c) HNO3 PAO-3/CL120, (d) HCl PAO-3/CL120, (e) H2SO4 PAO-3/CL120, (f) H2SO4 PAO-1/CL120, (g) H2SO4 PAO-3/CL120-1S之SEM圖 80
圖3-13 PAO/CL120 (a)–(b) POA-7/CL120, (c)–(d) H2SO4 PAO-3/CL120, (e)–(f) H2SO4 PAO-1/CL120之TEM圖 82
圖 3-14 硫酸系統中不同pH值下質子化條件之改質土熱失重分析圖 85
圖 3-15不同POA/CEC比例起始濃度之改質土熱失重分析圖 85
圖 3-16 POA在硫酸下中的不同pH值質子化之UV-Vis吸收光譜圖 88
圖 3-17 以甲醇萃取POA-1/CL120、POA-3/CL120、POA-3/CL120-1S層間POA之UV-Vis吸收光譜圖 89
圖 3-18 不同質子化環境之TOA改質蒙脫土之XRD圖 91
圖 3-19 (a) TOA-7/CL120, (b) TOA-1/CL120, (c)TOA-3/CL120, (d) TOA-4/CL120之表面型態SEM圖 91
圖 3-20 層狀材料在高分子中的分散型態(a) 傳統型分散,(b) 島形插層型分散,(c) 海形插層型分散,(d) 島形脫層型分散,(e) 海形脫層型分散 93
圖 3-21 PMMA摻雜1 phr與3 phr POA-3/CL120之樣品 94
圖 3-22 POA-3/CL120-3phr摻雜於PMMA之薄膜XRD圖(內圖為2θ = 2–6之局部放大XRD圖) 95
圖 3-23 (a) POA-3/CL120-1phr PMMA與(b) POA-1/CL120-1phr PMMA之TEM圖 96
圖 3-24 POA-3/CL120 與POA-4/CL120摻雜3 phr於epoxy之塊材內之XRD圖 98
圖 3-25 (a) POA-4/CL120與(b) POA-3/CL120摻雜3 phr於epoxy塊材中之TEM圖 98
圖 3-26 POA-3/CL120與POA-4/CL120摻雜2 phr以雙螺桿混煉於PLA後熱壓成膜之XRD圖 100
圖 3-27 (a) POA-3/CL120與(b) POA-4/CL120摻雜2 phr以雙螺桿混煉於PLA後熱壓之TEM圖 101
圖 4-1 180配向液晶盒規格:(a)上基板,(b)下基板,(c)俯視及側視圖 115
圖 4-2 閾值電壓與驅動電壓定義圖 116
圖 4-3 PDLC在直流電55 V下光穿透度與直流壓電壓之關係圖 117
圖 4-4 不同無機奈米粒子摻雜1 wt%於PDLC中之光穿透度與電壓之關係圖on-state 118
圖 4-5 不同無機奈米粒子摻雜1 wt%於PDLC中之光穿透度與電壓之關係圖off-state 119
圖 4-6 1 wt%、3 wt%之CL120與UV100摻雜於PDLC系統之直流電壓–光穿透曲線圖 123
圖 4-7 不同無機奈米粒子1 wt%摻雜於1 kHz下交流電電壓–光穿透度關係圖 125
圖 4-8 CL120不同摻雜濃度於PDLC之1 kHz下交流電電壓–光穿透度關係圖 128
圖 4-9 UV100不同摻雜濃度於PDLC之1 kHz下交流電電壓–光穿透度關係圖 128
圖 4-10 PDLC樣品摻雜1 wt%不同無機材料之網絡SEM圖(a) CL42; (b) CL88; (c) CL120; (d) 未添加之PDLC 130
圖 4-11 摻雜不同比例UV100之網絡SEM圖(a) 1wt%; (b) 3 wt%; (c)–(d) 5 wt% 131
圖 4-12 PDLC之網絡SEM圖,未摻雜之PDLC (a) 倍率6 k,(b) 倍率3 k; 1 wt% CL120 (c) 倍率6 k,(d) 倍率3 k; 3 wt% CL120,(e)倍率6 k,(f) 倍率3 k; 5 wt% CL120,(g) 倍率6 k,(h) 倍率3k 132
圖 4-13 純化CL42之XRD圖 135
圖 4-14 不同比例液晶–高分子–CL120混合液之XRD圖 136
圖 4-15 摻雜3wt% CL120混合液之變溫XRD圖 137
圖 4-16 不同摻雜濃度CL120之PDLC樣品移除E7之正己烷烘乾後之XRD圖 138
圖 4-17 不同比例液晶–高分子–CL42混合液與3 wt% 60C變溫之XRD圖 139
