跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 22:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊子毅
研究生(外文):Tzu-Yi Chuang
論文名稱:直流濺鍍高品質氮化鋁薄膜之物理與光學特性研究分析
論文名稱(外文):The Structure and Optical Properties of AlN Thin Film by DC reactive Magnetron Sputtering System
指導教授:陳至信
指導教授(外文):Jyh-shin Chen
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:88
中文關鍵詞:DC濺鍍氮化鋁非線性光學真空紫外光非等向性光激螢光
外文關鍵詞:anisotropicPLVUVnonlinear opticsAlNDC sputtering
相關次數:
  • 被引用被引用:1
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文之目的是以直流磁控濺鍍法在藍寶石基板上低溫沉積氮化鋁薄膜,以不同基板溫度、濺鍍功率、氮氣比率進行氮化鋁薄膜品質之分析,並得到低表面粗糙度、高取向的(002)氮化鋁磊晶薄膜。
實驗上,以本實驗室設計之超高真空直流磁控濺鍍系統進行薄膜沉積,其具有低雜質、低濺鍍壓力(1mtorr)、高鍍率(20nm/min)等優點。以X光繞射儀進行氮化鋁結構分析可知高(002)取向的氮化鋁薄膜,其ω scan之半高寬約為1.07度,以φ scan量測得知沉積之氮化鋁為完整六角形之磊晶膜。原子力顯微鏡(AFM)證明氮化鋁薄膜表面粗糙度大約是0.5nm以下。
光學研究上,本論文使用橢圓偏光儀與光譜儀分析擬合其光學常數與非等向性光學特性,在550nm下的No約為1.96、Ne約為1.99、消光係數約為10-4; 穿透率量測中可發現氮化鋁薄膜於可見光波段具有極高穿透性,可再次驗證氮化鋁薄膜具有良好的光學特性。以Nd-YAG 五倍頻雷射與Z-scan量測技術研究氮化鋁材料的非線性光學性質,並求得氮化鋁薄膜的Kerr非線性折射係數與雙光子吸收係數。氮化鋁之光激螢光量測是使用國家同步輻射中心之VUV光源進行低溫量測,可發現氮化鋁薄膜在不同溫度下的螢光會具有紅位移的現象,且在波長為325nm具有半高寬相當寬的螢光訊號。同時以此光源進行吸收度的量測,深入了解氮化鋁於能量高於能隙的光子之吸收特性。
本研究論文成功在相對低溫下完成一高品質、高鍍率之氮化鋁薄膜,並以各種光學與物理量測儀器進行薄膜品質與光學特性分析,分析氮化鋁磊晶薄膜的成長特性與製程條件的相依性,研究氮化鋁材料的非線性光學與VUV波段之吸收特性,期待此良好的氮化鋁磊晶薄膜能提供未來在表面聲波元件、高功率元件及紫外光LED 上研究或應用的可能性。
In this thesis, AlN thin film was grown on sapphire using DC magnetron sputtering system. The AlN thin film exhibits c axis preferred orientation, and low R.M.S roughness. The dependence of film quality on growth parameters, such as total sputtering pressure, substrate temperature, and nitrogen concentration have been studied.

The DC magnetron sputtering system have the advantage of ultra high vacuumity, low working pressure (1mtorr), high growth rate (20nm/min, for AlN), etc. In XRD θ-2θ scan, ω scan and AFM measurement, it was found that the AlN thin film have high c-axis preferred orientation, the FWHM of rocking curve of 1.07 degree, and roughness of 0.5nm.

The optical constant and anisotropic optical properties of AlN have been measured by spectrometer and ellipsometry. The refraction indices are 1.96(N0) and 1.99(Ne), the extinction coefficient is about 10-4 at the wavelength of 550nm. In transmittance measurement, it was found that AlN exhibits high transmission in the long-wavelength range (350nm~800nm). The nonlinear optical characteristics were measured by Nd-YAG laser at its fifth harmonic (213nm) and Z-scan technology.

