跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 21:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖裕弘
研究生(外文):Yu-Hung Liao
論文名稱:含雙醯胺吡啶配位基與V字型配位基之鎳金屬配位高分子的合成、結構與磁性性質研究
論文名稱(外文):Synthesis, Structures and Magnetism of Nickel(II) Coordination Polymers Containing Dipyridyl Amide and V-shaped Dicarboxylate Ligands
指導教授:陳志德
指導教授(外文):Jhy-Der Chen
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:128
中文關鍵詞:磁性V字型
外文關鍵詞:magnetismV-shapedNickel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
摘要
一系列含N,N¢-二-(4-吡啶)己二醯二胺 (L1),N,N¢-二- (4-吡啶)辛二醯二胺 (L2) 與中性V字型配位基的鎳錯合物藉由水熱反應合成: {[Ni(L1)(MBA)].2H2O}∞ ( H2MBA = diphenylmethane-4,4¢-dicarboxylic acid),1,{[Ni(L1)(OBA)].H2O}∞ [ H2OBA = 4,4¢-oxybis(benzoic acid)],2,{[Ni(L1)(SDA)].2H2O}∞ ( H2SDA = 4,4¢-sulfonyldibenzoic acid),3,{[Ni2(L2)(SDA)2].6H2O }∞,4。這些化合物藉由單晶X-ray繞射儀來鑑定其結構,更進一步藉由元素分析儀、粉末X-ray繞射儀、熱重分析儀、超導量子干涉儀來研究化合物的特性。
錯合物1具有(2,2,4) -三節點連接的(6)(6)(63•82•10)拓樸結構,形成1D → 2D 多聚連鎖結構。鄰近的多聚連鎖結構更透過互相交錯接合形成罕見的2D → 3D結構。錯合物2為二維菱格狀結構並具有(6,4)拓樸結構,此層狀結構更進一步的互相交錯形成2-fold 2D → 2D交互貫穿結構。錯合物3為一維環形鏈狀結構並藉由氫鍵相互連接形成三維超分子結構。錯合物4具有二維層狀結構,且以傾斜的方式相互連鎖形成2D + 2D→ 3D交互貫穿結構並具有新奇的(42, 68, 8, 104)(4)2拓樸結構。錯合物1 - 4之配位基呈現不同的構型,錯合物1為AAG trans的構型,錯合物2為AAG cis的構型,錯合物3為GAG cis的構型,而錯合物4為AGAGA trans的構型。

Abstract
A series of Ni(II) coordination polymers containing N,N¢-di(4-pyridyl)adipoamide (L1), N,N¢-di(4-pyridyl)suberoamide (L2) and V-shaped dicarboxylate ligands, {[Ni(L1)(MBA)].2H2O}∞ (H2MBA = diphenylmethane-4,4¢-dicarboxylic acid), 1, {[Ni(L1)(OBA)].H2O}∞ [H2OBA = 4,4¢-oxybis(benzoic acid)], 2, {[Ni(L1)(SDA)].2H2O}∞ (H2SDA = 4,4¢-sulfonyldibenzoic acid), 3, {[Ni2(L2)(SDA)2].6H2O }∞ , 4, have been synthesized by hydrothermal reactions. Their structures were determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, powder X-ray diffraction, thermal gravimetric analysis and superconducting quantum interference device.
Complex 1 shows the (2,2,4)-connected (6)(6)(63, 82, 10) topology, forming a 1D → 2D polycatenation structure, and the adjacent networks are interdigitated to each other to form the rare 2D → 3D architecture. Complex 2 forms to 2D rhombic grid structure with the (6,4) topology. These layers are further interwoven to each other to give rise to a 2 fold 2D → 2D interpenetrating net. Complex 3 shows the 1D looped chain structure, and the 1D chains are linked by the hydrogen bonds to form the 3D supramolecular structures. Complex 4 shows 2D layers which catenate to each other to form a 2D + 2D → 3D inclined interpenetration framework with the new (42, 68, 8, 104)(4)2 topology. The L1 ligands show AAG trans conformation for 1, AAG cis conformation for 2 and GAG cis conformation for 3, whereas the L2 ligand adopts AGAGA trans conformation for 4.