圖 4-18 摻雜CL120濃度為(a) 1 wt% 100 k;(b) 3 wt% 100 k;(c) 5wt% 100k於高分子相中之TEM圖 141
圖 4-19 摻雜CL42濃度為(a) 1 wt% 50 k;(b) 3 wt% 50 k於高分子相中之TEM圖 142
圖 4-20 PDLC樣品於1 kHz下的升起時間定義圖 143
圖 4-21 PDLC樣品於1 kHz下的衰減時間定義圖 144
圖 4-22 摻雜不同濃度之CL120於PDLC樣品之1 kHz下升起時間(on)圖 145
圖 4-23 摻雜不同濃度之CL120於PDLC樣品之1 kHz下衰減時間(off)圖 145
圖 4-24 摻雜不同濃度之CL42於PDLC樣品之1 kHz下升起時間(on)圖 146
圖 4-25 摻雜不同濃度之CL42於PDLC樣品之1 kHz下衰減時間(off)圖 146
圖 4-26 在200Vrms 1 kHz下不同摻雜濃度CL42之光入射角與光穿透度的曲線圖 150
圖 4-27在200Vrms 1 kHz下不同摻雜濃度CL120之光入射角與光穿透度的曲線圖 150
圖 4-28 在200Vrms 1 kHz下不同摻雜濃度UV100之光入射角與光穿透度的曲線圖 152
圖 5-1 PDLC摻雜POA-1/CL120濃度為 (a)–(b) 0.5 wt%,(c)–(d) 1 wt%,(e)–(f) 2 wt%之網絡俯視SEM圖 161
圖 5-2 PDLC摻雜(a)–(b) POA-3/CL120 0.5 wt%,(c)–(d) POA-1 1 wt%之網絡俯視SEM圖 162
圖 5-3摻雜POA-1/CL120濃度為(a)–(b) 1 wt%,(c)–(d) 0.5 wt%於高分子相中之TEM圖 164
圖 5-4摻雜0.5 wt%分別為(a) POA-3/CL120,(b) POA-3/CL120-1S於高分子相中之100 k倍率TEM圖 165
圖 5-5 POA-1/CL120、POA-3/CL120、POA-3/CL120-1S、POA-1摻雜於PDLC之交流電電壓–光穿透度關係圖 168
圖 5-6不同摻雜量之PAO-1/CL120之PDLC之交流電電壓–光穿透度關係圖 169
圖 5-7 (a) PDLC樣品之介電頻譜,實心為介電實部,空心為介電虛部;(b) 摻雜POA-1、POA-1/CL120、CL120於NOA65之介電頻譜介電實部與虛部 174
圖 5-8垂直(實心符號)和平行(空心符號)外加電場之介電頻譜(a)介電實部;(b)介電虛部,組成部分為摻雜POA-1、POA-1/CL120於E7 175
圖 5-9 POA-1/CL120不同摻雜濃度、POA-3/CL120與POA-3/CL120-1S於1 kHz下之τon瞬態時變光電特性 178
圖 5-10不同摻雜濃度POA-1/CL120於1 kHz下200Vrms之光入射角與光穿透度的曲線圖 180
圖 5-11 POA-3/CL120與POA-3/CL120-1S摻雜0.5 wt%於1 kHz下200 Vrms之光入射角與光穿透度的曲線圖 181

表目錄
表 1-1電可調光玻璃產品市場分類與需求量表 15
表 1-2 PDLC;EC;SPD三種電可調光材料之優缺點 16
表 2-1 液晶–高分子聚合物分類 35
表 2-2天然層狀黏土分類 48
表 3-1 各種液晶–無機奈米粒子–高分子之直流電壓–穿透度數據表 123
表 3-2 PDLC各樣品在交流電系統中之電壓、穿透度與對比度 126
表 3-3 CL120不同摻雜濃度之液晶滴大小與數量 134
表 3-4 在25 Vrms時,CL42與CL120不同濃度摻雜於PDLC中之on與off 148
表 4-1 硫酸系統中不同pH值下質子化條件之理論插層率 86
表 5-1 POA/CL120不同摻雜濃度之液晶滴大小與數量 166
表 5-2 摻雜POA/CL120之光電特性數據 169
表 5-3 在25 Vrms時,POA-1/CL120、POA-3/CL12、POA-3/CL12-1S摻雜於PDLC中之τon與τoff 178


參考文獻
1.金志龍,吳家宏,“可調光液晶玻璃”,化工資訊與商情,28–35,2009。
2.R. Willstätter and C. W. Moore, "Über Anilinschwarz I.", Berichte der deutschen chemischen Gesellschaft, 40(2), 2665–2689, 1907.
