跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 02:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊登富
研究生(外文):Deng-Fu Yang
論文名稱:光敏劑結合佐劑藥物於倉鼠口腔癌前病變動物模式之光動力診斷及治療研究
論文名稱(外文):Combination therapy of photodynamic therapy and adjuvant studies for hamster buccal pouch premaligant lesions
指導教授:許毅芝許毅芝引用關係
指導教授(外文):Yih-Chih Hsu
學位類別:碩士
校院名稱:中原大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:138
中文關鍵詞:光動力療法5-氨基酮戊酸甲氨蝶呤卡泊三醇糞卟啉原氧化酶
外文關鍵詞:Photodynamic therapy5-aminolaevulinic acidmethotrexatecalcipotriolcoproporphyrinogen oxidase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光動力療法 (photodynamic therapy、PDT) 為非侵入式治療,將光敏劑或光敏劑前驅物以塗抹、口服或注射方式給藥,光敏劑在體內會選擇性地滯留於癌症或癌前病變組織內,以特定波長光線照射,感光劑會吸收特定波長的光能而被激發,啟動光化學反應產生自由基及單態氧造成細胞傷害,達到選擇性消滅癌細胞的作用,而其螢光特性也可用於腫瘤的診斷及定位。由於光的物理性質直接決定了治療的效果及治療的深度,因此選擇適當的感光劑、可吸收的光線波長及適合的治療時間點,是光動力療法成功的關鍵。
本研究使用已用於臨床治療之5-氨基酮戊酸 (5-aminolaevulinic acid、ALA) 光敏感劑前驅物質為治療基礎,並於倉鼠口腔癌前病變模式動物進行光動力治療之光源、功率、劑量比較,篩選出合適於倉鼠口腔癌前病變模式動物光動力治療之組合。並以局部塗抹方式比較甲氨蝶呤 (Methotrexate、MTX)、卡泊三醇 (1,24(OH)2-22-ene-24-cyclopropyl D3、calcipotriol) 兩種佐劑藥物對於ALA-PDT之增效,以及有效治療次數。最後利用人類舌鱗狀細胞癌SCC4細胞 (human tongue squamous cell carcinoma、SCC4) 探討增效機轉。
本實驗結果顯示,在倉鼠口腔癌前病變動物模式之ALA-PDT中,光功率在700mW/cm2能量為200焦耳 (joules、J),治療週期為72hr之持續照射治療條件時,可於病變處產生治療效果,但會對患部表面造成破壞性傷口,並有少量熱效應。若以300mW/cm2能量100J,治療週期為1週之間歇性治療條件時,可減少熱效應,但對患部的傷害仍過大。而以200mW/cm2能量100J,治療週期為1週之光照條件,則無熱效應產生,成功針對病變產生有效治療反應。
本研究發現分別以佐劑MTX及calcipotriol預處理之倉鼠口腔癌前病變模式動物,於ALA光動力診斷 (photodynamic diagnosis、PDD) 研究發現,會因不同佐劑的預處理而有不同的最佳治療窗口。控制組之ALA-PDD治療時間點為20%ALA (w/w) 水膠,於患部局部塗抹後2.5hr; MTX水膠預處理之治療時間點為6.5hr;以calcipotriol預處理之治療時間點為3.5hr。根據以上PDD條件進行ALA-PDT的結果為控制組平均需經4.8次療程,以肉眼觀察可達完全治癒 (complete response、CR) 之療效;以MTX佐劑預處理後,進行ALA-PDT達CR,平均則需經2.3次療程;以calcipotriol佐劑預處理後,進行ALA-PDT達CR平均經3.8次療程。經佐劑增效的機轉研究,初步發現SCC4細胞經不同濃度之MTX以及calcipotriol預處理後,可發現合成具光敏功能之原紫環IX (protoporphyrin IX、PpIX)上游酵素糞卟啉原氧化酶 (coproporphyrinogen oxidase、CPOX) 有上升的表現;而同為上游酵素合成PpIX的原卟啉原氧化酶 (protoporphyrinogen oxidase、PPOX) 則無明顯變化;而下游代謝PpIX之亞鐵螯合酶 (ferrochelatase、FECH) 也無明顯變化,可說明無論以MTX或calcipotriol佐劑預處理,皆可以提高細胞CPOX酵素含量,進而導致ALA-PDT的療效增加。


Photodynamic therapy (PDT) is a non-invasive cancer therapy modality. Photosensitizer or its precursor is given by topical, oral or vein-injection administration. Then photosensitizer accumulates selectively in precancerous or cancerous lesions and is then activated after irradiatiing light. The activated photosensitizer reacts with oxygen to form reactive oxygen species (ROS), resulting in tissue destruction of precancerous and cancerous tissue. Photodynamic diagnosis (PDD) of topical 5-aminolaevulinic acid (ALA) was obtained for the optimal treatment schedule to deliver optimumn PDT therapeatic results.
We established a hamster buccal pouch precancerous animal model to research on different adjuvant drugs including methotrexate (MTX) and calcipotriol for combination therapy with topical ALA-PDT in vivo. On the other hand, we used human tongue squamous cell carcinoma (SCC4) cell line, to investigate the ALA-PDT therapeutic effect with preconditioning adjuvant drugs.
For ALA-mediated PDD, the optimal treatment schedule post topical ALA administration dependeds on different kind of preconditioning adjuvant. PDD time was determined for 2.5 hr without adjuvant, 6.5 hr after 72hr MTX preconditioning, and 3.5 hr after 72hr calcipotriol preconditioning. Our study found that there are 4.8 PDT cycles for no preconditioning adjuvant, 2.3 PDT cycles post 72hr MTX preconditioning, and 3.8 PDT cycles post 72hr calcipotriol preconditioning.
In vitro, SCC4 cells were preconditioned with MTX at 0.001, 0.01, 0.1 and 1(mg/L), with calcipotriol at 10-8, 10-7, 10-6 and 10-5 M. Up-regulation of coproporphyrinogen III oxidase (CPOX), an upstream enzyme of PpIX synthesis, but there was no significant change in the regulation of protoporphyrinogen oxidase (PPOX), an enzyme co-regulating on PpIX synthesis, and ferrochelatase (FECH), the terminal enzyme in the biosynthesis of heme. Based on the above studies, it demonstrated that such combination therapy of adjuvants and ALA-PDT served a successful therapeutic modality on oral precancer therapy.


