|
[1] L. B. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Processing, vol. 42, pp. 3084–3091, Nov. 1994. [2] A. C. McBride and F. H. Kerr, “On Namias's fractional Fourier transform,” IMA J. Appl. Math., vol. 39, pp. 159–175, 1987. [3] S. C. Pei and M. H. Yeh, “Improved discrete fractional Fourier transform,” Opt. Lett., vol. 22, pp. 1047–1049, July 1997. [4] J. H. McClellan and T. W. Parks, “Eigenvalue and eigenvector decomposition of the discrete Fourier transform,” IEEE Trans. Audio Electroacoust., vol. AU-20, pp. 66–74, 1972. [5] B. W. Dickinson and K. Steiglitz, “Eigenvectors and functions of the discrete Fourier transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-30, pp. 25–31, Jan. 1982. [6] C. Candan, M. A. Kutay, H. M. Ozatkas, ”The Discrete Fractional Fourier Transform,” IEEE Trans. Sig. Process. , Vol. 48, No. 5, pp. 1329-1337, 2000. [7] S. C. Pei and W. L. Hsue, “The multiple-parameter discrete fractional Fourier transform,” IEEE Signal Process. Lette., vol. 13, no. 6, pp.329–332, Jun. 2006. [8] S.C. Pei, and W. L. Hsue, "Random Discrete Fractional Fourier Transform", IEEE Signal Processing Letters, vol. 16, no. 12, pp 1015-1018, Dec. 2009. [9] S. C. Pei, J. J. Ding, W. L. Hsue and K. W. Chang, ”Generalized commuting matrices and their eigenvectors for DFTs, offset DFTs, and other periodic operations”, IEEE Trans. on Sig Process., vol. 56, no. 8, pp. 3891-3904, Aug. 2008. [10] Z. Liu, H. Zhao and S. Liu, “A discrete fractional random transform”, Optics Communications, vol. 255, pp 357-365, Jun. 2005.
[11] C. F. Van Loan, “The ubiquitous Kronecker product”, Journal of Computational and Applied Mathematics, vol. 123, pp 85-100, Oct. 2000. [12] R. A. Horn and C. R. Johnson, “Topics in Matrix Analysis”, Cambridge University Press, 1991. [13] V. DeBrunner, M. Ozaydin, T. Przebinda and J. Havlicek, “The optimal solutions to the continuous- and discrete-time versions of the Hirschman uncertainty principle,” ICASSP’00, pp 81-84, Jun. 2000. [14] T. Przebinda, V. DeBrunner, and M. Ozaydin, “The optimal transform for the discrete Hirschman uncertainty principle,” IEEE Trans. Information Theory, vol. 47, no, 5, pp 2086-2090, July 2001. [15] V. DeBrunner and E. Matusiak, “An algorithm to reduce the complexity required to convolve finite length sequences using the Hirschman optimal transform (HOT),” ICASSP’03, vol. 2, pp 577-580, Apr. 2003. [16] W. L. Hsue, S. C. Pei and J. J. Ding, “Efficient discrete fractional Hirschman optimal transform and its application,” ICASSP’2011, pp 3604-3607, May 2011. [17] P. Refregier and B. Javidi, ”Optical image encryption based on input plane and Fourier plane random encoding”, Opt. Lett., vol. 20, no. 7, pp. 767-769, April 1995
|