3.J. Honzl, and M. Tlusťáková, "Polyaniline compounds. II. the linear oligoaniline derivatives tri-, tetra-, and hexaanilinobenzene and their conductive complexes", J. Polym. Sci., Part C, 22(1), 451–462, 1968.
4.F. Wudl, R. O. Angus, F. L. Lu, P. M. Allemand, D. Vachon, M. Nowak, Z. X. Liu, H. Schaffer, and A. J. Heeger, "Poly-p-phenyleneamineimine: Synthesis and comparison to polyaniline", J. Am. Chem. Soc., 109(12), 3677–3684, 1987.
5.Y. Wei, C. Yang, and T. Ding, "A one-step method to synthesize N,N'-bis(4'-aminophenyl)-1,4-quinonenediimine and its derivatives", Tetrahedron Lett., 37(6), 731–734, 1996.
6.W. Zhang, J. Feng, A. Macdiarmis, and A. Epstein, "Synthesis of oligomeric anilines", Synth. Met., 84(1–3), 119–120, 1997.
7.Y. Wei, C. Yang, G. Wei, and G. Feng, "A new synthesis of aniline oligomers with three to eight amine units", Synth. Met., 84(1–3), 289–291, 1997.
8.J. P. Sadighi, R. A. Singer, and S. L. Buchwald, "Palladium-catalyzed synthesis of monodisperse, controlled-length, and functionalized oligoanilines", J. Am. Chem. Soc., 120(20), 4960–4976, 1998.
9.R. Chen, and B. Benicewicz, "Substituted oligoanilines: Synthesis and characterization", Synth. Met., 146(2), 133–137, 2004.
10.L. Chen, Y. Yu, H. Mao, X. Lu, W. Zhang, and Y. Wei, "Synthesis of parent aniline tetramer and pentamer and redox properties", Mater. Lett., 59(19-20), 2446–2450, 2005.
11.K. Huang, Y. Jhuo, P. Wu, C. Lin, Y. Yu, and J. Yeh, "Electrochemical studies for the electroactivity of amine-capped aniline trimer on the anticorrosion effect of as-prepared polyimide coatings", Eur. Polym. J., 45(2), 485–493, 2009.
12.Y. Wei, C. Yang, J. M. Yeh, T. Ding, G. Wei, D. Jin, J. Wang, X. Jia, and S. A. Jansen, "Organic coatings for corrosion control; anticorrosion organic coatings prepared from aniline oligomers and their epoxy-cured derivatives.", ACS Symposium Series, 689, 382–395, 1998.
13.K. Y. Huang, C. L. Shiu, P. S. Wu, Y. Wei, J. M. Yeh, and W. T. Li, "Effect of amino-capped aniline trimer on corrosion protection and physical properties for electroactive epoxy thermosets", Electrochim. Acta, 54(23), 5400–5407, 2009.
14.C. W. Peng, and J. M. Yeh, "Preparation and corrosion protection effect of electroactive polyurethane containing amino-capped aniline trimer", Adv. Mater. Res., 123–125, 1255–1258, 2010.
15.W. I. Hung, C. B. Hung, Y. H. Chang, J. K. Dai, Y. Li, H. He, S. W. Chen, T. C. Huang, Y. Wei, X. R. Jia, and J. M. Yeh, "Synthesis and electroactive properties of poly(amidoamine) dendrimers with an aniline pentamer shell", J. Mater. Chem., 21(12), 4581–4587, 2011.
16.C. Hilsum. UK patent 1442, 360, 1976.
17.E. R. Land. US Patent 2,123,902.
18.H. G. Craighead, "New display based on electrically induced index-matching in an inhomogeneous medium", Appl. Phys. Lett., 40(1), 22–24, 1982.
19.J. L. Fergason. US Patent 4,435,047.
20.J. W. Doane, N. A. Vaz, B. G. Wu, and S. Žumer, "Field controlled light scattering from nematic microdroplets", Appl. Phys. Lett., 48(4), 269–271, 1986.
21.J. L. West, W. Tamura-Lis, and R. Ondris, "Polymer dispersed liquid crystals incorporating isotropic dyes", Pro. SPIE, 1080, 48–52, 1989.