Contents
摘要 I
Abstract II
謝誌 III
Contents V
List of Figures VII
List of Tables XII
1. Introduction 1
1-1. General Introduction 1
1-2. Molecular Entanglement 4
1-3. Magnetism 7
1-4. Motivation 11
2. Experimental section 12
2-1. General procedures 12
2-2. Materials 12
2-3. Preparation of {[Ni(L1)(MBA)].2H2O }∞ , 1 13
2-4. Preparation of {[Ni(L1)(OBA)]. H2O }∞ , 2 14
2-5. Preparation of {[Ni(L1)(SDA)].2H2O }∞ , 3 15
2-6. Preparation of{ [Ni2(L2)(SDA)2].6H2O }∞ , 4 16
3. X-ray crystallography 17
4. Results and Discussions 22
4-1. Structure of 1 22
4-2. Structure of 2 27
4-3. Structure of 3 30
4-4. Structure of 4 36
4-5. Conformations of the ligands 39
4-6. Structural comparisons 41
4-7. Powder X-ray analyses 45
4-8. Thermal properties 47
4-9. UV-Vis spectroscopy 51
4-10. Magnetic properties 55
5. Conclusion 65
References 66
Appendix A 70
Appendix B 99

List of Figures
Figure 1. (a) Schematic representation of 1D, 2D and 3D coordination polymers. (b) The interactions of coordination polymers. 2
Figure 2. Organic ligands may provide diverse connection modes that result in specific structures. 3
Figure 3. Three ways of maximizing packing efficiency: (a) interdigitation, (b) interpenetration and (c) intercalation. 5
Figure 4. (a) 2D → 2D parallel interpenetration; (b) 2D inclined interpenetration. 6
Figure 5. (a) Borromean rings; (b) 1D → 2D polycatenated; (c) 2D → 3D polycatenated. 6
Figure 6. Illustration of the spin alignment in (a) paramagnetic, (b) diamagnetic, when there is magnetic field or not. 8
Figure 7. Illustration of the cooperative magnetic phenomena in (a) ferromagnetism, (b) ferrimagnetism and (c) antiferromagnetism. 8
Figure 8. A drawing showing the relationship between the magnetic susceptibility ( χ ) and temperature ( T ). 10
Figure 9. A drawing showing the relationship between the magnetization ( M ) and the magnetic field ( H ). 10
Figure 10. The asymmetrical unit of complex 1. 23
Figure 11. Coordination environment of the Ni(II) center in 1. Symmetry transformations used to generate equivalent atoms: (A) x, y + 1, z. (B) –x, y + 0.5, -z + 1.5. 24
Figure 12. The Ni(II) ions are interlinked by two L1 and two MBA2- ligands to give 1D infinite helical channels. 24
Figure 13. A schematic view of 1D → 2D polycatenated framework of 1. 25
Figure 14. Perspective views of the right-handed helical channel and the left-handed helical channel in complex 1. 26
Figure 15. A schematic presentation of the 2D → 3D interdigitated array of complex 1. 26
Figure 16. The asymmetrical unit of complex 2. 28
Figure 17. Coordination environment of the Ni(II) center in 2. Symmetry transformations used to generate equivalent atoms: (A) x, -y + 0.5, -z + 0.5. 28
Figure 18. A schematic view of the two-fold rhombic grid of 2. 29
Figure 19. (a) The two interpenetrating 2D nets in the structure of 2. (b) A schematic view of the (6,4) topology. 29
Figure 20. The asymmetrical unit of complex 3. 32
Figure 21. Coordination environment of the Ni(II) center in 3. Symmetry transformations used to generate equivalent atoms: (A) –x + 1, -y – 1, z. 32
Figure 22. The diagrams of complex 3, showing the four disordered chains (a), (b), (c) and (d). 33
Figure 23. The overlap diagrams of these four different disordered molecules. 34
Figure 24. A schematic view of the 1D loop chain (a) along c axis and (b) along the sideline in complex 3. 34
Figure 25 Complex 3 forms 2D networks by N-H...O hydrogen bonds, (a) which are further linked by N-H...O hydrogen bonds to form 3D supermolecular structures, (b). 35
