跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 22:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉政瓛
研究生(外文):Jheng-Huan Yeh
論文名稱:脫鎂葉綠素 a 在 4T1 腫瘤小鼠之光動力治療及藥物動力學研究
論文名稱(外文):The Studies of Photodynamic Activities and Pharmacokinetics of Pheophytin a in 4T1 Tumor-bearing Mice
指導教授:李文婷李文婷引用關係
指導教授(外文):Wen-Tyng Li
學位類別:碩士
校院名稱:中原大學
系所名稱:生物醫學工程研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:105
中文關鍵詞:生物分佈脫鎂葉綠素小鼠乳腺癌光動力療法
外文關鍵詞:Photodynamic therapyMurine mammary gland adenocarcinomaPheophytinBiodistribution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:283
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光動力療法 (Photodynamic therapy, PDT) 係使光感藥物選擇性的累積於特定組織或腫瘤細胞,施與特定波長之光能激發光感藥物使之發生光化學反應,產生具有細胞毒性的活性氧分子,對腫瘤局部造成損傷,以達到癌症治療的目的。本研究目的在探討脫鎂葉綠素搭配 660 nm 發光二極體照射對小鼠乳腺癌 4T1 細胞及 4T1 腫瘤Balb/c小鼠之 PDT 療效。首先觀察到脫鎂葉綠素 a 與 4T1 細胞共培養 2 小時,細胞內累積濃度可達最高點;接著發現隨著藥物濃度提升、共培養時間增加及光照能量增強,PDT 對 4T1 細胞的致死率也隨之增加。在共培養 2 小時,光照 2.55 J/cm2,脫鎂葉綠素 a 的半致死劑量 (LD50) 為 459.3 ± 28.9 ng/mL;光照 5.10 J/cm2,LD50 降為 320.2 ± 23.3 ng/mL。同樣的參數下,脫鎂葉綠素 b 的 LD50 分別為 303.8 ± 25.1 及 226.7 ± 5.4 ng/mL。TUNEL 分析可發現隨著共培養時間由 2 小時增長到 6 小時,凋亡細胞比例亦隨之增加。對小鼠進行劑量為 87.25 mg/kg 的急毒性測試,結果發現脫鎂葉綠素 a 注射 14 天內不會造成小鼠體重下降,主要器官的組織切片也無明顯損傷;同時,連續14天注射 2 mg/kg 脫鎂葉綠素 a 對腫瘤小鼠也無亞急毒性。進一步觀察尾靜脈注射脫鎂葉綠素 a在正常小鼠與 4T1 腫瘤小鼠體內的生物分佈狀態,發現注射 4 小時後,在正常鼠體內,以肝臟所累積的濃度最高;而在 4T1 腫瘤小鼠,則以腫瘤所累積的濃度最高。每天注射 2 mg/kg 脫鎂葉綠素 a,以10.2 J/cm2 光照進行 PDT 可顯著抑制4T1 腫瘤小鼠腫瘤組織的生長;組織染色分析驗證 PDT 組出現較多的凋亡細胞及腫瘤組織損傷。綜上所述,脫鎂葉綠素 a 能選擇性的累積在腫瘤組織,並對小鼠乳腺癌 4T1 細胞具有光敏毒性,結合光照能抑制乳癌小鼠腫瘤組織的生長。
Photodynamic therapy (PDT) is an alternative modality for cancer treatment. Tumor site is damaged by cytototoxic reactive oxygen species (ROS) produced by the activated photosensitizer selectively accumulated in cancerous cells and specific tissues after light irradiation with specific excitation wavelength. The aim of this study was to the efficacies of pheophytin mediated PDT combined with 660 nm light emitting diodes (LEDs) against murine mammary gland adenocarcinoma 4T1 cells and 4T1 tumor bearing Balb/c mice. First of all, the maximal concentration of pheophytin a in 4T1 cells was found 2 hrs after incubation with the photosensitizer. Cell viability decreased as the photosensitizer concentration, incubation time and light dose increased. When incubated with pheophytin a for 2 hrs, half lethal dose (LD50) for 4T1 cells was 459.3 ± 28.9 ng/mL with 2.55 J/cm2 irradiation and 320.2 ± 23.3 ng/mL with 5.10 J/cm2 irradiation. For pheophytin b, LD50 was 303.8 ± 25.1 and 226.7 ± 5.4 ng/mL with 2.55 and 5.10 J/cm2 irradiation, respectively. TUNEL assay revealed that the percentage of apoptotic cells increased as the increase of incubation time with pheophytin a. Acute toxicity was studied in mice with single dose injection of 87.25 mg/kg pheophytin a. It was found that bodyweight of mice did not decline and no major organs damage was observed in tissue section within 14 days post photosensitizer administration. No subacute toxicity was seen in 4T1 tumor bearing mice after daily injection of 2 mg/kg pheophytin a. Biodistribution of pheophytin a in normal and 4T1 tumor bearing mice were analyzed after intravenous injection through the tail vein. At 4 hr post-injection, pheophytin a accumulated most in the liver of the normal mice, whereas it accumulated most at tumor site of tumor bearing mice. Tumor growth was inhibited in 4T1 tumor-bearing mice with daily intravenous injection of pheophytin a at the concentration of 2 mg/kg and light dose of 10.2 J/cm2. Histochemical staining further showed that more apoptotic cells and more tumor tissue damage post-PDT. To sum up, this study demonstrated that pheophytin a is selectively accumulated in tumor tissue, possesses phototoxicity against urine mammary gland adenocarcinoma 4T1 cells, and effectively inhibits tumor growth when combined with red light irradiation.