22.V. Akbarzadeh, A. Lohi, P. K. Chan, and S. R. Upreti,"Behavior of nematic bipolar droplets in PDLC films: An optimization study", Macromol. Theory Simul., 19(2–3), 81–87, 2010.
23.P. Malik, and K. K. Raina, "Dichroic dye-dependent studies in guest–host polymer-dispersed liquid crystal films", Physica B, 405(1), 161–166, 2010.
24.A. Kovalchuk, L. Dolgov, L. Bugayova, and O. Yaroshchuk, "The peculiarities of photopolymerization in the composite “rre-polymer–TiO2” nanoparticles", Mol. Cryst. Liq. Cryst. Sci., 427(1), 191/[503]–200/[512], 2005.
25.O. Yaroshchuk, L. Dolgov, and A. Kiselev, "Electro-optics and structural peculiarities of liquid crystal–nanoparticle-polymer composites", Phys. Rev. E, 72(5), 051715-1–11, 2005.
26.S. S. Shim, J. Y. Woo, H. M. Jeong, and B. K. Kim, "High dielectric titanium dioxide doped holographic PDLC", Soft Materials, 7(2), 93–104, 2009.
27.W. Li, M. Zhu, X. Ding, B. Li, W. Huang, H. Cao, Z. Yang, and H. Yang, "Studies on electro-optical properties of polymer matrix/LC/SiO2nanoparticles composites", J. Appl. Polym. Sci., 111(3), 1449–1453, 2009.
28.A. Hinojosa, and S. C. Sharma, "Effects of gold nanoparticles on electro-optical properties of a polymer-dispersed liquid crystal", Appl. Phys. Lett., 97(8), 081114/1–081114/3, 2010.
29.T. Y. Tsai, S. W. Lu, Y. P. Huang, and F. S. Li, "Polymer-dispersed liquid crystal/layered double hydroxide nanocomposite: A new emerging optical application", J. Phys. Chem. Sol., 67(5–6), 938–943, 2006.
30.Y. P. Huang, Y. M. Chang, T. Y. Tsai, and W. Lee, "H-PDLC/Clay nanocomposites", Mol. Cryst. Liq. Cryst., 512(1), 167–178, 2009.
31.Y. M. Chang, T. Y. Tsai, Y. P. Huang, W. S. Cheng, and W. Lee, "Polymer-encapsulated liquid crystals comprising montmorillonite clay", J. Opt. A: Pure Appl. Opt., 11(2), 024018-1–6, 2009.
32.E. H. Jeong, K. R. Sun, M. C. Kang, H. M. Jeong, and B. K. Kim, "Memory effect of polymer dispersed liquid crystal by hybridization with nanoclay", Exp. Poly. Lett., 4(1), 39–46, 2010.
33.D. Cupelli, F. P. Nicoletta, G. D. Filpo, G. Chidichimo, A. Fazio, B. Gabriele, and G. Salerno, "Fine adjustment of conductivity in polymer-dispersed liquid crystals", Appl. Phys. Lett., 85(15), 3292–3294, 2004.
34.F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, "Electrochromic polymer-dispersed liquid-crystal film: A new bifunctional device", Adv. Funct. Mater., 15(6), 995–999, 2005.
35.D. Cupelli, G. De Filpo, G. Chidichimo, and F. P. Nicoletta, "The electro-optical and electrochromic properties of electrolyte-liquid crystal dispersions", J. Appl. Phys., 100(2), 024515-1–024515-5, 2006.
36.Y. M. Huang, and B. Zhai, "Electronic structure calculation of banana-shaped liquid crystals", Mol. Cryst. Liq. Cryst., 510, 214–222, 2009.
37.T. Y. Tsai, Y. P. Huang, H. Y. Chen, W. Lee, Y. M. Chang, and W. K. Chin, "Electro-optical properties of a twisted nematic–montmorillonite-clay nanocomposite", Nanotechnology, 16(8), 1053–1057, 2005.
38.Y. P. Huang, T. Y. Tsai, W. Lee, W. K. Chin, Y. M. Chang, and H. Y. Chen, "Photorefractive effect in nematic-clay nanocomposites", Optics Express, 13(6), 2058–2063, 2005.
39.黃元品,“向列型液晶摻雜黏土礦石之電光響應及其光折變效應之研究” 博士學位論文 國立清華大學化工所,2005。
40.Y. M. Chang, T. Y. Tsai, Y. P. Huang, W. S. Chen, and W. Lee, "Electrical and electro-optical properties of nematic-liquid-crystal–montmorillonite-clay nanocomposites", Jpn. J. Appl. Phys., 46(11), 7368–7370, 2007.