We have employed the 03A1 beam line of NSRRC as the light source to study the absorption and photoluminescence of AlN in the 125nm~300nm region. In the photoluminescence measurement, as the temperature increases from 10K, the peak intensity decreases and the peak position displays a red-shift. The fluorescence exhibits a wide FWHM signal at 325nm, indicating high defect density in the film. In the absorption study, we can analyze the absorption properties of AlN in VUV range.
中文摘要.......................................................Ⅰ
Abstract..................................................... Ⅲ
致謝......................................................... Ⅳ
目錄......................................................... Ⅴ
圖錄......................................................... Ⅸ
表錄........................................................ⅤⅢ

第一章 緒論.....................................................1
1-1前言....................................................1
1-2研究目的................................................2
1-3論文架構................................................3
第二章 理論背景與原理介紹.......................................5
2-1 氮化鋁材料特性..........................................5
2-2 直流反應性濺鍍原理......................................6
2-2-1 電漿輝光放電......................................6
2-2-2 磁控濺鍍..........................................8
2-2-3 反應性濺鍍 ......................................10
2-3 薄膜成核沉積理論.......................................11
2-4 薄膜成長模式...........................................14
2-5 X-ray量測原理..........................................18
2-5-1 θ-2θ scan.......................................18
2-5-2 ω scan............................. .............20
2-5-3 φ scan........................ ..................20
2-6穿透率光學常數推導......................................21
2-6-1 折射率與吸收係數.................................21
2-6-2 薄膜厚度.........................................26
2-6-3 光學能隙.........................................27
2-7 橢圓偏光儀量測技術.....................................27
2-7-1 橢圓偏光儀理論...................................27
2-7-2 反射係數.........................................29
2-7-3 非等向性分析.....................................32
2-8 非線性光學特性.........................................33
2-8-1 Z-scan量測架構....................................33
2-8-2 開孔徑與閉孔徑Z-scan曲線.........................34
2-8-3 Z-scan 理論計算...................................37
2-9原子力顯微鏡............................................39
2-10同步輻射VUV光源.......................................40
2-10-1 同步輻射光源....................................40
2-10-2 光激螢光量測....................................42
2-10-3 吸收特性量測.....................................44
第三章 實驗步驟與方法..........................................46
3-1 氮化鋁薄膜沉積.........................................46
3-2 實驗步驟...............................................47
3-3 實驗參數設計...........................................48
3-4 量測參數...............................................49
3-4-1 X光繞射儀.........................................49
3-4-2 光譜儀...........................................50
3-4-3 橢圓偏光儀.......................................51
3-4-4 Z-scan量測.........................................51
第四章 結果與討論..............................................53
4-1 濺鍍參數對薄膜結構之影響...............................53
4-1-1 不同濺鍍功率.....................................53
4-1-2 不同基板溫度.....................................55
4-1-3 不同氮氣比率.....................................57
4-1-4 薄膜品質量測.....................................59
