跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/04 20:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉益廷
研究生(外文):Yi-Ting Liu
論文名稱:發光二極體光照刺激對高血糖鼠燒燙傷口之轉化生長因子β1影響
論文名稱(外文):Effects of LED Light Irradiation on the Secretion of TGF-β1 from the Burns of Hyperglycemic Rats
指導教授:吳木榮吳木榮引用關係謝瑞香
指導教授(外文):Mu-Zon WuJui-Hsiang Hsieh
學位類別:碩士
校院名稱:中原大學
系所名稱:生物醫學工程研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:85
中文關鍵詞:轉化生長因子β1發光二極體高血糖鼠
外文關鍵詞:TGF-β1light emitting diodehyperglycemic rat
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的為,探討發光二極體(Light Emitting Diode,LED)光照刺激對於高血糖鼠燙傷傷口中轉化生長因子β1(transforming growth factor - β1,TGF-β1)分泌量的影響。使用Wistar鼠做為實驗動物,隨機分成4個組別。高血糖鼠的誘導會先將老鼠禁食18小時後,採腹腔注射方式(intraperitoneal,i.p.)注射Alloxan monohydrate (80~ 100 mg/kg),於第4、8天測量血糖,兩次血糖值都大於300 mg/dL後才開始進行後續實驗。燙傷傷口製造會使用加熱至100~110℃的黃銅塊接觸背部皮膚20秒,面積大小為1×1cm2。實驗所使用的LED波長為630 nm,功率密度14 mW/cm2,照射時間280秒,總能量為4 J/cm2,兩天照光一次。評估方式採用組織學分析,以及使用ELISA量測TGF-β1的含量。根據記數的的結果發現,正常鼠經過LED光照刺激後,其巨噬細胞和纖維母細胞最大值分別在第8天和第14天出現,比未照光的正常鼠提前兩天出現。而高血糖鼠經過LED光照刺激後,其巨噬細胞最大值出現在第8天,同樣也比未照光的高血糖鼠提早2天出現。而高血糖鼠照光組的纖維母細胞最大值出現在第14天,比未照光組的第18天提前了4天。在血管生成的部分,正常鼠和高血糖鼠經過LED光照刺激後,血管的最大值都同樣提前到第14天出現,比未照光組的第16天提早了2天。而在TGF-β1檢測的結果發現,正常鼠經過LED光照刺激後對於TGF-β1的分泌沒有明顯的效果,兩組之間幾乎沒有任何的差異。而在高血糖鼠的部份,高血糖鼠傷口的TGF-β1始終維持在很高的濃度,但是經過LED光照刺激後TGF-β1濃度會在第14天以後開始減少。由以上的結果顯示,LED光照刺激可使正常鼠和高血糖鼠傷口巨噬細胞、纖維母細胞和血管生成的最大值提前出現,並且可以讓高血糖鼠傷口TGF-β1濃度降低。 因此,我們得出以下結論,LED可使正常鼠傷口癒合時間縮短至少兩天,並且可以使高血糖鼠傷口癒合末期的TGF-β1濃度降低,進而促進傷口癒合。
The aim of this study was to determine effects of LED light irradiation on the secretion of TGF-β1 from the burns of hyperglycemic rats. We used Wistar rats for our experimental animals. All rats were devided into six groups. Hypergiycemic rats were induced with a single intraperitoneal dose of alloxan monohydrate (80~100 mg/kg) after an 18 hour overnight fast.The blood glucose was tested on 4 and 8 days after induced and blood glucose level more than 300 mg/dL were selected for the further study. The burned wound was created on the back of rats using a metal rod preheated to 100~110℃. Each wound size was 1×1cm2. The LED was given with these parameters: 630 nm of wavelength, 14 mW/cm2 of power density, 4 J/cm2 of energy density for 280 seconds, and once for two days.The wound healing were evaluated by histological analysis and the secretion of TGF-β1. According to the results of cell count, in the normal rats, LED could make the maxima of macrophage and fibroblast appear early two days. In the hypergiycemic rats, LED made the maxima of macrophage appear early two days, and the maxima of fibroblast appear early four days. In the part of angiogenesis, our result showed that LED could accelerate the rate of angiogenesis and made the maxima of angiogenesis appear early two days. The result of TGF-β1assay showed that the LED seem to have no significant influence on normal rats. In hyperglycemic rats, LED could reduce the concentration of TGF-β1 in the last phase of wound healing. Our result showed that LED could make the maxima of macrophage, fibroblast and vessel early appeared, and reduce the concentration of TGF-β1in hyperglycemic rats. In conclusion, LED could make the healing time of normal rats early two days, and reduce the concentration of TGF-β1 on the last phase of wound healing in hyperglycemic rats to promote wound healing.