41.張雲閔,“高分子分散液晶-黏土奈米複材膜之製備與光電性質研究” 碩士學位論文 中原大學化學所,2006。
42.松本正一,角田市良著,劉瑞祥譯。液晶之基礎與應用,國立編繹館出版, 1996。
43.蘇稚琳,“彩色高分子分散液晶薄膜之研究” 碩士學位論文 國立交通大學理學院碩士在職專班應用科技學程,2009。
44.F. Reinitzer, "Beiträge zur kenntniss des cholesterins", Monatsh. Chem., 9(1), 421–441, 1888.
45.G. W. Gray, K. J. Harrison, and J. A. Nash, "New family of nematic liquid crystals for displays", Electron. Lett., 9(6), 130–131, 1973.
46.J. Wysocki, J. Adams, and W. Haas, "Electric-field-induced phase change in cholesteric liquid crystals", Phys.Rev.Lett., 20(19), 1024–1025, 1968.
47.P. J. Collings, and M. Hird. Introduction to Liquid Crystals: Chemistry and Physics. London: Taylor &; Francis, 1997.
48.S. Chandrasekhar, B. K. Sadashiva, and K. A. Suresh, "Liquid crystals of disc-like molecules", Pramana, 9(5), 471–480, 1977.
49.D. Vorländer, "Behavior of salts of organic acids when melted", Ber. Dtssch. Chem. Ges., 43, 3120–3135, 1911.
50.R. F. Grant, "Proton magnetic resonance absorption in copper(II) stearate", Can. J. Chem., 42(4), 951–953, 1964.
51.G. Friedel, "The mesomorphic states of matter", Ann. Phys. (Paris), 18, 273–474, 1922.
52.L. c. Khoo, and S. T. Wu. Optics and Nonlinear Optics of Liquid Crystals. Singapore: World Scientific, 1993.
53.M. Schadt, "Voltage-dependent optical activity of a twisted nematic liquid crystal", Appl. Phys. Lett., 18(4), 127–128, 1971.
54.T. J. Scheffer, and J. Nehring, "A new, highly multiplexable liquid crystal display", Appl. Phys. Lett., 45(10), 1021–1023, 1984.
55.G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, "Dynamic scattering: A new electrooptic effect in certain classes of nematic liquid crystals", Proc. IEEE, 56(7), 1162–1171, 1968.
56.G. H. Heilmeier, "Guse-host interaction in nematic liquid crystal: A new electro-optical", Appl. Phys. Lett., 13(3), 91–92, 1968.
57.M. F. Schiekel, "Deformation of nematic liquid crystals with vertical orientation in electrical fields", Appl. Phys. Lett., 19(10), 391–393, 1971.
58.G. Assouline, M. Hareng, and E. Leiba, "Two-colour liquid-crystal display", Electron. Lett., 7(23), 699–700, 1971.
59.N. A. Clark, and S. T. Lagerwall, "Submicrosecond bistable electro-optic switching in liquid crystals", Appl. Phys. Lett., 36(11), 899–901, 1980.
60.P. Cacharelis, J. Frazee, P. Moore, R. Luttrell, and R. Flack, "A Reflective-Mode PDLC Light Valve Display Technology", Solid-State Device Research Conference, 1997. Proceeding of the 27th European, 22–24 September, 596–533, 1997.
61.Http://www.Polytron.Com.Tw/
62.Y. S. No, and C. W. Jeon,"Effect of alignment layer on electro-optic properties of polymer-dispersed liquid crystal displays", Mol. Cryst. Liq. Cryst., 513, 98–105, 2009.
63.K. J. Yang, S. J. Sung, B. D. Choi, and J. K. Kang,"Light scattering characteristics of newly designed polymer dispersed liquid crystals films", Mol. Cryst. Liq. Cryst., 513, 38–44, 2009.
64.D. Coates, "Polymer-dispersed liquid crystals", J. Mater. Chem., 5(12), 2063–2072, 1995.
65.蔡佑哲,“含碳奈米添加物之高分子聚合物分散型液晶的光電特性”碩士學位論文 中原大學應用物理所,2006。
66.G. Spruce, and R. D. Pringle, "Polymer dispersed liquid crystal(PDLC) films.", Electron. Comm. Eng. J., 4(2), 91–100, 1992.