4-2 不同厚度對薄膜結構之影響...............................61
4-3 氮化鋁表面粗糙度量測結果...............................63
4-4 薄膜光學特性分析.......................................65
4-4-1 光譜儀分析......................................65
4-4-2 非等向折射率分析.................................71
4-4-3 非線性光學特性分析...............................73
4-5氮化鋁之光激螢光量測結果................................76
4-6氮化鋁之吸收特性量測結果................................79
第五章 結論與未來展望..........................................82
參考資料......................................................84



圖錄

圖2-1: 氮化鋁晶體結構 (a)變形四面體結構 (b)Wurtzite結構……………..6
圖2-2: 輝光放電示意圖………………………………………………………..7
圖2-3: 磁控濺鍍結構圖與磁控濺鍍之電子運動示意圖(紅線)……………...9
圖2-4: 反應性濺鍍示意圖……………………………………………………11
圖2-5: 薄膜沉積步驟示意圖…………………………………………………11
圖2-6: 晶粒自由能曲線關係圖………………………………………………12
圖2-7: 晶片與晶粒間潤濕夾角………………………………………………13
圖2-8: 晶粒聚結示意圖………………………………………………………14
圖2-9: 薄膜成長模式示意圖…………………………………………….…...16
圖2-10:基板溫度對薄膜結構影響之結構模型………………………………17
圖2-11: 布拉格繞射圖………………………………………………………..19
圖2-12: θ-2θ scan量測示意圖………………………………………………..19
圖2-13: ω scan量測示意圖…………………………………………………20
圖 2-14: φ scan量測示意圖…………………………..…………………….21
圖 2-15: AlN on Sapphire穿透率光譜圖……………..………………………22
圖2-16: 穿透率曲線漸進之包絡曲線圖……………………………………..24
圖2-17: 橢偏儀量測示意圖…………………………………………………..28
圖2-18: 簡易型的橢圓偏光儀基本架構……………………………………..29
圖2-19: 不同極化光入射之電場分量…………………………….………….30
圖2-20: 光束多重反射示意圖……………………………………………….31
圖2-21: Z-scan量測架構示意圖……………………………………………..33
圖2-22: 非線性吸收特性…………………………………………………….35
圖2-23: 非線性折射示意圖………………………………………………….36
圖2-24: 非線性折射率(Δn>0)造成的自聚焦透鏡特性示意圖…………….36
圖2-25: 非線性折射率……………………………………………………….37
圖2-26: 原子力顯微鏡量測示意圖………………………………………….40
圖2-27: 同步輻射運轉配置圖……………………………………………….41
圖2-28: 不同光柵下之對光波長的解析能力……………………………….42
圖2-29: 光激螢光能帶躍遷示意圖………………………………………….43
圖2-30: VUV光激螢光量測系統示意圖……………………………………44
圖2-31: 吸收特性量測系統示意圖………………………………………….45
圖3-1 反應性直流磁控濺鍍示意圖…………………………………………46
圖3-2 沉積氮化鋁薄膜實驗流程圖…………………………………………48
圖3-3: UV/Vis/NIR光譜儀系統示意圖……………………………………...50
圖3-4: 橢偏儀分析之氮化鋁薄膜模擬架構…………………………………51
圖3-5: Z-scan量測架構與位置設定…………………………………………52
圖4-1: 不同濺鍍功率下之氮化鋁薄膜XRD 量測結果……………………54
圖4-2: 不同濺鍍功率下之氮化鋁薄膜XRD強度比較…………………….55
圖4-3: 不同製程溫度下之氮化鋁薄膜XRD 量測結果………….………..56
圖4-4: 不同製程溫度下之氮化鋁薄膜XRD 強度比較…………….……..56
圖4-5: 不同氮氣比率下之氮化鋁薄膜XRD 量測結果……………………58
圖4-6: 不同氮氣比率下之氮化鋁薄膜XRD 強度比較……………………58
圖4-7: 氮化鋁成長於藍寶石基板上之ω scan 量測結果…………………60
圖4-8: 氮化鋁成長於藍寶石基板上之ψ scan 量測結果…………………60
圖4-9: 不同厚度下之氮化鋁薄膜XRD量測結果………………………….62
圖4-10: 不同厚度下之氮化鋁薄膜ω scan 量測結果……………………..63
圖4-11: 不同厚度下之氮化鋁表面粗糙度量測…………………………….64
圖4-12: 藍寶石基板與氮化鋁薄膜之穿透率光譜………………………….66
圖4-13: 氮化鋁薄膜之光學常數分析結果………………………………….66
圖4-14: 不同厚度下之氮化鋁薄膜穿透率光譜…………………………….67
圖4-15: 不同厚度下之氮化鋁薄膜折射率結果…………………………….67
圖4-16: 不同厚度下之氮化鋁薄膜消光係數結果………………………….68
圖4-17: 不同厚度之吸收度量測結果 (a)波長 vs 吸收度(b) 光子能量 vs吸收度………………………………………………………………………..69
圖4-18: 不同厚度下波長200nm 之吸收度 v.s. 薄膜厚度……………….70
圖4-19: 不同厚度下氮化鋁之(αhv)2 v.s. hv 關係圖……………………..70
圖4-20: 橢偏儀擬合(fitting)圖形……………………………………………71
圖4-21: 氮化鋁的非等向性折射率分析結果………………………………73
圖4-22: 橢偏儀分析模擬結構設計…………………………………………73
圖4-23: 100nm氮化鋁薄膜之Z-scan之光強度結果………………………74
圖4-24: 100nm氮化鋁薄膜之Z-scan之穿透率結果………………………75
圖4-25: 氮化鋁非線性吸收擬合圖形………………………………………76
圖4-26: 藍寶石基板與氮化鋁薄膜之光激螢光訊號………………………76
圖4-27: 變溫量測氮化鋁光激螢光特性結果………………………………78
圖4-28: 不同厚度氮化鋁薄膜於VUV 範圍之吸收特性 (a)波長 vs 吸收度(b) 光子能量 vs 吸收度……….……………………………………………80
圖4-29: 氮化鋁薄膜在波長200nm 的吸收vs 厚度……………………...81
圖4-30: 氮化鋁薄膜在VUV波段之吸收係數…………………………….81


表錄

表3-1 製程參數表…………………………………………………………….48
表3-2 X光繞射儀量測參數…………………………………………………..49
參考資料

【01】C. Morosanu, T. A. Stoica, T. F. Stoica, D. Necsoiu and M. Popescu,“Optical, Electrical and structural properties of AlN thin films”, Semiconductor Conference, 1995.