目錄
中文摘要…………………………………………………………………………I
Abstract…………………………………………………………………………III
誌謝…………………………………………………………………………………V
目錄………………………………………………………………………………VI
圖目錄……………………………………………………………………………VIII
第一章 緒論………………………………………………………………………1
1.1 前言……………………………………………………………………………1
1.2 研究動機和目的………………………………………………………3
第二章 文獻回顧…………………………………………………………………4
2.1 傷口癒合過程…………………………………………………………4
2.2 糖尿病對傷口癒合的影響……………………………………………………6
2.3 藥物誘發高血糖動物模式……………………………………………8
2.4 TGF-β1對傷口癒合的影響………………………………………………11
2.5 低能量雷射於傷口癒合的應用…………………………………………15
第三章 材料與方法…………………………………………………………………20
3.1 實驗儀設備………………………………………………………………20
3.2 實驗藥品…………………………………………………………………21
3.3 高血糖鼠的誘導…………………………………………………………22
3.4 燙傷傷口的製造…………………………………………………………23
3.5 實驗分組…………………………………………………………………24
3.6 LED光源設備與光刺激參數………………………………………………25
3.7 採樣與組織切片製作……………………………………………………26
3.8 TGF-β1含量檢測…………………………………………………………27
3.9 評估方式…………………………………………………………………28
3.10 統計方法……………………………………………………………29
第四章 實驗結果……………………………………………………………………30
4.1傷口外觀觀察…………………………………………………………30
4.2組織學分析……………………………………………………………33
4.3 TGF-β1檢測………………………………………………………………58
4.4 細胞與生長因子的關係…………………………………………………60
4.5 LED光照刺激對傷口癒合的影響…………………………………………63
4.6 高血糖對傷口癒合的影響………………………………………………64
4.7 實驗結果回顧……………………………………………………………68
第五章 結果討論…………………………………………………………………69
第六章 結論…………………………………………………………………………72
參考文獻…………………………………………………………………………73

圖目錄
圖2.1傷口癒合過程示意圖………………………………………………………5
圖2.2 Alloxan誘導糖尿病的流程………………………………………………10
圖2.3 TGF-β1對傷口癒合的影響………………………………………………14
圖3.1燙傷傷口圖示………………………………………………………………23
圖3.2 LED光源設備………………………………………………………………25
圖4.1 燙傷第0、2、4、6、8天傷口外觀……………………………………………31
圖4.2 燙傷第10、12、14、16、18、20天傷口外觀……………………32
圖4.3 正常鼠未燙傷皮膚組織……………………………………………………36
圖4.4 正常鼠未燙傷與燙傷後組織狀況…………………………………………37
圖4.5 正常鼠燙傷第8天組織狀況……………………………………………………38
圖4.6 正常鼠燙傷第10天組織狀況…………………………………………39
圖4.7 正常鼠燙傷第12天組織狀況…………………………………………40
圖4.8 正常鼠燙傷第14天組織狀況………………………………………………41
圖4.9 正常鼠燙傷第16天組織狀況………………………………………………42
圖4.10 正常鼠燙傷第18天組織狀況……………………………………………43
圖4.11 正常鼠燙傷第20天組織狀況……………………………………………44
圖4.12 正常鼠組織學分析結果………………………………………………………45
圖4.13 高血糖鼠未燙傷皮膚組織狀況………………………………………………48
圖4.14 高血糖鼠未燙傷與燙傷後組織狀況…………………………………………49
圖4.15 高血糖鼠燙傷第8天組織狀況…………………………………………50
圖4.16 高血糖鼠燙傷第10天組織狀況……………………………………………51
圖4.17 高血糖鼠燙傷第12天組織狀況……………………………………………52
圖4.18 高血糖鼠燙傷第14天組織狀況……………………………………………53
圖4.19 高血糖鼠燙傷第16天組織狀況……………………………………………54
圖4.20 高血糖鼠燙傷第18天組織狀況……………………………………………55
圖4.21 高血糖鼠燙傷第20天組織狀況……………………………………………56
圖4.22 高血糖鼠組織學分析結果…………………………………………………57
圖4.23 TGF-β1檢測結果……………………………………………………………59
圖4.24 正常鼠TGF-β1與其分泌細胞的關係……………………………………61
圖4.25 高血糖鼠TGF-β1與其分泌細胞的關係…………………………………62
圖4.26 燙傷組與高血糖燙傷組結果比較……………………………………………66
圖4.27 燙傷照光組與高血糖燙傷照光組結果比較…………………………67
Abayomi AI, Adewoye EO, Olaleye SB, Salami AT. Effect of Magnesium pre-treatment on alloxan induced hyperglycemia in rats. Afr Health Sci. 2011 Mar;11(1):79-84.