67.D. A. Higgins, "Probing the mesoscopic chemical and physical properties of polymer-dispersed liquid crystals", Adv. Mater., 12(4), 251–264, 2000.
68.D. Cupelli, F. P. Nicoletta, S. Manfredi, G. D. Filpo, and G. Chidichimo, "Electrically switchable chromogenic materials for external glazing", Solar Energy Mater. Solar Cells, 93(3), 329–333, 2009.
69.D. Cupelli, F. Pasquale Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. De Filpo, and G. Chidichimo, "Self-adjusting smart windows based on polymer-dispersed liquid crystals", Solar Energy Mater.Solar Cells, 93(11), 2008–2010, 2009.
70.G. Chidichimo, G. De Filpo, S. Manfredi, S. Mormile, L. Tortora, C. Gallucci, and R. Cassano, "High contrast reverse mode PDLC films: A morphologic and electro-optical analysis", Mol. Cryst. Liq. Cryst., 500, 10–22, 2009.
71.P. K. K. Chan. Formation and Performance of Polymer Dispersed Liquid Crystal Films. Canada: McGill University, 1997.
72.王德海,江欞。紫外光固化材料:理論與應用,科学出版社,2001。
73.S. Park, H. K. Kim, and J. W. Hong, "Investigation of the photopolymerization-induced phase separation process in polymer dispersed liquid crystal", Polym. Test., 29(7), 886–893, 2010.
74.B. Pinto-Iguanero, "Holographic material film composed by norland noa 65® adhesive", Opt. Mater., 20(3), 225–232, 2002.
75.B. G. Wu, J. Erdmann, and J. W. Doane, "Response times and voltages for PDLC light shutters", Liquid Crystals, 5(5), 1453–1465, 1989.
76.K. Amundson, "Electro-optic properties of a polymer-dispersed liquid-crystal film: Temperature dependence and phase behavior", Phys. Rev. E, 53(3), 2412–2422, 1996.
77.曾雅茹,“新型電活性烯類聚合物之合成、鑑定與性質研究” 碩士學位論文 中原大學化學系,2009。
78.黃于珊,“新型天然黏土之結構鑑定及其在酚醛環氧基板之性能探討”碩士學位倫文 中原大學化學系,2008。
79.葉瑞銘編著。奈米科技導論,台北縣五股鄉:高立圖書有限公司,2004。
80.J. L. Bonczek, W. G. Harris, and P. Nkedi-Kizza, "Monolayer of bilyer transitional arrangents of hexaecyltrimethylammonium cations on na-montmorillonite", Clays. Clay. Miner., 50(1), 11–17, 2002.
81.A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi, and O. Kamigaito, "Swelling behavior of montmorillonite cation exchanged for ω-amino acids by -caprolactam", J. Mater. Res., 8(5), 1174–1178, 1993.
82.A. K. Helmy, E. A. Ferreiro, and S. G. d. Bussetti, "Cation exchange capacity and condition of zero change of hydroxy-al montmorillonite", Clays. Clay. Miner., 42(4), 444–450, 1994.
83.E. Schingaro, F. Scordari, E. Mesto, M. F. Brigatti, and G. Pedrazzi, "Cation-site partitioning in ti-rich micas from black hill (australia): A multi-technical approach", Clays. Clay. Miner., 53(2), 179–189, 2005.
84.F. Leroux, and J. Besse, "Polymer interleaved layered double hydroxide: A new emerging class of nanocomposites", Chem. Mater., 13(10), 3507–3515, 2001.
85.姜桂蘭,張培萍。膨潤土加工與應用,化學工業出版社,2005。
86.L. W. Shacklette, J. F. Wolf, S. Gould, and R. H. Baughman, "Structure and properties of polyaniline as modeled by single-crystal oligomers", J. Chem. Phys., 88(6), 3955–3961, 1988.
87.H. Uno, K. Tamura, H. Yamada, K. Umeyama, T. Hatta, and Y. Moriyoshi, "Preparation and mechanical properties of exfoliated mica-polyamide 6 nanocomposites using sericite mica", Appl. Clay. Sci., 46(1), 81–87, 2009.
88.C. C. Riccardi, and R. J. J. Williams, "A kinetic scheme for an amine-epoxy reaction with simultaneous etherification", J. Appl. Polym. Sci., 32(2), 3445–43456, 1986.
89.Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, "One-pot synthesis of nylon 6–clay hybrid", J. Polym. Sci., Part A: Polym. chem., 31(7), 1755–1758, 1993.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top