摘要 I
Abstract III
論文發表及會議報告 V
目錄 VI
圖目錄 X
表目錄 XIII
壹、 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 4
貳、 實驗介紹與流程設計 6
2-1 實驗介紹 6
2-2 實驗流程設計 7
參、 文獻探討 8
3-1 光動力治療應用 8
3-1-1 人類口腔癌前病變簡介 8
3-1-2 光動力治療應用於口腔癌前病變領域 8
3-1-3 可提昇光動力治療綜效的佐劑藥物 10
3-2 理論基礎 13
3-2-1 倉鼠口腔癌前病變動物模式建立 13
3-2-2 光動力治療介紹 14
3-2-3 光動力治療三要素-光、氧氣、光感藥物 14
3-2-4 光化學反應 16
3-2-5 5-氨基酮戊酸光動力治療機轉 17
3-2-6 5-氨基酮戊酸光敏劑對癌前病變及癌症組織選擇性累積之因素 18
3-2-7 如何避免光動力引起的缺氧效應? 18
3-2-8 光動力治療所引發之免疫反應 19
3-2-9 光動力診斷 (Photodynamic diagnosis) 20
肆、 材料與方法 23
4-1 光動力治療於倉鼠口腔癌前病變之動物模式研究 23
4-1-1 本實驗用藥物與佐劑介紹 23
4-1-2 實驗藥物配製方法 23
4-1-3 口腔癌前病變之動物模式實驗方法 24
4-2 光動力治療於口腔癌前病變及變異組織之佐劑增效光動力機轉探討 26
4-2-1 動物組織之蛋白質萃取方法 26
4-2-2 BCA(bicinchoninic acid)蛋白質濃度測定與蛋白質電泳樣品製備 27
4-2-3 十二烷基硫酸鈉聚丙烯酰胺凝膠電泳(sodium dodecyl sulfate polyacrylamide gel electrophoresis、SDS-PAGE) 28
4-2-4 西方墨點法(Western Blot) 29
4-3 光動力治療於人類舌鱗狀細胞癌細胞株之佐劑增效機轉研究 30
4-3-1 細胞株 30
4-3-2 細胞解凍、繼代與冷凍方法 31
4-3-3 細胞之蛋白質萃取方法 32
4-3-4 細胞佐劑預處理以及MTT細胞存活實驗方法 33
4-3-5 統計分析 34
伍、 結果與討論 35
5-1 倉鼠口腔癌前病變與變異組織之動物模式引發 35
5-1-1 倉鼠口腔癌前病變模式組織診斷 36
5-1-2 以甲氨蝶呤塗抹劑型為光動力治療之佐劑的最佳濃度分析研究 36
5-1-3 高功率短治療週期之ALA光動力治療於倉鼠口腔癌前病變療效探討 39
5-1-4 局部ALA光動力治療之光源與治療週期評估 42
5-1-5佐劑預處理之局部ALA光動力診斷於倉鼠口腔癌前病變患部篩選最佳治 療窗口 44
5-1-5-1 以光動力診斷篩選ALA最佳治療時間 44
5-1-5-2 以光動力診斷篩選甲氨蝶呤預處理之ALA最佳治療時間 46
5-1-5-3 以光動力診斷篩選卡泊三醇預處理之ALA最佳治療時間 49
5-1-6 以發光二極體光源持續照射之佐劑預處理5-氨基酮戊酸光動力治療於倉鼠口腔癌療效探討 52
5-1-7 比較持續光照、間歇光照條件之5-氨基酮戊酸光動力治療於倉鼠口腔癌前病變療效 57
5-1-7-1 持續光照條件之5-氨基酮戊酸光動力治療於倉鼠口腔癌前病變療效 58
5-1-7-2 間歇光照條件之5-氨基酮戊酸光動力治療於倉鼠口腔癌前病變療效 60
5-1-8 高低功率、能量發光二極體光源間歇照射之佐劑預處理5-氨基酮戊酸局部光動力治療於倉鼠口腔癌前病變療效探討 61
5-1-8-1 光功率300mW/cm2、照射能量150J及間歇照射之甲氨蝶呤佐劑預處理局部ALA-PDT療效探討 61
5-1-8-2 光功率300mW/cm2、照射能量150J及間歇照射之卡泊三醇佐劑預處理局部ALA-PDT療效探討 70
5-1-8-3 光功率200mW/cm2、照射能量100J及間歇照射之甲氨蝶呤佐劑預處理局部ALA-PDT療效探討 74
5-1-8-4 光功率200mW/cm2、照射能量100J及間歇照射之卡泊三醇佐劑預處理局部ALA-PDT療效探討 82
5-1-8-5 動物實驗結果 87
5-2 增效機轉實驗結果 88
5-2-1 倉鼠口腔癌前病變動物模式佐劑增強療效機轉探討 88
5-2-2 人類舌鱗狀細胞癌細胞株佐劑增強療效機轉探討 92
5-2-3 討論 100
5-2-4 結論 108
5-2-5 未來研究方向 109
陸、 參考文獻 110
附錄A 實驗試劑配製 119
附錄B 細胞解凍、繼代培養及冷凍 121
附錄C 實驗儀器設備與藥品試劑 123

圖目次
圖2-1 實驗流程圖 7
圖3-1 倉鼠正常口腔頰囊蘇木精-伊紅染色(hematoxylin-eosin staining、H&;E staining)切片 13
圖3-2 光動力療法原理示意圖 17
圖3-3 ALA代謝路徑圖 18
圖4-1 人類舌麟狀細胞癌(Human tongue squamous cell carcinoma、SCC4) 30
圖4-2 光盤式LED光源 34
圖5-1 倉鼠口腔頰囊致癌進程 35
圖5-2 倉鼠口腔頰囊照片與蘇木精-伊紅染色(hematoxylin and eosin stain、H&;E stain)切片圖 36
圖5-3 局部ALA-PDT於倉鼠口腔癌前病變治療照片記錄 40
圖5-4 局部ALA-PDT於卡泊三醇(calcipotriol)佐劑藥物預處理之倉鼠口腔癌前病變照片記錄 40
圖5-5 局部ALA-PDT於甲氨蝶呤(methotrexate)佐劑藥物預處理之倉鼠口腔癌前病變照片記錄 41
圖5-6 局部ALA-PDT使用LumaCare鹵素燈光源或LED發光二極體光源於7天治療週期下之倉鼠口腔癌前病變病灶復原情況比較 44
圖5-7 ALA代謝PpIX之光動力診斷螢光光譜圖 45
圖5-8 ALA代謝PpIX於甲氨蝶呤(methotrexate)佐劑預處理之光動力診斷螢光光譜圖 48
圖5-9 ALA代謝PpIX於卡泊三醇(calcipotriol)佐劑預處理之光動力診斷螢光光譜圖 51
圖5-10 輕度至中度倉鼠口腔頰囊癌前病變照片與切片圖 52
圖5-11 局部ALA-PDT患部破壞及復原情況 54
圖5-12 甲氨蝶呤(methotrexate)預處理之局部ALA-PDT患部破壞及復原情況 55
圖5-13 卡泊三醇(calcipotriol)預處理之局部ALA-PDT患部破壞及復原情況 57
圖5-14 持續光照(continuous exposure)條件之局部ALA-PDT 59