目錄
摘要 I
Abstract II
目錄 V
圖目錄 VIII
表目錄 IX
縮寫表 X
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1. 光動力療法之歷史 3
1.2.2. 光動力療法於乳癌治療和葉綠素衍生物之應用 5
1.2.3. 葉綠素衍生物於光動力療法之應用 8
1.3 研究動機及目的 12
第二章 理論基礎 13
2.1 光動力療法之三大要素 13
2.1.1. 光 13
2.1.2. 氧氣 14
2.1.3. 光感藥物 14
2.2 光動力療法的標靶特性 16
2.2.1. 光感藥物對腫瘤組織的選擇性 16
2.2.2. 治療部位的光照操作 17
2.3. 光動力治療的藥物動力學 17
2.3.1. 藥物吸收 18
2.3.2. 藥物分佈 18
2.3.3. 藥物代謝 18
2.3.4. 藥物排除 19
2.4. 光動力治療造成細胞死亡機制 19
第三章 材料與方法 21
3.1. 研究架構 21
3.2. 小鼠乳腺癌細胞培養 23
3.2.1. 細胞培養藥物配製 23
3.2.2. 細胞培養 24
3.3. 光動力治療-葉綠素衍生物 26
3.3.1. 葉綠素衍生物藥物配製 27
3.3.2. 光源硬體設備 27
3.3.3. PDT 之細胞實驗方法 29
3.3.4. PDT 之動物實驗方法 29
3.4. 細胞存活率分析 30
3.4.1. MTT assay 之藥物配製 30
3.4.2. 細胞存活率之實驗步驟 30
3.5. 細胞對脫鎂葉綠素 a 的藥物攝取量試驗 30
3.6. 偵測 DNA 片段化之細胞實驗 31
3.7. 實驗動物來源及飼養 34
3.8. 脫鎂葉綠素 a 之動物體內毒性測試 34
3.8.1. 急性毒性測試 34
3.9. 小鼠乳癌腫瘤模型 35
3.10. 組織切片及染色 35
3.10.1. 組織處理 36
3.10.2. 組織脫水及包埋 36
3.10.3. 組織切片 37
3.10.4. 組織切片染色 38
3.11. 脫鎂葉綠素 a 在小鼠體內之生物分佈 39
3.12. 小鼠乳癌腫瘤模型光動力療效評估 40
3.13. 組織切片中凋亡細胞染色 41
3.14. 統計分析 42
第四章 結果 43
4.1. 脫鎂葉綠素 PDT 對 4T1 細胞之細胞存活率測試 43
4.2. 4T1 細胞對脫鎂葉綠素 a 的藥物攝取量試驗 48
4.3. 4T1 細胞在脫鎂葉綠素 a-PDT 後之DNA 片段化定量 50
4.4. 脫鎂葉綠素 a 之動物體內毒性測試 52
4.5. 小鼠乳癌腫瘤模型 53
4.6. 脫鎂葉綠素 a 在小鼠體內之生物分佈 57
4.7. 小鼠乳癌腫瘤模型光動力療效 60
4.8. 小鼠乳癌腫瘤模型光動力療效的累積藥物毒性評估 68
第五章 討論 73
5.1. 脫鎂葉綠素 a 及 b PDT 對 4T1 細胞之光毒性反應 73
5.2. 4T1 細胞及乳癌小鼠對脫鎂葉綠素 a 的攝取量 73
5.3. 脫鎂葉綠素 a 對小鼠的急毒性及累積藥物毒性評估 75
5.4. 小鼠的乳癌誘發 75
5.5. 脫鎂葉綠素 a 對乳癌小鼠的光動力療效評估 76
5.6. 脫鎂葉綠素 a 光動力治療後造成 DNA 片段化情形評估 77
第六章 結論與未來展望 78
參考文獻 80
附錄表 90

圖目錄
圖 3-1 脫鎂葉綠素-PDT 對乳癌光動力效應之研究架構 22
圖 3-2 脫鎂葉綠素 a 及 b 之化學結構式 26
圖 3-3 脫鎂葉綠素 a 之螢光光譜圖 27
圖 3-4 LED 光板實際圖 28
圖 3-5 高功率 LED 實際圖 28
圖 4-1 脫鎂葉綠素 a-PDT 對 4T1 細胞之細胞存活率影響 46
圖 4-2 脫鎂葉綠素 b-PDT 對 4T1 細胞之細胞存活率影響 47
圖 4-3 脫鎂葉綠素 a 濃度與螢光之標準曲線圖 48