【02】C. Caliendo, P. Imperatori, “High-frequency, high-sensitivity acoustic sensor implemented on AlN/Si substrate”, Appl. Phys. Lett., vol. 83, No. 8, 2003.
【03】J. J. Zhou, R. L. Jiang, X. L. Ji, B. Wen, P. Chen, S. J. Chua, R. Zhang, B. Shen, and Y. D. Zheng, “ Effects of the Polarization Fields on the Responsivity of the AlN/GaN Photodetectors”, Semi. Insu. Mat., 13th International Conference, 2004.
【04】Marianne Germain, Maarten Leys, Steven Boeykens, Stefan Degroote, Wenfei Wang, Dominique Schreurs, Wouter Ruythooren, Kang-Hoon Choi, Benny Van Daele, Gustaaf Van Tendeloo, and Gustaaf Borghs, “High electron mobility in AlGaN/GaN HEMT grown on sapphire: strain modification by means of AlN interlayers”, Mat. Res. Soc. Symp. Proc. ,Vol. 798 , 2004.
【05】C.-M. Yang, K. Uehara, S.-K. Kim, S. Kameda, H. Nakase and K. Tsubouchi, “Highly C-Axis-Oriented AlN Film Using MOCVD for 5GHz-Band FBAR Filter”, 2003 IEEE Symposium on, Volume 1 170 - 173 , 2003.
【06】Sibin Zuo, Jun Wang, Xiaolong Chen, Shifeng Jin, Liangbao Jiang, Huiqiang Bao, Liwei Guo, Wei Sun, and Wenjun Wang, “Growth of AlN single crystals on 6H-SiC (0001) substrates withAlN MOCVD buffer layer”, Cryst. Res. Technol. 47, No. 2, 139 – 144, 2012.
【07】Maxim Shatalov, Mikhail Gaevski, Vinod Adivarahan and Asif Khan, “Room-Temperature Stimulated Emission from AlN at 214 nm”, Japanese Journal of Applied Physics, Vol. 45, No. 49, pp. L1286-L1288, 2006.
【08】T. Koyama, M. Sugawaral, Y. Uchinumal, J. F. Kaeding, R. Sharma, T. Onumal, S. Nakamura, and S. F. Chichibu, “ Strain-relaxation in NH3-source molecular beam epitaxy of AlN epilayers on GaN epitaxial templates”, Phys. Stat. sol. (a) 203, No. 7, pp.1603-1606, 2006.
【09】[11] Y.A. Xi, K. X. Chen, F. Mont, J. K. Kim, C. Wetzel, E. F. Schuberta, W. Liu, X. Li, and J. A. Smart, “Very high quality AlN grown on (0001)Sapphire by metal-organic capor phase epitaxy”, APPLIED PHYSICS LETTERS 89, 103106, 2006.
【10】[12] K. S. Kao, C. C. Cheng and Y. C. Chen, "Synthesis of C-Axis Oriented Aluminum Nitride Films by Reactive RF Magnetron Sputtering for Surface Acoustic Wave", Jpn. J. Appl. Phys., 40, 4969, 2001.