圖5-15 間歇光照(fractionation exposure)條件之局部ALA-PDT 61
圖5-16 以光功率300mW/cm2間歇性光照條件進行局部ALA-PDT達150J於倉鼠口腔癌前病變治療進程 64
圖5-17 以光功率300mW/cm2間歇性光照達150J能量之局部ALA-PDT於甲氨蝶呤(methotrexate)佐劑預處理之倉鼠口腔癌前病變治療進程 67
圖5-18 以光功率300mW/cm2間歇性光照達150J能量之局部ALA-PDT於卡泊三醇(calcipotriol)佐劑預處理之倉鼠癌前病變治療進程 72
圖5-19 以光功率200mW/cm2間歇性光照達100J能量之局部ALA-PDT於倉鼠口腔癌前病變治療進程 76
圖5-20 以光功率200mW/cm2間歇性光照達100J能量之局部ALA-PDT於甲氨蝶呤(methotrexate)佐劑預處理之倉鼠癌前病變治療進程 79
圖5-21 以光功率200mW/cm2間歇性光照達100J能量之局部ALA-PDT於卡泊三醇(calcipotriol)佐劑預處理之倉鼠癌前病變治療進程 85
圖5-22 以西方墨點法檢測經甲氨蝶呤(methotrexate)預處理3天與5-氨基酮戊酸(ALA)不同時間(2.5hr及6.5hr)處理之倉鼠正常或癌前病變頰囊血紅素代謝途徑酵素CPOX、PPOX、FECH之消長變化 89
圖5-23 甲氨蝶呤(methotrexate)於正常或癌前病變倉鼠頰囊血紅素代謝途徑酵素CPOX、PPOX、FECH之蛋白質含量影響 91
圖5-24 以甲氨蝶呤(methotrexate)或二甲基亞碸(dimethyl sulfoxide)預處理人類鱗狀細胞癌SCC4細胞72hr後,施以不同濃度5-氨基酮戊酸(ALA)避光培養4hr,使用635nm紅光以持續照射(continuous lighting)或間歇照射(fractionation lighting)達10J能量之細胞存活率實驗 93
圖5- 25 以甲氨蝶呤(methotrexate)或二甲基亞碸(dimethyl sulfoxide)預處理人類鱗狀細胞癌SCC4細胞72hr後,施以不同濃度5-氨基酮戊酸(ALA)避光培養4hr,使用635nm紅光以間歇照射(fractionation lighting)達10J能量之細胞存活率實驗 94
圖5- 26 以不同濃度甲氨蝶呤(methotrexate)預處理72hr於人類舌鱗狀細胞癌SCC4之血紅素生成酵素CPOX、PPOX、FECH之蛋白質含量變化 95
圖5-27 以甲氨蝶呤(methotrexate)預處理SCC4細胞72hr後,以不同濃度5-氨基酮戊酸(ALA)避光培養4hr,再以635nm紅光間歇照射達10J能量之細胞存活率實驗 96
圖5-28 以不同濃度卡泊三醇(calcipotriol)預處理72hr於人類舌鱗狀細胞癌SCC4之血紅素生成酵素CPOX、PPOX、FECH之蛋白質含量變化 98
圖5-29 以卡泊三醇(calcipotriol)預處理SCC4細胞72hr後,以不同濃度5-氨基酮戊酸(ALA)避光培養4hr,再以635nm紅光間歇照射達10J能量之細胞存活率實驗 99

表目次
表1 不同濃度比例之SDS-PAGE配製方式 29
表2 人類舌麟狀細胞癌(Human tongue squamous cell carcinoma、SCC4)方式 31
表3 倉鼠口腔癌前病變以0.25%、0.5%及1%(w/w) MTX佐劑處理下所測得635nm光動力診斷之光子數與光子數倍數 38
表4 光動力診斷篩選局部ALA-PDT最佳治療時間 45
表5 光動力診斷篩選經甲氨蝶呤(methotrexate)佐劑預處理後,結合局部ALA-PDT之最佳治療時間 47
表6 光動力診斷篩選經卡泊三醇(calcipotriol)佐劑預處理後,結合局部ALA-PDT之最佳治療時間 50
表7 以光功率 300mW/cm2間歇性照光達150J能量之局部ALA-PDT於倉鼠口腔癌前病變患部之治療結果 65
表8 以光功率 300mW/cm2間歇性光照進行局部ALA-PDT達150J能量於甲氨蝶呤(methotrexate)佐劑預處理之倉鼠口腔癌前病變患部之治療結果 69
表9 以光功率 300mW/cm2間歇性光照達150J能量之局部ALA-PDT於卡泊三醇(calcipotriol)佐劑預處理之倉鼠口腔癌前病變患部之治療結果 73
表10 以光功率 200mW/cm2間歇性光照達100J能量之局部ALA-PDT於倉鼠口腔癌前病變患部之治療結果 77
表11 以光功率 200mW/cm2間歇性光照達100J能量之局部ALA-PDT於甲氨蝶呤(methotrexate)佐劑預處理之倉鼠口腔癌前病變患部之治療結果 81
表12 以光功率 200mW/cm2間歇性光照達100J能量之局部ALA-PDT於卡泊三醇(calcipotriol)佐劑預處理之倉鼠口腔癌前病變之治療結果 86
表13 甲氨蝶呤(methotrexate)預處理SCC4細胞72hr後之ALA-PDT細胞存活率分析 96
表14 卡泊三醇(calcipotriol)預處理SCC4細胞72hr後之ALA-PDT細胞存活率分析 99




1.行政院衛生署國民健康局-民國96年癌症申報發生人數分類統計表,民國96年7月,取自http://www.bhp.doh.gov.tw/Download/Statistics/1.癌症登記年度報告(全)(92年以後資料僅含侵襲癌)/Y96-癌症登記年度報告(全).pdf。
2.行政院衛生署國民健康局-民國97年癌症申報發生人數分類統計表,民國97年7月,取自http://www.bhp.doh.gov.tw/Download/97Statistics/1.癌症登記年度報告(全)/Y97-癌症登記年度報告(全).pdf 。
3.康芳瑜、余珮蓉。「照顧一位口腔癌患者術後於加護病房的護理經驗」慈濟護理雜誌,第八卷,第四期,民國98年8月,取自http://www.tzuchi.com.tw/file/DivIntro/nursing/content/200908-08-04/129-136.pdf。
4.Yu CH, Chen HM, Hung HY, Cheng SJ, Tsai T, Chiang CP, “Photodynamic therapy outcome for oral verrucous hyperplasia depends on the clinical appearance, size, color, epithelial dysplasia, and surface keratin thickness of the lesion,” Oral Oncol, vol. 44, no. 6, pp. 595–600, 2008.