Figure 26. The asymmetrical unit of complex 4. 37
Figure 27. Coordination environment of the Ni(II) center in 4. Symmetry transformations used to generate equivalent atoms: (A) –x + 2, -y + 1, -z. (B) x – 0.5, y – 0.5, z. (C) –x + 2.5, -y + 4.5, -z. 37
Figure 28. (a) The 2D layer structure. (b) A scheme showing topology mode. 38
Figure 29. A schematic presentation of the 2D → 3D inclined interpenetration framework with new (42•68•8•104) (4)2 topology. 38
Figure 30. A drawing showing the formation of complexes 1 - 4. 44
Figure 31. The PXRD patterns of (a) simulated of complex 1 and (b) as synthesized for complex 1. 45
Figure 32. The PXRD patterns of (a) simulated of complex 2 and (b) as synthesized for complex 2. 46
Figure 33. The PXRD patterns of (a) simulated of complex 3 and (b) as synthesized for complex3. 46
Figure 34. The thermal gravimetric analysis (TGA) curve for complex 1 47
Figure 35. The thermal gravimetric analysis (TGA) curve for complex 2 48
Figure 36. The thermal gravimetric analysis (TGA) curve for complex 3 49
Figure 37. The thermal gravimetric analysis (TGA) curve for complex 4 50
Figure 38. The solid state UV-Vis spectrum for complex 1. 51
Figure 39. The solid state UV-Vis spectrum for complex 2. 52
Figure 40. The solid state UV-Vis spectrum for complex 3 53
Figure 41. The solid state UV-Vis spectrum for complex 4 54
Figure 42. The χt vs T and χ-1 vs T curves for complex 1. 57
Figure 43. The zero-field-cooled (ZFC) and field-cooled (FC) curve for complex 1 under an applied magnetic field of 50 Oe. 57
Figure 44. The plots of χ versus T with an applied magnetic field of (a) 5 Oe, (b) 25 Oe, (c) 100 Oe and (d) 1000 Oe for complex 1. 58
Figure 45. The magnetization curve M(H) observed for complex 1, showing a soft magnetic material in 1.8 K and it has no magnetic properties in 300 K. 58
Figure 46. The χt vs T and χ-1 vs T curves for complex 2. 60
Figure 47. The zero-field-cooled (ZFC) and field-cooled (FC) curve for complex 2 under an applied magnetic field of 50 Oe. 60
Figure 48. The magnetization curve M(H) observed for complex 2, showing a soft magnetic material in 1.8 K and it has no magnetic properties in 300 K. 61
Figure 49. The χt vs T and χ-1 vs T curves for complex 3. 61
Figure 50. The zero-field-cooled (ZFC) and field-cooled (FC) curve for complex 3 under an applied magnetic field of 50 Oe. 62
Figure 51. The magnetization curves M(H) observed for complex 3, showing a soft magnetic material in 1.8 K and it has no magnetic properties in 300 K. 62
Figure 52. The χt vs T and χ-1 vs T curves for complex 4. 64
Figure 53. The zero-field-cooled (ZFC) and field-cooled (FC) curve for complex 4 under an applied magnetic field of 50 Oe. 64
Figure 54. The magnetization curves M(H) observed for complex 4 64

List of Tables
Table 1 Crystal data for complex 1. 18
Table 2 Crystal data for complex 2. 19
Table 3 Crystal data for complex 3. 20
Table 4 Crystal data for complex 4. 21
Table 5. Ligand conformations and corresponding angles for complexes 1- 4. 40
Table 6. The difference of complex 1 - 4 and reference. 43
Table 7. The coordination modes for complex 3 – 4 and {[Zn(SDA)(L1)]•2H2O}∞ . 44
Table 8. The absorption wavelengths (nm) of solid state UV in complex 1, L1 and MBA ligand 51
Table 9. The absorption wavelengths (nm) of solid state UV in complex 2, L1 and OBA ligand 52
Table 10. The absorption wavelengths (nm) of solid state UV in complex 3, L1 and SDA ligand 53