【11】[13] F. Engelmark, G. F. Iriarte, I. V. Katardjiev, M. Ottosson, P. Muralt, and S. Berg, "Structural and electroacoustic studies of AlN thin films during low temperature radio frequency sputter deposition", J. Vac. Sci. Technol. A 19, 2664, 2001.
【12】J.X. Zhang, H. Cheng, Y.Z. Chen, A. Uddin, Shu Yuan, S.J. Geng, S. Zhang, “Growth of AlN films on Si (100) and Si (111) substrates by reactive magnetron sputtering”, Surface and Coatings Technology, Volume 198, Issues 1–3, Pages 68–73, 2005.
【13】Xiao-Hong Xu, Hai-Shun Wu, Cong-Jie Zhang, Zhi-Hao Jin, “Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering”, Thin Solid Films Volume 388, Issues 1–2, P 62–67, 2001
【14】J P Kar, G Bose, S Tuli, “Effect of annealing on DC sputtered aluminum nitride films”, Surface and Coatings Technology Volume: 198, Issue: 1-3, P 64-67, 2005.
【15】W. Y. Chiu, C. H. Wu, H. L. Kao,a) and Erik S. Jeng, “The optical properties and applications of AIN thin films prepared by a helicon sputtering system”, Journal of Vacuum Science &; Technology A: Vacuum, Surfaces, and Films, Volume 20 , Issue: 3, P843 – 847,2002.
【16】Yuechun Fu, Xuefei Li, Yunyun Wang, Huan He and Xiaoming Shen, “Structural, optical and electrical properties of cubic AlN films deposited by laser molecular beam epitaxy”, applied physics a: materials science &; processing, Volume 106, Number 4, 2012.
【17】Martin Feneberg, Robert A. R. Leute, Benjamin Neuschl, and Klaus Thonke, “High-excitation and high-resolution photoluminescence spectra of bulk AlN”, Phys. Rev. B 82, 075208, 2010.
【18】J. Li, K. B. Nam, M. L. Nakarmi, J. Y. Lin, and H. X. Jianga, “Band-edge photoluminescence of AlN epilayers”, applied physics letters, volume 81, number 18, 2002.
【19】E Kuokstis, J Zhang, Q Fareed, J W Yang, G Simin, M Asif Khan, R Gaska, M Shur, C Rojo, L Schowalter, “Near-band-edge photoluminescence of wurtzite-type AlN”, Applied Physics Letters Volume 81, Issue 15, P 2755,2002.
【20】L.X. Benedicta, T. Wethkamp, K. Wilmers, C. Cobet, N. Esser, E.L. Shirley, W. Richter, M. Cardona, “Dielectric function of wurtzite GaN and AlN thin films”, Solid State Communications, Volume 112, Issue 3, P129–133, 1999.
【21】Wei Jiang, Wei Lin, Shuping Li, Jincan Chen, Junyong Kang, “Optical anisotropy of AlN epilayer on sapphire substrate investigated by variable-angle spectroscopic ellipsometry”, Optical Materials, Volume 32, Issue 9, P.891–895,2010.
【22】Marc-Alexandre Duboisa and Paul Muraltb, “Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications”, applied physics letters, volume 74, number 20, 1999.
【23】Alvaro Artieda, Michela Barbieri, Cosmin Silviu Sandu, and Paul Muralt, “Effect of substrate roughness on c-oriented AlN thin films”, J. Appl. Phys. 105, 024504, 2009.
【24】James H. Edgar and W. J. Meng, “Properties of Group Ⅲ Nitrides”, 1993.
【25】Bernard Gil and Fernando A. Ponce: “Group Ⅲ Nitride Semiconductor Compounds Physics and Applications”, 1998.
【26】A. Rubio, J.L. Corkill, M.L. Cohen, E.L. Shirley and S.G. Louie, “ Quasiparticle band structure of AlN and GaN”, Phys.Rev. B, Vol. 48, P.11810, 1993.
【27】Xinqiang Wang, Akihiko Yoshikawa, “Molecular beam epitaxy growth of GaN,AlN and InN”, Progress in Crystal Growth and Characterization of Materials Volumes 48–49, Pages 42–103, 2004.