5.Yu CH, Lin HP, Chen HM, Yang H, Wang YP, Chiang CP. “Comparison of clinical outcomes of oral erythroleukoplakia treated with photodynamic therapy using either light-emitting diode or laser light,” Lasers Surg Med, vol. 41, no. 9, pp. 628-33, 2009.
6.Chen HM, Chen CT, Yang H, Kuo MY, Kuo YS, Lan WH, Wang YP, Tsai T, Chiang CP, “Successful treatment of oral verrucous hyperplasia with topical 5-aminolevulinic acid-mediated photodynamic therapy,” Oral Oncol, vol. 40, no. 6, pp. 630–7, 2004.
7.Tsai JC, Chiang CP, Chen HM, Huang SB, Wang CW, Lee MI, Hsu YC, Chen CT, Tsai T, “Photodynamic Therapy of oral dysplasia with topical 5-aminolevulinic acid and light-emitting diodearray,” Lasers Surg Med, vol. 34, no. 1, pp. 18-24, 2004.
8.Lin HP, Chen HM, Yu CH, Yang H, Wang YP, Chiang CP, “Topical photodynamic therapy is very effective for oral verrucous hyperplasia and oral erythroleukoplakia,” J Oral Pathol Med, vol. 39, no. 8, pp. 624-30, 2010.
9.陳進庭。「由光動力醫學的發展實例談生醫光電在生物醫學之整合發展」科儀新知,第二十八卷,第四期,民國96年2月,取自http://ntur.lib.ntu.edu.tw/bitstream/246246/162651/1/30.pdf。
10.DeRosa MC, Crutchley RJ, “Photosensitized singlet oxygen and its applications,” Coord Chem Rev, vol. 233-234, pp. 351-371, 2002.
11.Kawczyk-Krupka A, Waśkowska J, Raczkowska-Siostrzonek A, Kościarz-Grzesiok A, Kwiatek S, Straszak D, Latos W, Koszowski R, Sieron A, “Comparison of cryotherapy and photodynamic therapy in treatment of oral leukoplakia,” Photodiagnosis Photodyn Ther, 2012 (In Press, Corrected Proof, Available online).
12.Kübler AC, “Photodynamic therapy,” Medical Laser Application, vol. 20, no. 1, pp. 37–45, 2005.
13.Konopka K, Goslinski T, “Photodynamic therapy in dentistry,” J Dent Res, vol. 86, no. 8, pp. 694–707, 2007.
14.Dolmans DE, Kadambi A, Hill JS, Waters CA, Robinson BC, Walker JP, Fukumura D, Jain RK, “Vascular Accumulation of a Novel Photosensitizer, MV6401, Causes Selective Thrombosis in Tumor Vessels after Photodynamic Therapy,” Cancer Res, vol. 62, no. 7, pp. 2151–6, 2002.
15.Anand S, Honari G, Hasan T, Elson P, Maytin EV, “Low-Dose Methotrexate Enhances Aminolevulinate-Based Photodynamic Therapy in Skin Carcinoma Cells In vitro and In vivo,” Clin Cancer Res, vol. 15, no. 10, pp. 3333–43, 2009.
16.Sinha AK, Anand S, Ortel BJ, Chang Y, Mai Z, Hasan T, Maytin EV, “Methotrexate used in combination with aminolaevulinic acid for photodynamic killing of prostate cancer cells,” Br J Cancer, vol. 95, no. 4, pp. 485–95, 2006.
17.Sato N, Moore BW, Keevey S, Drazba JA, Hasan T, Maytin EV, “Vitamin D enhances ALA-induced protoporphyrin IX production and photodynamic cell death in 3-D organotypic cultures of keratinocytes,” J Invest Dermatol, vol. 127, no. 4, pp. 925–34, 2007.