Akyol U, Güngörmüş M. The effect of low-level laser therapy on healing of skin incisions made using a diode laser in diabetic rats. Photomed Laser Surg. 2010 Feb;28(1):51-5.
Arany PR, Nayak RS, Hallikerimath S, Limaye AM, Kale AD, Kondaiah P. Activation of latent TGF-beta1 by low-power laser in vitro correlates with increased TGF-beta1 levels in laser-enhanced oral wound healing. Wound Repair Regen. 2007 Nov-Dec;15(6):866-74.
Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008 Sep-Oct;16(5):585-601.
Bayat M, Azari A, Golmohammadi MG. Effects of 780-nm low-level laser therapy with a pulsed gallium aluminum arsenide laser on the healing of a surgically induced open skin wound of rat. Photomed Laser Surg. 2010 Aug;28(4):465-70.
Bitar MS, Labbad ZN. Transforming growth factor-beta and insulin-like growth factor-I in relation to diabetes-induced impairment of wound healing. J Surg Res. 1996 Feb 15;61(1):113-9.
Bock O, Yu H, Zitron S, Bayat A, Ferguson MW, Mrowietz U. Studies of transforming growth factors beta 1-3 and their receptors I and II in fibroblast of keloids and hypertrophic scars. Acta Derm Venereol. 2005;85(3):216-20.
Boschi ES, Leite CE, Saciura VC, Caberlon E, Lunardelli A, Bitencourt S, Melo DA, Oliveira JR. Anti-Inflammatory effects of low-level laser therapy (660 nm) in the early phase in carrageenan-induced pleurisy in rat. Lasers Surg Med. 2008 Sep;40(7):500-8.
Carvalho Pde T, Silva IS, Reis FA, Perreira DM, Aydos RD. Influence of ingaalp laser (660nm) on the healing of skin wounds in diabetic rats. Acta Cir Bras. 2010 Feb;25(1):71-9.
Chesnoy S, Lee PY, Huang L. Intradermal injection of transforming growth factor-beta1 gene enhances wound healing in genetically diabetic mice. Pharm Res. 2003 Mar;20(3):345-50.
Chin D, Boyle GM, Parsons PG, Coman WB. What is transforming growth factor-beta (TGF-beta)? Br J Plast Surg. 2004 Apr;57(3):215-21.
Ferreira MC, Gameiro J, Nagib PR, Brito VN, Vasconcellos Eda C, Verinaud L. Effect of low intensity helium-neon (HeNe) laser irradiation on experimental paracoccidioidomycotic wound healing dynamics. Photochem Photobiol. 2009 Jan-Feb;85(1):227-33.
Frank S, Madlener M, Werner S. Transforming growth factors beta1, beta2, and beta3 and their receptors are differentially regulated during normal and impaired wound healing. J Biol Chem. 1996 Apr 26;271(17):10188-93.
Gorus FK, Malaisse WJ, Pipeleers DG. Selective uptake of alloxan by pancreatic B-cells. Biochem J. 1982 Nov 15;208(2):513-5.
Greenwel P, Inagaki Y, Hu W, Walsh M, Ramirez F. Sp1 is required for the early response of alpha2(I) collagen to transforming growth factor-beta1. J Biol Chem. 1997 Aug 8;272(32):19738-45.
Houreld NN, Abrahamse H. Laser light influences cellular viability and proliferation in diabetic-wounded fibroblast cells in a dose- and wavelength-dependent manner. Lasers Med Sci. 2008 Jan;23(1):11-8.
Houreld NN, Sekhejane PR, Abrahamse H. Irradiation at 830 nm stimulates nitric oxide production and inhibits pro-inflammatory cytokines in diabetic wounded fibroblast cells. Lasers Surg Med. 2010 Aug;42(6):494-502.
Koch RM, Roche NS, Parks WT, Ashcroft GS, Letterio JJ, Roberts AB. Incisional wound healing in transforming growth factor-beta1 null mice. Wound Repair Regen. 2000 May-Jun;8(3):179-91.
Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008 Feb;51(2):216-26.