圖 4-4 4T1 細胞在不同時間點對脫鎂葉綠素 a 的攝取量 49
圖 4-5 4T1 細胞經脫鎂葉綠素 a-PDT 後之 DNA 片段化情形 51
圖 4-6 脫鎂葉綠素 a 注射後之小鼠體重變化趨勢 52
圖 4-7 成功誘發之乳癌腫瘤小鼠外觀及體溫變化 54
圖 4-8 正常小鼠之皮下組織切片圖 55
圖 4-9 4T1 腫瘤小鼠之皮下腫瘤切片圖 56
圖 4-10 脫鎂葉綠素 a 於正常小鼠及腫瘤小鼠體內之生物分佈狀態 59
圖 4-11 腫瘤小鼠體重變化 61
圖 4-12 小鼠腫瘤體積生長變化 63
圖 4-13 腫瘤組織經 PDT 後之細胞凋亡情形 67
圖 4-14 腫瘤小鼠肝臟組織染色切片圖 70
圖 4-15 腫瘤小鼠腎臟組織染色切片圖 72

表目錄
表 3-1 小鼠乳腺癌細胞株資料表 24
表 3-2 Cell death detection ELISAPLUS 試劑藥品表 32
表 3-3 Cell death detection ELISAPLUS 試劑藥品配置方式 32
表 3-4 In situ cell death detection kit, POD 試劑藥品表 41
表 4-1 脫鎂葉綠素 PDT 對 4T1 細胞之半致死劑量 45
參考文獻
[1]Jemal A, Siegel R, Xu J, and Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin. 60(5): 277-300.
[2]行政院衛生署 (2006) http://www.doh.gov.tw/CHT2006/index_populace.aspx
[3]Jang S H, Wientjes M G, Lu D, and Au J L (2003) Drug delivery and transport to solid tumors. Pharm Res. 20(9): 1337-1350.
[4]Schuitmaker J J, Baas P, van Leengoed H L, van der Meulen F W, Star W M, and van Zandwijk N (1996) Photodynamic therapy: a promising new modality for the treatment of cancer. J Photochem Photobiol B. 34(1): 3-12.
[5]Whitacre C M, Satoh T H, Xue L, Gordon N H, and Oleinick N L (2002) Photodynamic therapy of human breast cancer xenografts lacking caspase-3. Cancer Lett. 179(1): 43-49.
[6]Oleinick N L, Morris R L, and Belichenko I (2002) The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci. 1(1): 1-21.
[7]Dolmans D E, Fukumura D, and Jain R K (2003) Photodynamic therapy for cancer. Nat Rev Cancer. 3(5): 380-387.
[8]Cowled P A, Mackenzie L, and Forbes I J (1985) Potentiation of photodynamic therapy with haematoporphyrin derivatives by glucocorticoids. Cancer Lett. 29(1): 107-114.