18.Anand S, Honari G, Paliwal A, Hasan T , Maytin V, “Enhancement of tumor responsiveness to aminolevulinatephotodynamic therapy (ALA-PDT) using differentiation-promoting agents in mouse models of skin carcinoma,” Progress in biomedical optics and imaging, vol. 10, no. 2, 2009.
19.Anand S, Wilson C, Hasan T, Maytin EV, “Vitamin d3 enhances the apoptotic response of epithelial tumors to aminolevulinate-based photodynamic therapy,” Cancer Res, vol. 71, no. 18, pp. 6040-50, 2011.
20.潘超群。「口腔癌及癌前病變之分類及診斷」口腔癌篩檢工作手冊,民國93年9月,取自http://www.aoms.org.tw/member/academic/academic03/chapter4.pdf。
21.Biel MA, “Photodynamic therapy and the treatment of head and neck neoplasia,” Laryngoscope, vol. 108, no. 9, pp. 1259-68, 1998.
22.Grant WE, Hopper C, Speight PM, Macrobert AJ, Bown SG., “Photodynamic therapy of malignant and premalignant lesions in patients with field cancerization of the oral cavity,” J Laryngol Otol, vol. 107, no. 12, pp. 1140-1145, 1993.
23.Sieron A, Namyslowski G, Misiolek M, Adamek M, Kawczyk-Krupka A, “Photodynamic therapy of premalignant lesions and local recurrence of laryngeal and hypopharyngeal cancers,” Eur Arch Otorhinolaryngol, vol. 258, no. 7, pp. 349–352, 2001.
24.Kübler A, Haase T, Rheinwald M, Barth T, Mühling J, “Treatment of oral leukoplakia by topical application of 5-aminolevulinic acid,” Int J Oral Maxillofac Surg, vol. 27, no. 6, pp. 466-9, 1998.
25.Kennedy JC, Pottier RH, Pross DC, “Photodynamic therapy with endogenous
protoporphyrin IX : basic principles and present clinical experience,” J Photochem Photobiol B, vol. 6, pp. 143-8, 1990.
26.Svanberg K, Andersson T, Killander D, Wang I, Stenram U, Andersson-Engels S, Berg R, Johansson J, Svanberg S, “Photodynamic therapy of non-melanoma malignant tumours of the skin using topical delta-amino levulinic acid sensitization and laser irradiation,” Br J Dermatol, vol. 130, no. 6, pp. 743-51, 1994.
27.Calzavara-Pinton PG., “Repetitive photodynamic therapy with topical delta-aminolaevulinic acid as an appropriate approach to the routine treatment of superficial non-melanoma skin tumours,” J Photochem Photobiol B, vol. 29, no. 1, pp. 53-7, 1995.
28.Chen HM, Yu CH, Tsai T, Hsu YC, Kuo RC, Chiang CP, “Topical 5-aminolevulinic acid-mediated photodynamic therapy for oral verrucous hyperplasia, oral leukoplakia and oral erythroleukoplakia,” Photodiagnosis Photodyn Ther, vol. 4, no. 1, pp. 44–52, 2007.
29.Ortel B, Sharlin D, O'Donnell D, Sinha AK, Maytin EV, Hasan T, “Differentiation enhances aminolevulinic acid-dependent photodynamic treatment of LNCaP prostate cancer cells,” Br J Cancer, vol. 87, no. 11, pp. 1321–27, 2002.
30.Peng Q, Warloe T, Moan J, Heyerdahl H, Steen HB, Nesland JM, Giercksky KE, “Distribution of 5-aminolevulinic acid-induced porphyrins in noduloulcerative basal cell carcinoma,” Photochem Photobiol, vol. 62, no. 5, pp. 906-13, 1995.
31.Fijan S, Hönigsmann H, Ortel B, “Photodynamic therapy of epithelial skin tumours using delta-aminolevulinic acid and desferrioxamine,” Br J Dermatol, vol. 133, no. 2, pp. 282-8, 1995.
32.Berg K, Anholt H, Bech O, Moan J, “The influence of iron chelators on the accumulation of protoporphyrin IX in 5-aminolaevulinic acid-treated cells,” Br J Cancer, vol. 74, no. 5, pp. 688-97, 1996.
33.Xia Y, Huang Y, Lin L, Liu X, Jiang S, Xiong L, “A comparative study on the enhancement efficacy of specific and non-specific iron chelators for protoporphyrin IX production and photosensitization in HaCat cells,” J Huazhong Univ Sci Technolog Med Sci, vol. 29, no. 6, pp. 765-70, 2009.
34.Choudry K, Brooke RC, Farrar W, Rhodes LE, “The effect of an iron chelating agent on protoporphyrin IX levels and phototoxicity in topical 5-aminolaevulinic acid photodynamic therapy,” Br J Dermatol, vol. 149, no. 1, pp. 124–30, 2003.
35.Sun XF, Guan ZZ, Li S, Liau H, Jou JM, He YJ, Jang L, Shia JC, Huang HC, Li YH, “High dose MTX [3~4g(m24h)] combined with other anticancer drugs for the treatment of lymphocytic malignant diseases:clinical study and pharmacokinetics,” Sun Yat-sen University of Medical Sciences, 1999.
36.Eskicirak B, Zemheri E, Cerkezoglu A, “The treatment of psoriasis vulgaris: 1% topical methotrexate gel,” Int J Dermatol, vol. 45, no. 8, pp. 965 – 69, 2006.
37.Cicarma E, Tuorkey M, Juzeniene A, Ma LW, Moan J, “Calcitriol treatment improves methyl aminolaevulinate-based photodynamic therapy in human squamous cell carcinoma A431 cells,” Br J Dermatol, vol. 161, no. 2, pp. 413-8, 2009.
38.Neville BW, Day TA, “Oral Cancer and Precancerous Lesions,” CA Cancer J Clin, vol. 52, pp. 195-215, 2002.
39.Gimenez-Conti IB, Shin DM, Bianchi AB, Roop DR, Hong WK, Conti CJ, Slaga TJ, “Changes in keratin expression during 7,12-dimethylbenz[a]anthracene-induced hamster cheek pouch carcinogenesis,” Cancer Res, vol. 50, no. 14, pp. 4441–5, 1990.
