跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/09 19:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許昶哲
研究生(外文):Chang-Zhe Hsue
論文名稱:低計算量離散分數信號轉換
論文名稱(外文):Computation-Reduced Discrete Fractional Signal Transform
指導教授:許文良
指導教授(外文):Wen-Liang Hsue
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:86
中文關鍵詞:離散分數HOT轉換影像加密離散HOT轉換離散分數傅立葉轉換
外文關鍵詞:image incryptiondiscrete fractional HOTdiscrete Hirschman optimal transformdiscrete fractional Fourier transform
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在分數信號轉換的研究中,幾乎沒有能進行快速運算的分數信號轉換。因此本論文基於克羅內克積的特性,提出了多個能夠進行快速運算的分數信號轉換。我們首先討論目前分數信號轉換領域中對於降低計算量的研究成果:離散分數HOT轉換(Hirschman optimal transform),再來我們利用類似的方法以多參數離散分數傅立葉轉換等分數信號轉換與單位矩陣進行克羅內克積運算,提出更廣義化之低運算量分數轉換。最後我們根據克羅內克積的特性,進而以離散分數信號轉換與對角矩陣進行克羅內克積運算,得到新的轉換。以上所提出之轉換,皆能降低分數信號轉換所要求的計算量,因此我們將其運用於計算量龐大的影像加密中,能夠達到明顯的效果。
分數信號轉換在影像加密的應用上,我們可用雙重隨機相位加解密系統對影像加密。因此我們將本論文所提出之低運算量分數信號轉換運用於雙重隨機相位加解密系統中,並分析系統的安全性。最後我們設法找出一種轉換,能夠在低運算量的情況下,成功對影像加解密,並且能夠進行高安全性的影像加密,抵擋非法解密。



In the research of fractional signal transforms, there are no existing fast versions of fractional transforms. Therefore, this thesis, based on the properties of Kronecker product proposes several fractional transforms which require low computation complexity. We first discuss the existing research in the low computation fractional transform: discrete fractional HOT(Hirschman optimal transform). Then, similarly, we use the multiple-parameter discrete fractional Fourier transform and other fractional signal transforms to implement Kronecker products with the identity matrix to get the generalized fractional transforms with low computational complexity. Finally, according to the properties of Kronecker product, we generalize the diagonal matrices from the identity matrix, and use the Kronecker product of the fractional signal transforms and the diagonal matrices to define new fractional transforms. Due to the fact that the fractional transforms we propose above require low computation complexity, so the efficiency is obvious when we apply them to the high computation complexity process, for example, image encryption.
In application, we usually apply the double random phase encoding for image encryption. So we employ the proposed low computation fractional transforms to double random phase encoding, and then we analyze the security of the encoding system. Finally, we try to find out one kind of low computation fractional transform that can be applied successfully to image encryption and decryption, and has high security to resist the illegal decryption.



目錄
摘要………………………………………………I
Abstract……………………………………………………………III
誌謝…………………………………………………………………V
目錄…………………………………………………………………VI
圖目錄…………………………………………………………….VIII
表目錄……………………………………………………………X
第一章 緒論………………………………………………………1
1.1前言………………………………………………………1
1.2研究動機與目的…………………………………………2
第二章 離散分數信號轉換………………………………………3
2.1 連續分數傅利葉轉換之時頻域特性……………………3
2.2離散分數傅利葉轉換……………………………………8
2.3多參數離散分數傅利葉轉換……………………………19
2.4隨機離散分數傅利葉轉換………………………………22
2.5離散分數隨機轉換………………………………………28
第三章 克羅內克積與離散分數HOT轉換……………………31
3.1克羅內克積………………………………………………31
3.2離散HOT轉換……………………………………………34
3.3離散分數HOT轉換………………………………………39
3.4離散分數HOT之推廣轉換矩陣…………………………42
第四章 離散分數信號轉換應用於影像加密與敏感度分析……………………………………………………………………48
4.1離散分數信號轉換與離散分數HOT轉換………………48
4.2離散分數HOT推廣轉換之敏感度分析…………………59
第五章 結論……………………………………………………74
參考文獻……………………………………………………………75