[9]White L, Gomer C J, Doiron D R, and Szirth B C (1988) Ineffective photodynamic therapy (PDT) in a poorly vascularized xenograft model. Br J Cancer. 57(5): 455-458.
[10]Ris H B, Altermatt H J, Nachbur B, Stewart J C, Wang Q, Lim C K, Bonnett R, and Althaus U (1993) Effect of drug-light interval on photodynamic therapy with meta-tetrahydroxyphenylchlorin in malignant mesothelioma. Int J Cancer. 53(1): 141-146.
[11]Garrier J, Bressenot A, Grafe S, Marchal S, Mitra S, Foster T H, Guillemin F, and Bezdetnaya L (2010) Compartmental targeting for mTHPC-based photodynamic treatment in vivo: Correlation of efficiency, pharmacokinetics, and regional distribution of apoptosis. Int J Radiat Oncol Biol Phys. 78(2): 563-571.
[12]Lee Y and Baron E D (2011) Photodynamic therapy: current evidence and applications in dermatology. Semin Cutan Med Surg. 30(4): 199-209.
[13]Souza C S, Felicio L B, Ferreira J, Kurachi C, Bentley M V, Tedesco A C, and Bagnato V S (2009) Long-term follow-up of topical 5-aminolaevulinic acid photodynamic therapy diode laser single session for non-melanoma skin cancer. Photodiagnosis Photodyn Ther. 6(3-4): 207-213.
[14]Bozkulak O, Yamaci R F, Tabakoglu O, and Gulsoy M (2009) Photo-toxic effects of 809-nm diode laser and indocyanine green on MDA-MB231 breast cancer cells. Photodiagnosis Photodyn Ther. 6(2): 117-121.
[15]Li W T (2009) Nanotechology-based strategies to enhance the efficacy of photodynamic therapy for cancers. Curr Drug Metab. 10(8): 851-860.
[16]Fujishima I, Sakai T, Tanaka T, Ryu H, Uemura K, Fujishima Y, Horiuchi K, Daikuzono N, and Sekiguchi Y (1991) Photodynamic therapy using pheophorbide a and Nd:YAG laser. Neurol Med Chir (Tokyo). 31(5): 257-263.
[17]光動力生醫應用網 (2011) http://www.pdt-ppb.com.tw/front/bin/home.phtml
[18]Li B, Chu X, Gao M, and Li W (2010) Apoptotic mechanism of MCF-7 breast cells in vivo and in vitro induced by photodynamic therapy with C-phycocyanin. Acta Biochim Biophys Sin (Shanghai). 42(1): 80-89.
[19]Duanmu J, Cheng J, Xu J, Booth C J, and Hu Z (2011) Effective treatment of chemoresistant breast cancer in vitro and in vivo by a factor VII-targeted photodynamic therapy. Br J Cancer. 104(9): 1401-1409.
[20]謝倪妮 (2010) 脫鎂葉綠素光動力治療誘發乳癌細胞 MCF-7 死亡機制探討. 中原大學生物醫學工程研究所碩士論文.
[21]張芮蓁 (2010) 脫鎂葉綠素光動力治療誘發抗藥性乳癌細胞 MCF-7/ADR 死亡機制探討. 中原大學生物醫學工程研究所碩士論文.
[22]Hayashi N, Amemiya R, Kawauchi T, Iimura I, Oho K, and Hayata Y (1980) Bronchoscopic classification of lung cancer. Nippon Rinsho. 38(7): 2603-2611.
[23]McGarrity T J, Peiffer L P, Granville D J, Carthy C M, Levy J G, Khandelwal M, and Hunt D W (2001) Apoptosis associated with esophageal adenocarcinoma: influence of photodynamic therapy. Cancer Lett. 163(1): 33-41.
[24]Dougherty T J (1987) Photosensitizers: therapy and detection of malignant tumors. Photochem Photobiol. 45(6): 879-889.
[25]Delaey E M, Vantieghem A M, Derycke A, Agostinis P M, and de Witte P A (2001) In vitro photobiological evaluation of Rhodac, a new rhodacyanine photosensitizer. Photochem Photobiol. 74(2): 331-338.
[26]Teiten M H, Even P, Burgos P, Frochot C, Aubert S, Carre M C, Bolotine L, Merlin J L, Guillemin F, and Viriot M L (2002) Specific fluorescent tracers. Imaging and applications for photodynamic therapy. C R Biol. 325(4): 487-493.