40.Salley JJ, “Experimental carcinogenesis in cheek pouch of the Syrian hamster,” J Dent Res, vol. 33, pp. 253-62, 1954.
41.McCaughan JS, “Photodynamic therapy:a review,” Druga Aging, vol. 15, pp. 49-68, 1999.
42.Meyer-Betz F, “Untersuchungen uber die biologische (photodynamische) wirkung des hematoporphyrins und anderer derwate des blut und gallenfarbstoffs,” Deutsch. Arch. Klin. Med, vol. 112, pp. 476, 1913.
43.Kelly JF and Snell ME, “Hematoporphyrin derivative: a possible aid in the diagnosis and therapy of carcinoma of the bladder,” J. Urol, vol. 115, pp. 150-57, 1976.
44.Hopper C, “Photodynamic therapy:a clinical reality in the treatment of cancer,” Lancet Oncol, vol.1, pp. 212-19, 2000.
45.Korbelik M, “Induction of tumour immunity by photodynamic therapy,” J Clin Laser Med Surg, vol. 14, pp. 329-334, 1996.
46.Kessel D, Chou TH, “Tumor-localizing components of the porphyrin preparation hematoporphyrin derivative,” Cancer Res, vol. 43, pp. 1994-99, 1983.
47.Einstein A, “Strahlungs-emission und -absorption nach der Quantentheorie,” Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 18, pp. 318-323, 1916.
48.Profio AE, “Light transport in tissue,” Applied Optics, vol. 28, no. 12, pp. 2216-2222, 1989.
49.Ledoux-Lebards C, Annales de l’Institut Pasteur, vol. 16, pp. 593, 1902.
50.von Tappeiner H, Jesionek A, “Therapeutische Versuche mit fluoreszierenden Stoffen,” MMW Munch Med Wochenschr, vol. 47, pp. 2042–44, 1903.
51.Straub W, “The action of eosin solution on oxidizable substances,” Arch. Exp. Pathol. Pharmacol, vol. 51, pp. 383-390, 1904.
52.Kautsky H, de Bruin H, “The explanation of the inhibition of photoluminescence of fluorescent systems by oxygen: The formation of active, diffusing oxygen molecules by sensitization,” Naturwiss, vol. 19, pp. 1043-43, 1931.
53.Greer A, “Christopher Foote's discovery of the role of singlet oxygen [1O2 (1Delta g)] in photosensitized oxidation reactions,” Acc Chem Res, vol. 39, no. 11, pp. 797-804, 2006.
54.Foote CS, “Photosensitized oxygenations and the role of singlet oxygen,” Chem Res, vol. 1, no. 4, pp. 104–110, 1968.
55.Dolmans DEJGJ, Fukumura D, Jain RK, “Photodynamic therapy for cancer,” Nat Rev Cancer, vol. 3, pp. 380-87, 2003.
56.Henderson BW, Dougherty TJ, “How does photodynamic therapy work?” Photochem. Photobiol, vol. 55, no. 1, pp. 145–57, 1992.
57.Morton KA, Kushner JP, Straka JG, Burnham BF, “Biosynthesis of 5-Aminolevulinic Acid and Heme from 4,5-Dioxovalerate in the Rat,” J Clin Invest, vol. 71, pp. 1744-49, 1983.
58.Moan J, Van Den Akke JTHM, Juzenas P, Ma LW, Angell-Peterse E, Gadmar ØB, Iani V, “On the basis for tumor selectivity in the 5-aminolevulinic acid-induced synthesis of protoporphyrin IX,” J Porphyr Phthalocyanines, vol. 5, no. 2, pp. 170-6, 2001.
59.Schauder A, Feuerstein T, Malik Z, “The centrality of PBGD expression levels on ALA-PDT efficacy,” Photochem Photobiol Sci, vol. 10, pp. 1310-17, 2011.
60.Gibson SL, Cupriks DJ, Havens JJ, Nguyen ML, Hilf R, “A regulatory role for porphobilinogen deaminase (PBGD) in 5-aminolaevulinic acid (5-ALA)-induced photosensitization?” Br J Cancer, vol. 77, no. 2, pp. 235-43, 1998.
61.Smith A. “Mechanisms of toxicity of photoactivated artificial porphyrins. Role of porphyrin-protein interactions,” Ann N YAcad Sci, vol. 514, pp. 309-12, 1987.
62.Donnelly RF, Ma LW, Juzenas P, Iani V, McCarron PA, Woolfson AD, Moan J. “Topical bioadhesive patch systems enhance selectivity of protoporphyrin IX accumulation,” Photochem Photobiol, vol. 82, no.3, pp. 670-5, 2006.
63.Hinnen P, de Rooij FW, van Velthuysen ML, Edixhoven A, van Hillegersberg R, Tilanus HW, Wilson JH, Siersema PD, “Biochemical basis of 5-aminolaevulinic acid-induced protoporphyrin IX accumulation: a study in patients with (pre)malignant lesions of the oesophagus,” Br J Cancer, vol. 78, no. 5, pp. 679-82, 1998.
64.Höckel M, Vaupel P, “Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects,” J. Natl. Cancer Inst, vol. 93, pp. 266-76, 2001.
65.Sitnik TM, Hampton JA, Henderson BW, “Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate,” Br J Cancer, vol. 77, no. 9, pp. 1386-94, 1998.
66.Henderson BW, Busch TM, Vaughan LA, Frawley NP, Babich D, Sosa TA, Zollo JD, Dee AS, Cooper MT, Bellnier DA, Greco WR, Oseroff AR, “Photofrin photodynamic therapy can significantly deplete or preserve oxygenation in human basal cell carcinomas during treatment, depending on fluence rate,” Cancer Res, vol. 60, no. 3, pp. 525-9, 2000.
67.Curnow A, Haller JC, Bown SG, “Oxygen monitoring during 5-aminolaevulinic acid induced photodynamic therapy in normal rat colon. Comparison of continuous and fractionated light regimes,” J Photochem Photobiol B, vol. 58, no. 2-3, pp. 149–55, 2000.