圖目錄
圖2.1-1 時頻平面與轉換軸之關係.............................................5
圖2.2-1 矩陣的四個特徵向量,依零交點數分別對應0~4階的赫米特-高斯函數.....................................................................14
圖2.2-2 四個不同次冪的DFRFT對方波轉換的波形.................18
圖2.4-1 DFT交替矩陣之隨機特徵向量.....................................25
圖2.4-2 方波經RDFRFT轉換之振福與相角.............................27
圖2.5-1 方波經DFRNT轉換後之振福與相角...........................30
圖4.1-1 雙重隨機相位影像加密系統.......................................49
圖4.1-2 雙重隨機相位影像解密系統.......................................49
圖4.1-3 分數信號轉換之雙重隨機相位影像加密系統…...........50
圖4.1-4 分數信號轉換之雙重隨機相位影像解密系統…...........50
圖4.1-5 DFRFT運用於雙重隨機相位加解密系統之模擬結果....51
圖4.1-6 DFRFT之敏感度..........................................................52
圖4.1-7 DFRFT解密結果圖,次冪誤差 ..........................53
圖4.1-8 DFRFT與MPDFRFT之敏感度.....................................54
圖4.1-9 DFRFT、MPDFRFT與RDFRFT之敏感度......................55
圖4.1-10 DFRFT、MPDFRFT與DFRNT之敏感度......................56
圖4.1-11 DFRFT與DFRHOT之敏感度......................................57
圖4.1-12 DFRFT、 、DFRHOT以及 敏感度圖..................58
圖4.2-1 DFRFT、DFRHOT與MPDFRHOT之敏感度圖...............60
圖4.2-2 DFRFT、DFRHOT與RDFRHOT之敏感度圖..................61
圖4.2-3 DFRFT、DFRHOT與 之敏感度圖....................61
圖4.2-4 DFRHOT與 之敏感度圖...............................62
圖4.2-5 將能量平衡之雙重隨機相位加密系統.........................65
圖4.2-6 將能量平衡之雙重隨機相位解密系統.........................65
圖4.2-7 DFRFT、DFRHOT與 之敏感度.....................66
圖4.2-8 之原始影像、加密影像以及錯誤解密影.......67
圖4.2-9 之敏感度..............................................69
圖4.2-10原始影像及 之加解密影像....................70
圖4.2-11 之加解密影像......................................72

表目錄
表2.2-1 DFRFT特徵值分配規則………………………………………16
表2.2-2 DFRFT DFT特徵值分配規則………………………………17

[1] L. B. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Processing, vol. 42, pp. 3084–3091, Nov. 1994.
[2] A. C. McBride and F. H. Kerr, “On Namias's fractional Fourier transform,” IMA J. Appl. Math., vol. 39, pp. 159–175, 1987.
[3] S. C. Pei and M. H. Yeh, “Improved discrete fractional Fourier transform,” Opt. Lett., vol. 22, pp. 1047–1049, July 1997.
[4] J. H. McClellan and T. W. Parks, “Eigenvalue and eigenvector decomposition of the discrete Fourier transform,” IEEE Trans. Audio Electroacoust., vol. AU-20, pp. 66–74, 1972.
[5] B. W. Dickinson and K. Steiglitz, “Eigenvectors and functions of the discrete Fourier transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-30, pp. 25–31, Jan. 1982.
[6] C. Candan, M. A. Kutay, H. M. Ozatkas, ”The Discrete Fractional Fourier Transform,” IEEE Trans. Sig. Process. , Vol. 48, No. 5, pp. 1329-1337, 2000.
[7] S. C. Pei and W. L. Hsue, “The multiple-parameter discrete fractional Fourier transform,” IEEE Signal Process. Lette., vol. 13, no. 6, pp.329–332, Jun. 2006.
[8] S.C. Pei, and W. L. Hsue, "Random Discrete Fractional Fourier Transform", IEEE Signal Processing Letters, vol. 16, no. 12, pp 1015-1018, Dec. 2009.
[9] S. C. Pei, J. J. Ding, W. L. Hsue and K. W. Chang, ”Generalized commuting matrices and their eigenvectors for DFTs, offset DFTs, and other periodic operations”, IEEE Trans. on Sig Process., vol. 56, no. 8, pp. 3891-3904, Aug. 2008.
[10] Z. Liu, H. Zhao and S. Liu, “A discrete fractional random transform”, Optics Communications, vol. 255, pp 357-365, Jun. 2005.

[11] C. F. Van Loan, “The ubiquitous Kronecker product”, Journal of Computational and Applied Mathematics, vol. 123, pp 85-100, Oct. 2000.
[12] R. A. Horn and C. R. Johnson, “Topics in Matrix Analysis”, Cambridge University Press, 1991.
[13] V. DeBrunner, M. Ozaydin, T. Przebinda and J. Havlicek, “The optimal solutions to the continuous- and discrete-time versions of the Hirschman uncertainty principle,” ICASSP’00, pp 81-84, Jun. 2000.
[14] T. Przebinda, V. DeBrunner, and M. Ozaydin, “The optimal transform for the discrete Hirschman uncertainty principle,” IEEE Trans. Information Theory, vol. 47, no, 5, pp 2086-2090, July 2001.
[15] V. DeBrunner and E. Matusiak, “An algorithm to reduce the complexity required to convolve finite length sequences using the Hirschman optimal transform (HOT),” ICASSP’03, vol. 2, pp 577-580, Apr. 2003.
[16] W. L. Hsue, S. C. Pei and J. J. Ding, “Efficient discrete fractional Hirschman optimal transform and its application,” ICASSP’2011, pp 3604-3607, May 2011.
[17] P. Refregier and B. Javidi, ”Optical image encryption based on input plane and Fourier plane random encoding”, Opt. Lett., vol. 20, no. 7, pp. 767-769, April 1995

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top