[27]Teiten M H, Marchal S, D'Hallewin M A, Guillemin F, and Bezdetnaya L (2003) Primary photodamage sites and mitochondrial events after Foscan photosensitization of MCF-7 human breast cancer cells. Photochem Photobiol. 78(1): 9-14.
[28]Crescenzi E, Varriale L, Iovino M, Chiaviello A, Veneziani B M, and Palumbo G (2004) Photodynamic therapy with indocyanine green complements and enhances low-dose cisplatin cytotoxicity in MCF-7 breast cancer cells. Mol Cancer Ther. 3(5): 537-544.
[29]Tsai T, Hong R L, Tsai J C, Lou P J, Ling I F, and Chen C T (2004) Effect of 5-aminolevulinic acid-mediated photodynamic therapy on MCF-7 and MCF-7/ADR cells. Lasers Surg Med. 34(1): 62-72.
[30]Tsai T, Ji H T, Chiang P C, Chou R H, Chang W S, and Chen C T (2009) ALA-PDT results in phenotypic changes and decreased cellular invasion in surviving cancer cells. Lasers Surg Med. 41(4): 305-315.
[31]Hoi S W, Wong H M, Chan J Y, Yue G G, Tse G M, Law B K, Fong W P, and Fung K P (2012) Photodynamic therapy of pheophorbide a inhibits the proliferation of human breast tumour via both caspase-dependent and -independent apoptotic pathways in in vitro and in vivo models. Phytother Res. 26:734-742.
[32]Dolmans D E, Kadambi A, Hill J S, Flores K R, Gerber J N, Walker J P, Borel Rinkes I H, Jain R K, and Fukumura D (2002) Targeting tumor vasculature and cancer cells in orthotopic breast tumor by fractionated photosensitizer dosing photodynamic therapy. Cancer Res. 62(15): 4289-4294.
[33]Burch S, Bisland S K, Bogaards A, Yee A J, Whyne C M, Finkelstein J A, and Wilson B C (2005) Photodynamic therapy for the treatment of vertebral metastases in a rat model of human breast carcinoma. J Orthop Res. 23(5): 995-1003.
[34]Akens M K, Yee A J, Wilson B C, Burch S, Johnson C L, Lilge L, and Bisland S K (2007) Photodynamic therapy of vertebral metastases: evaluating tumor-to-neural tissue uptake of BPD-MA and ALA-PpIX in a murine model of metastatic human breast carcinoma. Photochem Photobiol. 83(5): 1034-1039.
[35]D'Hallewin M A, Kochetkov D, Viry-Babel Y, Leroux A, Werkmeister E, Dumas D, Grafe S, Zorin V, Guillemin F, and Bezdetnaya L (2008) Photodynamic therapy with intratumoral administration of lipid-based mTHPC in a model of breast cancer recurrence. Lasers Surg Med. 40(8): 543-549.
[36]Hu Z, Rao B, Chen S, and Duanmu J (2010) Targeting tissue factor on tumour cells and angiogenic vascular endothelial cells by factor VII-targeted verteporfin photodynamic therapy for breast cancer in vitro and in vivo in mice. BMC Cancer. 10:235.
[37]Wyss P, Schwarz V, Dobler-Girdziunaite D, Hornung R, Walt H, Degen A, and Fehr M (2001) Photodynamic therapy of locoregional breast cancer recurrences using a chlorin-type photosensitizer. Int J Cancer. 93(5): 720-724.
[38]Allison R, Mang T, Hewson G, Snider W, and Dougherty D (2001) Photodynamic therapy for chest wall progression from breast carcinoma is an underutilized treatment modality. Cancer. 91(1): 1-8.
[39]Cuenca R E, Allison R R, Sibata C, and Downie G H (2004) Breast cancer with chest wall progression: treatment with photodynamic therapy. Ann Surg Oncol. 11(3): 322-327.
[40]Nilsson H, Johansson J, Svanberg K, Svanberg S, Jori G, Reddi E, Segalla A, Gust D, Moore A L, and Moore T A (1997) Laser-induced fluorescence studies of the biodistribution of carotenoporphyrins in mice. Br J Cancer. 76(3): 355-364.
[41]Chernomorsky S, Segelman A, and Poretz R D (1999) Effect of dietary chlorophyll derivatives on mutagenesis and tumor cell growth. Teratog Carcinog Mutagen. 19(5): 313-322.