【28】R. W. Berry, P. M. Hall, M. T. Harris, “Thin Film Technology,” Van Nostrand Reinhold, P.201, 1980.
【29】莊達人, “VLSI 製造技術”, P. 146-177, 1990.
【30】E. Bauer, Z.Kristallographie, “Phänomenologische Theorie der Kristallabscheidung an Oberflächen. I.”, Zeitschrift für Kristallographie, Vol. 110, No. 1-6, pp. 372-394. 110, P. 372, 1958.
【31】F. C. Frank and J. H. Van der Merwe, “One-dimensional dislocations”, Proc. R. Soc. London, Ser. A198,P.205,1949.
【32】M. Volmer and A.Weber, “Nucleation in super-saturated products”, Z. Phys. Chem.,119, P.277, 1926.
【33】J. N.Stranski and L. Krastanov, “Theory of orientation separation of ionic crystals”, Ber. Akad. Wiss.Wien.146, P.797, 1938.
【34】B.A. Movchan, A.V. Demchishin, “structure and properties of thick condensates of nickel, titanium, tungsten, aluminum oxides, and zirconium dioxide in vacuum”, Fiz. Met. Metalloved, 28 83, 1969.
【35】R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon ”, J. Phys. E:Sci. Instrum., Vol. 16, 1983.
【36】Manifacier J C, Gasiot J and Fillard J P, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing film”, J. Phjis. E: Sei. Instrum. 9 1002-4, 1976.
【37】N.F. Mott, E.A. Davis, “Electronic Process in non-Crystalline Materials”, Calendron Press, Oxford, 1979.
【38】Hiroyuki Fujiwara, "Spectroscopic Ellipsometry Principles and Applns", Wiley, 2007.
【39】Alexandre Rothen, “The ellipsometry, an apparatus to measure thickness of thin surface films”, Rev. Sci. Instrum., 16(2):26~30, 1945.
【40】G. E. Jellison, Jr, “Use of the biased estimator in the interpretation of spectroscopic ellipsometry data”, Appl. Opt., 30 (1991) 3354–3360.
【41】G. E. Jellison, F. A. Modine, “Two-modulator generalized ellipsometry”, Appl. Opt., 36(31):8190~8198, 1997.
【42】S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches”, IEEE J. Quantum Electron., QE-23, 2089, 1987.
【43】R. Adair, L.L. Chase, and S.A. Payne, L.,” Nonlinear refractive index of optical crystals”, Opt. Soc. Amer. B, 4,875, 1987.
【44】A. Owyoung, “Ellipse rotation studies in laser host materials”, IEEE J. Quantum Electron., QE-9, 1064, 1973.
【45】W.E. Williams, M.J. Soileau, and E.W. Van Stryland, “Optical switching and n2 measurements in CS2”, Opt. Commun., 50,256, 1984.
【46】M. Sheik-bahae, A. A. Said, and E. W. Van Stryland, ”High-sensitivity, single-beam n2 measurements”, Optics Letters, Vol. 14, Issue 17, pp. 955-957, 1989.
【47】Mansoor Sheik-Bahae,Ali A.Said, Tai-Huei Wei,David J.Hagan,E.W.Van Stryland, ”Sensitive Measurement of Optical Nonlinearities Using a Single Beam”, Quantum Electronics, IEEE Journal of, Volume: 26 , Issue: 4, Page(s): 760-769, 1990.
【48】汪建民,“材料分析”,中國材料科學學會,民國87年。
【49】國家同步輻射研究中心,”同步加速器光源簡介”。
【50】http://140.110.203.42/EFD.php?num=238 (BL03A) HF-CGM High Flux Beamline Information.
【51】J. Li, K. B. Nam, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang,”Band-edge photoluminescence of AlN epilayers”, Appl. Phys. Lett. 81, 3365, 2002.
【52】Li, J.; Nam, K. B.; Nakarmi, M. L.; Lin, J. Y.; Jiang, H. X.; Carrier, Pierre; Wei, Su-Huai, “Band structure and fundamental optical transitions in wurtzite AlN”, Applied Physics Letters, Volume 83, Issue 25, 2003.