68.Gatenby RA, Kessler HB, Rosenblum JS, Coia LR, Moldofsky PJ, Hartz WH, Broder GJ, “Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy,” Int J Radiat Oncol Biol Phys, vol. 14, pp.831–8, 1988.
69.Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P, “Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix,” Cancer Res, vol. 56, pp. 4509–15, 1996.
70.Foster TH, Murant RS, Bryant RG, Knox RS, Gibson SL, Hilf R. “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat Res, vol. 126, no. 3, pp. 296-303, 1991.
71.Castano AP, Mroz P, Hamblin MR, “Photodynamic therapy and anti-tumour immunity,” Nat Rev Cancer, vol. 6, no. 7, pp. 535-45, 2006.
72.Korbelik M, “Induction of tumor immunity by photodynamic therapy,” J. Clin. Laser Med. Surg, vol. 14, no. 5, pp. 329–334, 1996.
73.van Duijnhoven FH, Aalbers RI, Rovers JP, Terpstra OT, Kuppen PJ, “The immunological consequences of photodynamic treatment of cancer, a literature review,” Immunobiology, vol. 207, no. 2, pp. 105–113, 2003.
74.Frost GA, Halliday GM, Damian DL, “Photodynamic therapy–induced immunosuppression in humans is prevented by reducing the rate of light delivery,” J Invest Dermatol, vol. 131, no. 4, pp. 962-8, 2011.
75.Motta S, Monti M, “Photodynamic therapy-a promising treatment option for autoimmune skin ulcers: a case report,” Photochem Photobiol Sci, vol. 6, no. 11, pp. 1150-1, 2007.
76.Trauner KB, Hasan T, “Photodynamic treatment of rheumatoid and inflammatory arthritis,” Photochem Photobiol, vol. 64, no. 5, pp. 740–50, 1996.
77.Neupane J, Ghimire S, Shakya S, Chaudhary L, Shrivastava VP, “Effect of light emitting diodes in the photodynamic therapy of rheumatoid arthritis,” Photodiagnosis Photodyn Ther, vol. 7, no 1, pp. 44-9,. 2010.
78.Mroz P, Hamblin MR, “The immunosuppressive side of PDT,” Photochem Photobiol Sci, vol. 10, no. 5, pp. 751-8, 2011.
79.Coombs RR, “Cytomegalic inclusion-body disease associated with acquired autoimmune haemolytic anaemia,” Br Med J, vol. 2, no. 5607, pp. 743-4, 1968.
80.Honda T, Miyachi Y, Kabashima K, “The role of regulatory T cells in contact hypersensitivity,” Recent Pat Inflamm Allergy Drug Discov, vol. 4, no. 2, pp. 85-9, 2010.
81.Simkin GO, King DE, Levy JG, Chan AH, Hunt DW, “Inhibition of contact hypersensitivity with different analogs of benzoporphyrin derivative,” Immunopharmacology, vol. 37, no. 2-3, pp.221-30, 1997.
82.Hayami J, Okamoto H, Sugihara A, Horio T, “Immunosuppressive effects of photodynamic therapy by topical aminolevulinic acid,” J Dermatol, vol. 34, no. 5, pp. 320-7, 2007.
83.Matthews YJ, Damian DL, “Topical photodynamic therapy is immunosuppressive in humans,” Br J Dermatol, vol. 162, pp. 637-41, 2010.
84.Fritsch C, Lehmann P, Stahl W, Schulte KW, Blohm E, Lang K, Sies H, Ruzicka T, “Optimum porphyrin accumulation in epithelial skin tumours and psoriatic lesions after topical application of delta-aminolaevulinic acid,” Br J Cancer, vol. 79, no. 9-10, pp. 1603-8, 1999.
85.Uekusa M, “Fluorescence analysis of oral squamous cell carcinoma with 5-aminolevulinic acid labeling,” Kokubyo Gakkai Zasshi, vol. 76, no. 1, pp. 31-6, 2009.
86.Stringer MR, Collins P, Robinson DJ, Stables GI, Sheehan-Dare RA, “The accumulation of protoporphyrin IX in plaque psoriasis after topical application of 5-aminolevulinic acid indicates a potential for superficial photodynamic therapy,” J Invest Dermatol, vol. 107, no. 1, pp. 76-81, 1996.
87.Morton CA, MacKie RM, Whitehurst C, Moore JV, McColl JH, “Photodynamic therapy for basal cell carcinoma: effect of tumor thickness and duration of photosensitizer application on response,” Arch Dermatol, vol. 134, no. 2, pp. 248-9, 1998.
88.van den Akker JT, Boot K, Vernon DI, Brown SB, Groenendijk L, van Rhoon GC, Sterenborg HJ, “Effect of elevating the skin temperature during topical ALA application on in vitro ALA penetration through mouse skin and in vivo PpIX production in human skin,” Photochem Photobiol Sci, vol. 3, no. 3, pp. 263-7, 2004.
89.Casas A, Fukuda H, Di Venosa G, Batlle AM, “The influence of the vehicle on the synthesis of porphyrins after topical application of 5-aminolaevulinic acid. Implications in cutaneous photodynamic sensitization,” Br J Dermatol, vol. 143, no. 3, pp. 564-72, 2000.
90.Donnelly RF, McCarron PA, Lightowler JM, Woolfson AD, “Bioadhesive patch-based delivery of 5-aminolevulinic acid to the nail for photodynamic therapy of onychomycosis,” J Control Release, vol. 103, no. 2, pp. 381-92, 2005.
91.McCarron PA, Donnelly RF, Zawislak A, Woolfson AD, Price JH, McClelland R, “Evaluation of a water-soluble bioadhesive patch for photodynamic therapy of vulval lesions,” Int J Pharm, vol. 293, no. 1-2, pp. 11-23, 2005.
92.De Rosa FS, Marchetti JM, Thomazini JA, Tedesco AC, Bentley MV, “A vehicle for photodynamic therapy of skin cancer: influence of dimethylsulphoxide on 5-aminolevulinic acid in vitro cutaneous permeation and in vivo protoporphyrin IX accumulation determined by confocal microscopy,” J Control Release, vol. 65, no. 3, pp. 359-66, 2000.