Li HL, Chen LP, Hu YH, Qin Y, Liang G, Xiong YX, Chen QX. Crocodile oil enhances cutaneous burn wound healing and reduces scar formation in rats. Acad Emerg Med. 2012 Mar;19(3):265-73.
Lim J, Sanders RA, Snyder AC, Eells JT, Henshel DS, Watkins JB 3rd. Effects of low-level light therapy on streptozotocin-induced diabetic kidney. J Photochem Photobiol B. 2010 May 3;99(2):105-10.
Medrado AP, Soares AP, Santos ET, Reis SR, Andrade ZA. Influence of laser photobiomodulation upon connective tissue remodeling during wound healing. J Photochem Photobiol B. 2008 Sep 18;92(3):144-52.
Metukuri MR, Namas R, Gladstone C, Clermont T, Jefferson B, Barclay D, Hermus L, Billiar TR, Zamora R, Vodovotz Y. Activation of latent transforming growth factor-beta1 by nitric oxide in macrophages: role of soluble guanylate cyclase and MAP kinases. Wound Repair Regen. 2009 Jul-Aug;17(4):578-88.
Nussbaum EL, Mazzulli T, Pritzker KP, Heras FL, Jing F, Lilge L. Effects of low intensity laser irradiation during healing of skin lesions in the rat. Lasers Surg Med. 2009 Jul;41(5):372-81.
Qiu Z, Kwon AH, Kamiyama Y. Effects of plasma fibronectin on the healing of full-thickness skin wounds in streptozotocin-induced diabetic rats. J Surg Res. 2007 Mar;138(1):64-70.
Rezende SB, Ribeiro MS, Núñez SC, Garcia VG, Maldonado EP. Effects of a single near-infrared laser treatment on cutaneous wound healing: biometrical and histological study in rats. J Photochem Photobiol B. 2007 Jun 26;87(3):145-53.
Rocha Júnior AM, Vieira BJ, de Andrade LC, Aarestrup FM. Low-level laser therapy increases transforming growth factor-beta2 expression and induces apoptosis of epithelial cells during the tissue repair process. Photomed Laser Surg. 2009 Apr;27(2):303-7.
Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999 Sep 2;341(10):738-46.
Skopin MD, Molitor SC. Effects of near-infrared laser exposure in a cellular model of wound healing. Photodermatol Photoimmunol Photomed. 2009 Apr;25(2):75-80.
Song QH, Klepeis VE, Nugent MA, Trinkaus-Randall V. TGF-beta1 regulates TGF-beta1 and FGF-2 mRNA expression during fibroblast wound healing. Mol Pathol. 2002 Jun;55(3):164-76.
Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50(6):537-46.
Szkudelski T, Kandulska K, Okulicz M. Alloxan in vivo does not only exert deleterious effects on pancreatic B cells. Physiol Res. 1998;47(5):343-6.
Takasu N, Asawa T, Komiya I, Nagasawa Y, Yamada T. Alloxan-induced DNA strand breaks in pancreatic islets. Evidence for H2O2 as an intermediate. J Biol Chem. 1991 Feb 5;266(4):2112-4.
Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003 Jul;83(3):835-70.
Whelan HT, Buchmann EV, Dhokalia A, Kane MP, Whelan NT, Wong-Riley MT, Eells JT, Gould LJ, Hammamieh R, Das R, Jett M. Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice. J Clin Laser Med Surg. 2003 Apr;21(2):67-74.
Whelan HT, Smits RL Jr, Buchman EV, Whelan NT, Turner SG, Margolis DA, Cevenini V, Stinson H, Ignatius R, Martin T, Cwiklinski J, Philippi AF, Graf WR, Hodgson B, Gould L, Kane M, Chen G, Caviness J. Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg. 2001 Dec;19(6):305-14.
White LA, Mitchell TI, Brinckerhoff CE. Transforming growth factor beta inhibitory element in the rabbit matrix metalloproteinase-1 (collagenase-1) gene functions as a repressor of constitutive transcription. Biochim Biophys Acta. 2000 Feb 29;1490(3):259-68.
Winterbourn CC, Cowden WB, Sutton HC. Auto-oxidation of dialuric acid, divicine and isouramil. Superoxide dependent and independent mechanisms. Biochem Pharmacol. 1989 Feb 15;38(4):611-8.
Yao F, Visovatti S, Johnson CS, Chen M, Slama J, Wenger A, Eriksson E. Age and growth factors in porcine full-thickness wound healing. Wound Repair Regen. 2001 Sep-Oct;9(5):371-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top