[42]Lee W Y, Lim D S, Ko S H, Park Y J, Ryu K S, Ahn M Y, Kim Y R, Lee D W, and Cho C W (2004) Photoactivation of pheophorbide a induces a mitochondrial-mediated apoptosis in Jurkat leukaemia cells. J Photochem Photobiol B. 75(3): 119-126.
[43]陳瑩縈 (2005) 仿葉綠素衍生物對癌細胞之光敏毒性研究. 中原大學生物醫學工程研究所碩士論文.
[44]Tian Y, Leung W, Yue K, and Mak N (2006) Cell death induced by MPPa-PDT in prostate carcinoma in vitro and in vivo. Biochem Biophys Res Commun. 348(2): 413-420.
[45]Li W T, Tsao H W, Chen Y Y, Cheng S W, and Hsu Y C (2007) A study on the photodynamic properties of chlorophyll derivatives using human hepatocellular carcinoma cells. Photochem Photobiol Sci. 6(12): 1341-1348.
[46]Tang P M, Chan J Y, Au S W, Kong S K, Tsui S K, Waye M M, Mak T C, Fong W P, and Fung K P (2006) Pheophorbide a, an active compound isolated from Scutellaria barbata, possesses photodynamic activities by inducing apoptosis in human hepatocellular carcinoma. Cancer Biol Ther. 5(9): 1111-1116.
[47]Szczygiel M, Urbanska K, Jurecka P, Stawoska I, Stochel G, and Fiedor L (2008) Central metal determines pharmacokinetics of chlorophyll-derived xenobiotics. J Med Chem. 51(15): 4412-4418.
[48]Busch T M, Cengel K A, and Finlay J C (2009) Pheophorbide a as a photosensitizer in photodynamic therapy: In vivo considerations. Cancer Biol Ther. 8(6): 540-542.
[49]Tang P M, Zhang D M, Xuan N H, Tsui S K, Waye M M, Kong S K, Fong W P, and Fung K P (2009) Photodynamic therapy inhibits P-glycoprotein mediated multidrug resistance via JNK activation in human hepatocellular carcinoma using the photosensitizer pheophorbide a. Mol Cancer. 8:56.
[50]Bui-Xuan N H, Tang P M, Wong C K, and Fung K P (2010) Photo-activated pheophorbide-a, an active component of Scutellaria barbata, enhances apoptosis via the suppression of ERK-mediated autophagy in the estrogen receptor-negative human breast adenocarcinoma cells MDA-MB-231. J Ethnopharmacol. 131(1): 95-103.
[51]曹心薇 (2007) 葉綠素衍生物光動力治療誘發人類肝癌 Huh-7 細胞死亡之機制探討. 中原大學生物醫學工程研究所碩士論文.
[52]施炎輝 (2007) 葉綠素衍生物光動力治療誘發人類舌癌 SCC-4 細胞死亡之機制探討. 中原大學生物醫學工程研究所碩士論文.
[53]陳怡君 (2008) 葉綠素衍生物光動力治療誘發人類皮膚癌 A431 細胞死亡之機制探討. 中原大學生物醫學工程研究所碩士論文.
[54]Seitz G, Krause R, Fuchs J, Heitmann H, Armeanu S, Ruck P, and Warmann S W (2008) In vitro photodynamic therapy in pediatric epithelial liver tumors promoted by hypericin. Oncol Rep. 20(5): 1277-1282.
[55]Robertson C A, Evans D H, and Abrahamse H (2009) Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B. 96(1): 1-8.
[56]Mang T,(2004) Lasers and light sources for PDT: past, present and future. Photodiagnosis and Photodynamic Therapy type of Article, 1: 43-48.
[57]Starkey J R, Rebane A K, Drobizhev M A, Meng F, Gong A, Elliott A, McInnerney K, and Spangler C W (2008) New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse. Clin Cancer Res. 14(20): 6564-6573.
[58]Kolarova H, Nevrelova P, Tomankova K, Kolar P, Bajgar R, and Mosinger J (2008) Production of reactive oxygen species after photodynamic therapy by porphyrin sensitizers. Gen Physiol Biophys. 27(2): 101-105.
[59]Nevrelova P, Kolarova H, Bajgar R, Macecek J, Tomecka M, Tomankova K, and Strnad M (2005) Measurement of reactive oxygen species after photodynamic therapy in vitro. Scr Med. 78(5): 281-290.