93.Malik Z, Kostenich G, Roitman L, Ehrenberg B, Orenstein A, “Topical application of 5-aminolevulinic acid, DMSO and EDTA: protoporphyrin IX accumulation in skin and tumours of mice,” J Photochem Photobiol B, vol. 28, no. 3, pp. 213-8, 1995.
94.Finlan LE, Kernohan NM, Thomson G, Beattie PE, Hupp TR, Ibbotson SH, “Differential effects of 5-aminolaevulinic acid photodynamic therapy and psoralen + ultraviolet A therapy on p53 phosphorylation in normal human skin in vivo,” Br J Dermatol, vol. 153, no. 5, pp. 1001-10, 2005.
95.Peng Q, Moan J, Warloe T, Iani V, Steen HB, Bjørseth A, Nesland JM, “Build-up of esterified aminolevulinic-acid-derivative-induced porphyrin fluorescence in normal mouse skin,” J Photochem Photobiol B, vol. 34, no. 1, pp. 95-6, 1996.
96.Fritsch C, Homey B, Stahl W, Lehmann P, Ruzicka T, Sies H, “Preferential relative porphyrin enrichment in solar keratoses upon topical application of delta-aminolevulinic acid methylester,” Photochem Photobiol, vol. 68, no. 2, pp. 218-21, 1998.
97.Moan J, Ma LW, Iani V, “On the pharmacokinetics of topically applied 5-aminolevulinic acid and two of its esters,” Int J Cancer, vol. 92, no. 1, pp. 139-43, 2001.
98.Uehlinger P, Zellweger M, Wagnières G, Juillerat-Jeanneret L, van den Bergh H, Lange N, “5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells,” J Photochem Photobiol B, vol. 54, no. 1, pp. 72-80, 2000.
99.Chen HC, “Design of a 5-Aminolevulinic Acid Delivery System for Photodynamic Diagnosis of Oral Premalignant and Malignant Lesions,” Graduate Institute of Biomedical Materials, 2002.
100.Rheinwald JG, Beckett MA, “Tumorigenic keratinocyte lines requiring anchorage and fibroblast support cultures from human squamous cell carcinomas,” Cancer Res, vol. 41, no. 5, pp. 1657-63, 1981.
101.Chiang CP, Huang WT, Lee JW, Hsu YC, “Effective treatment of DMBA-induced hamster buccal pouch precancerous lesions by topical photosan-mediated photodynamic therapy,” Head Neck, vol. 34, no. 4, pp. 505-12, 2012.
102.Iinuma S, Schomacker KT, Wagnieres G, Rajadhyaksha M, Bamberg M, Momma T, Hasan T, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res, vol. 59, no. 24, pp. 6164-70, 1999.
103.Naghavi N, Miranbaygi MH, Sazgarnia A, “Simulation of fractionated and continuous irradiation in photodynamic therapy: study the differences between photobleaching and singlet oxygen dose deposition,” Australas Phys Eng Sci Med, vol. 34, no. 2, pp. 203-11, 2011.
104.Babilas P, Schacht V, Liebsch G, Wolfbeis OS, Landthaler M, Szeimies RM, Abels C, “Effects of light fractionation and different fluence rates on photodynamic therapy with 5-aminolaevulinic acid in vivo,” Br J Cancer, vol. 88, no. 9, pp. 1462-9, 2003.
105.Sitnik TM, Hampton JA, Henderson BW, “Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate,” Br J Cancer, vol. 77, no. 9, pp. 1386-94, 1998.
106.Veenhuizen RB, Stewart FA, “The importance of fluence rate in photodynamic therapy: is there a parallel with ionizing radiation dose-rate effects?” Radiother Oncol, vol. 37, no. 2, pp. 131-5, 1995.
107.Bertout JA, Patel SA, Simon MC, “The impact of O2 availability on human cancer,” Nat Rev Cancer, vol. 8, no. 12, pp. 967-75, 2008.
108.van Ede AE, Laan RF, Blom HJ, De Abreu RA, van de Putte LB, “Methotrexate in rheumatoid arthritis: an update with focus on mechanisms involved in toxicity,” Semin Arthritis Rheum, vol. 27, no.5, pp. 277-92, 1998.
109.Bikle DD, “Vitamin D: production, metabolism and mechanisms of action,” 2009. Available from: http:// www.endotext.org/parathyroid/parathyroid3/parathyroidframe3.htm.
110.Gocek E, Studzinski GP, “Vitamin D and differentiation in cancer,” Crit Rev Clin Lab Sci, vol. 46, no. 4, pp. 190-209, 2009.
111.Failla V, Wauters O, Caucanas M, Nikkels-Tassoudji N, Nikkels AF, “Photodynamic therapy for multi-resistant cutaneous Langerhans cell histiocytosis,” Rare Tumors, vol. 2, pp. 94-6, 2010.
112.Evangelou G, Farrar MD, White RD, Sorefan NB, Wright KP, McLean K, Andrew S, Watson RE, Rhodes LE, “Topical ALA-PDT produces an inflammatory infiltrate but reduces Langerhans cells in healthy human skin in vivo,” Br J Dermatol, vol. 165, no. 3, pp. 513-9, 2011.
113.Bergstresser PR, Toews GB, Streilein JW, “Natural and perturbed distributions of
Langerhans cells: responses to ultraviolet light, heterotopicskin grafting, and dinitrofluorobenzene sensitization,” J Invest Dermatol, vol. 75, pp. 73–77, 1980.
114.Akita Y, Kozaki K, Takeo T, Ohmura M, Nakagawa A, Yanagishita T, Kazaoka Y, Nozaki T, Yokoo K, Shinohara M, Watanabe D, Kawai T, Yamada S, Tamada Y, Ohura K, Matsumoto Y, “Enhancement of the photodynamic effects on human oral squamous cell carcinoma cell lines by treatment with calcipotriol,” J Dermatol Sci, vol. 2, no. 1, pp. S57-64, 2006.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top