Table 11. The absorption wavelengths (nm) of solid state UV in complex 4, L2 and SDA ligand 54







Appendix A Table contents
Table A-1. Atomic coordinates ( × 104) and equivalent isotropic displacement parameters (Å2 x 103) for 1. 71
Table A-2. Bond lengths (Å) for 1. 73
Table A-3. Bond angles (o ) for 1. 74
Table A-4. Anisotropic displacement parameters (Å2 × 103) for 1. 76
Table A-5. Hydrogen coordinates ( × 104) and isotropic displacement parameters (Å2 × 103) for 1. 78
Table A-6. Atomic coordinates ( × 104) and equivalent isotropic displacement parameters (Å2 x 103) for 2. 79
Table A-7. Bond lengths (Å) for 2. 80
Table A-8. Bond angles (o ) for 2. 81
Table A-9. Anisotropic displacement parameters (Å2 × 103) for 2. 82
Table A-10. Hydrogen coordinates ( × 104) and isotropic displacement parameters (Å2 × 103) for 2. 83
Table A-11. Atomic coordinates ( × 104) and equivalent isotropic displacement parameters (Å2 x 103) for 3. 84
Table A-12. Bond lengths (Å) for 3. 86
Table A-13. Bond angles (o ) for 3. 87
Table A-14. Anisotropic displacement parameters (Å2 × 103) for 3. 89
Table A-15. Hydrogen coordinates ( × 104) and isotropic displacement parameters (Å2 × 103) for 3. 90
Table A-16. Atomic coordinates ( × 104) and equivalent isotropic displacement parameters (Å2 x 103) for 4. 91
Table A-17. Bond lengths (Å) for 4. 93
Table A-18. Bond angles (o ) for 4. 94
Table A-19. Anisotropic displacement parameters (Å2 × 103) for4. 96
Table A-20. Hydrogen coordinates ( × 104) and isotropic displacement parameters (Å2 × 103) for 4. 98
References
[1]Y. Hao, B. Wu, S. Li, B. Liu, C. Jia, X. Huang and X. Yang. CrystEngComm., 2011, 13, 6285-6292.
[2]L. Dong, W. Chu, Q. Zhu and R. Huang, Cryst. Growth Des., 2011, 11, 93-99.
[3]C. N. Morrison, A. K. Powell and G. E. Kostakis, Cryst. Growth Des., 2011, 11, 3653-3662.
[4]S. Kitagawa, R. Kitaura and S. Noro, Angew. Chem. Int. Ed., 2004, 43, 2334 –2375.
[5]A. Y. Robin and K. M. Fromm, Coord. Chem. Rev., 2006, 250, 2127-2157.
[6]B. Ye, M. Tong and X. Chen, Coord. Chem. Rev., 2005, 249, 545-565.
[7](a) S. R. Batten, B. F. Hoskins and R. Robson, Chem. Eur. J., 2000, 6, No. 1; (b) S. R. Batten, S. M. Neville and D. R. Turner, Coordination Polymers: Design, Analysis and Application, 2009, 59-61.
[8]S. R. Batten and R. Robson, Angew. Chem. Int. Ed., 1998, 37, 1460-1494.
[9]S. R. Batten and R. Robson, Angew. Chem., 1998, 110, 1558; Angew. Chem. Int. Ed., 1998, 37, 1460.
[10] (a) H. Chen, D. Xiao, J. He, Z. Li, G. Zhang, D. Sun, R. Yuan, E. Wang and Q. Luo, CrystEngComm., 2011, 13, 4988-5000; (b) L. Carlucci, G. Ciani and D. M. Proserpio, Coord. Chem. Rev., 2003, 246, 247; (c) L. Carlucci, G. Ciani and D. M. Proserpio, CrystEngComm., 2003, 5, 269; (d) S. R. Batten, CrystEngComm., 2001, 3, 67.
[11] (a) Y. Q. Lan, S. L. Li, J. S. Qin, D. Y. Du, X. L. Wang, Z. M. Su and Q. Fu, Inorg. Chem., 2008, 47, 10600; (b) C. Qin, X. L. Wang, E. B. Wang and Z. M. Su. Inorg. Chem., 2008, 47, 5555; (c) F. Luo, Y. T. Yang, Y. X. Che and J. M. Zheng, CrystEngComm., 2008, 10, 981; (d) X. L. Wang, C. Qin, E. B. Wang, Y. G. Li, Z. M. Su, L. Xu and L. Carlucci, Angew. Chem. Int. Ed., 2005, 44, 5824; (e) L. F. Ma, Y. Y. Wang, J. Q. Liu, G. P. Yang, M. Du and L. Y. Wang, CrystEngComm., 2009, 11, 1800; (f) X. Y. Cao, J. Zhang, Z. J. Li, J. K. Cheng and Y. G. Yao, CrystEngComm., 2007, 9, 806; (g) C. Qin, X. L. Wang, L. Yuan and E. B. Wang, Cryst. Growth Des., 2008, 8, 2093.