[60]Bellnier D A, Greco W R, Loewen G M, Nava H, Oseroff A R, and Dougherty T J (2006) Clinical pharmacokinetics of the PDT photosensitizers porfimer sodium (Photofrin®), 2-[1-hexyloxyethyl] -2-devinyl pyropheophorbide-a (Photochlor) and 5-ALA-induced protoporphyrin IX. Lasers Surg Med. 38(5): 439-444.
[61]You Y, Gibson S L, and Detty M R (2006) Phototoxicity of a core-modified porphyrin and induction of apoptosis. J Photochem Photobiol B. 85(3): 155-162.
[62]Chen Z, Zhou S, Chen J, Deng Y, Luo Z, Chen H, Hamblin M R, and Huang M (2010) Pentalysine beta-carbonylphthalocyanine zinc: an effective tumor-targeting photosensitizer for photodynamic therapy. ChemMedChem. 5(6): 890-898.
[63]Sprick M R and Walczak H (2004) The interplay between the Bcl-2 family and death receptor-mediated apoptosis. Biochim Biophys Acta. 1644(2-3): 125-132.
[64]Lemasters J J, Qian T, He L, Kim J S, Elmore S P, Cascio W E, and Brenner D A (2002) Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal. 4(5): 769-781.
[65]Jalili A, Makowski M, Switaj T, Nowis D, Wilczynski G M, Wilczek E, Chorazy-Massalska M, Radzikowska A, Maslinski W, Bialy L, Sienko J, Sieron A, Adamek M, Basak G, Mroz P, Krasnodebski I W, Jakobisiak M, and Golab J (2004) Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells. Clin Cancer Res. 10(13): 4498-4508.
[66]Kupper H, Spiller M, and Kupper F C (2000) Photometric method for the quantification of chlorophylls and their derivatives in complex mixtures: fitting with Gauss-peak spectra. Anal Biochem. 286(2): 247-256.
[67]Deora P S, Mishra C K, Mavani P, Asha R, Shrivastava B, and Rajesh K N (2010) Effective alternative methods of LD50 help to save number of experimental animals. J. Chem. Pharm. Res. 2(6): 450-453.
[68]黃華民,徐淑媛 (2002) 組織學彩色圖譜. 合記圖書.
[69]徐國城,邱雪杉,韓秋生 (2005) 病理學彩色圖譜. 新文京開發.
[70]Bohmer R M and Morstyn G (1985) Uptake of hematoporphyrin derivative by normal and malignant cells: effect of serum, pH, temperature, and cell size. Cancer Res. 45(11 Pt 1): 5328-5334.
[71]Berns M W, Dahlman A, Johnson F M, Burns R, Sperling D, Guiltinan M, Siemens A, Walter R, Wright W, Hammer-Wilson M, and Wile A (1982) In vitro cellular effects of hematoporphyrin derivative. Cancer Res. 42(6): 2325-2329.
[72]Boer F (2003) Drug handling by the lungs. Br J Anaesth. 91(1): 50-60.
[73]Li H, Tan G, Jiang X, Qiao H, Pan S, Jiang H, Kanwar J R, and Sun X (2010) Therapeutic effects of matrine on primary and metastatic breast cancer. Am J Chin Med. 38(6): 1115-1130.
[74]Chang C J, Yu J S, and Wei F C (2008) In vitro and in vivo photosensitizing applications of Photofrin® in malignant melanoma cells. Chang Gung Med J. 31(3): 260-267.
[75]Hu Z, Rao B, Chen S, and Duanmu J (2011) Selective and effective killing of angiogenic vascular endothelial cells and cancer cells by targeting tissue factor using a factor VII-targeted photodynamic therapy for breast cancer. Breast Cancer Res Treat. 126(3): 589-600.
[76]Yang L Y, Wei Y C, Xing D, and Chen Q (2010) Increasing the efficiency of photodynamic therapy by improved light delivery and oxygen supply using an anticoagulant in a solid tumor model. Lasers Surg Med. 42(7): 671-679.
[77]Kralova J, Synytsya A, Pouckova P, Koc M, Dvorak M, and Kral V (2006) Novel porphyrin conjugates with a potent photodynamic antitumor effect: differential efficacy of mono- and bis-beta-cyclodextrin derivatives in vitro and in vivo. Photochem Photobiol. 82(2): 432-438.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top