【53】X. H. Ji, Q. Y. Zhang, S. P. Lau, H. X. Jiang, and J. Y. Lin, ”Temperature-dependent photoluminescence and electron field emission properties of AlN nanotip arrays”, Appl. Phys. Lett. 94, 173106, 2009.
【54】Han-Yong Joo and Hyeong Joon Kim and Sang June Kim and Sang Youl Kim, “Spectrophotometric analysis of aluminum nitride thin films”, J. Vac. Sci. Technol. A 17„3 , 1999.
【55】P. Lu, R. Collazo, R. F. Dalmau, G. Durkaya, N. Dietz, and Z. Sitar , ”Different optical absorption edges in AlN bulk crystals grown in m- and c-orientations”, Appl. Phys. Lett. 93, 131922, 2008.
【56】H. Yamashita, K. Fukui, S. Misawa, and S. Yoshida , ”Optical properties of AlN epitaxial thin films in the vacuum ultraviolet region”, J. Appl. Phys. 50, 896, 1979.
【57】H. L. Kao, P. J. Shih, and Chun-Hsi Lai, “The study of preferred orientation growth of AlN thin films on ceramic and glass substrates” Jap. J. Appl. Phys. 38, 1999, P.1526
【58】Tomoyuki Kumada, Makoto Ohtsuka, Kazuya Takada, Hiroyuki Fukuyama, “Influence of sputter power and N2 gas flow ratio on crystalline quality of AlN layers deposited at 823 K by RF reactive sputtering”, physica status solidi (c), Volume 9, Issue 3-4, pages 515–518, 2012.
【59】Y Huttel, H Gomez, A Cebollada, G Armelles, M.I Alonso, "Epitaxial growth of AlN on sapphire (0 0 0 1) by sputtering: a structural, morphological and optical study", Journal of Crystal Growth, Vol. 242, Issues 1–2, Pages 116–123, 2002.
【60】Kh.Sh.-ogly Kaltaev, S.V.Nizhankovskiy, N.S.Sidelnikova, M.A.Rom, A.Ya.Dan'ko, M.V.Dobrotvorskaya, A.Ye.Belyaev, V.V.Strelchuk, A.F.Kolomys , “mechanism of AlN film formation at thermochemical nitridization of sapphire”, functional materials, 18, 1, 2011.
【61】Almaz Optics, Inc. (n. d) , from http://www.almazoptics.com/.
【62】Mingjiao Liu and Hong Koo Kim, “Strain-induced channel waveguiding in bulk sapphire substrates”, APPLIED PHYSICS LETTERS, Vol 79, Num 17, 22 , 2001.
【63】Q.M. Fu,T.Peng,C.Li, "Effects ofreal-time monitored growth interrupt on crystalline quality of AlN epilayer grown on sapphire by molecular beam epitaxy", Journal of Crystal Growth 311,3553–3556,2009.
【64】Wu, C. H. ; Kao, H. L. ; Jeng, Erik S. ; Chen, Jyh Shin ; Jaing, C. C. , "The optical properties and applications of AlN thin films prepared by a helicon sputtering system", Journal of Vacuum Science &; Technology A: Vacuum, Surfaces, and Films,Volume: 20 , Issue: 3, Page(s): 843- 847, 2002.
【65】J A Guerra, L Montañez, O Erlenbach, G Galvez, F De Zela, A Winnacker and R Weingärtner, "Determination of the optical bandgap and disorder energies of thin amorphous SiC and AlN films produced by radio frequency magnetron sputtering", Journal of Physics: Conference Series, Volume 274, Number 1,2011.
【66】Handbook of Optics, 2nd edition, Vol. 2. McGraw-Hill, 1994.
【67】Modern semiconductor quantum physics, edited by Ming-Fu Li, P.96,1994.
【68】Xiao Tang, Fazla Hossain, Kobchat Wongchotigul, and Michael G. Spencer, “Near band-edge transition in aluminum nitride thin films grown by metal organic chemical vapor deposition”, Appl. Phys. Lett. 72, 1501, 1998.
【69】H. Yamashita, K. Fukui, S. Misawa, and S. Yoshida, “Optical properties of AlN epitaxial thin films in the vacuum ultraviolet region”, J. Appl. Phys. 50(2). , 1979.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top