[12] L. W. Han, Y. Gong, Z. J. Lin, J. Lu and R. Cao, Dalton Trans., 2012, 41, 4146.
[13] S. R. Batten, S. M. Neville and D. R. Turner, Coordination Polymers: Design, Analysis and Application, 2009, 67-77.
[14] S. R. Batten. J. Solid State Chem., 2005, 178, 2475–2479.
[15] P. P. Liu, A. L. Cheng, Q. Yue, Na Liu, W. W. Siu and E. Q. Gao, Cryst. Growth Des., 2008, 8, No. 5.
[16] P. K. Chen, Y. X. Che, S. R. Batten and J. M. Zheng, Inorg. Chem. Commun., 2007, 10, 415-418.
[17] L. Carlucci, G. Ciani and D. M. Proserpio, CrystEngComm., 2003, 5, 269-279.
[18] Bo Xu, Z. Lin, L. Han and R. Cao, CrystEngComm., 2011, 13, 440-443.
[19] S. R. Batten, S. M. Neville and D. R. Turner, Coordination Polymers:Design, Analysis and Application, 2009, 275-276.
[20] J. P. Sinnecker and L. A. Souza de Oliveira, J. Magn. Magn. Mater., 2002, 242, 238-240.
[21] D. D. Pallock, Physical properties of materials for engineering, 2002, 282
[22] (a) C. Janiak, Dalton Trans., 2003, 14, 2781-2804; (b) S. R. Batten, S. M. Neville and D. R. Turner, Coordination Polymers:Design, Analysis and Application, 2009, 273-275.
[23] A.Y. Robin and K.M. Fromm, Coord. Chem. Rev., 2006, 250, 2127-2157.
[24] Greg Goebel, Public domain, 2001, 10, chapter 4 of 18. http://www.vectorsite.net/tpqm_04.html#m1
[25] W. G. Penney and R. Schlapp, Phys.Rev., 1932, 41, 194-207.
[26] B. D. Cullity, Introduction to magnetic materials, 1972, 85-202.
[27] D. Jiles, Taylor and Fransic, Introduction to magnetism and magnetic materials, 2009, 89.
[28] S. Su, C. Qin, Z. Guo, H. Guo, S. Song, R. Deng, F. Cao, S. Wang, G. Li and H. Zhang, CrystEngComm., 2011, 13, 2935.
[29] (a) Y. F. Hsu, H. L. Hu, C. J. Wu, C. W. Yeh, D. M. Proserpio and J. D. Chen, CrystEngComm., 2009, 11, 168-176. (b) 中原大學化學系朱陳郁涵碩士論文2011年
[30] L. Carlucci, G. Ciani and D. M. Proserpio, Coord. Chem. Rev., 2003, 246, 247.
[31] H. Chen, D. Xiao, L. Fan, J. He, S. Yan, G. Zhang, D. Sun, Z. Ye, R. Yuana and E. Wang, CrystEngComm., 2011, 13, 7098–7107.
[32] W. Yang, X. Lin, A. J. Blake, C. Wilson, P. Hubberstey, N. R. Champness and M. Schrodar, Inorg. Chem., 2009, 48, No. 23.
[33] (a) R. W. Chantrell, N. S. Walmsley, J. Gore and M. Maylin, J. Appl. Phys., 1999, 85, 4340. (b) R. W. Chantrell and E. P. Wohlfarth, Phys. Status Solidi A, 1985, 91, 619. (c) X. X. Zhang, J. M. Hernandez, J. Tejada and R. F. Ziolo, Phys. Rev. B, 1996, 54, 6.
[34] C. Y. Sun, X. J. Zheng, S. Gao, L. C. Li, and L. P. Jin, Eur. J. Inorg. Chem., 2005, 2005, 4150-4159.
[35] (a) J. Q. Liu, B. Liu, Y. Y. Wang, P. Liu, G. P. Yang, R. T. Liu, Q. Z. Shi, and S. R. Batten, Inorg. Chem., 2010, 49, No. 22. (b) X. J. Li, X. Y. Wang, S. Gao and R. Cao, Inorg. Chem., 2006, 45,1508. (c) D. K. Rittenberg, K. Sugiura, Y. Sakata, S. Mikami and A. J. Epstein, J. S. Adv. Mater, 2000, 12, 126.
[36] 中原大學化學系張尹瑞碩士論文2011年
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