(18.210.12.229) 您好!臺灣時間:2021/03/01 06:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳致瑋
研究生(外文):Zh-Wei Chen
論文名稱:積木式微流體晶片之研究
論文名稱(外文):Development of building-block type microfluidic chip
指導教授:張耀仁張耀仁引用關係
指導教授(外文):Yaw-Jen Chang
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:71
中文關鍵詞:微線圈微流道積木式單向閥微流道晶片磁制動閥微流道晶片實驗室晶片
外文關鍵詞:Lab-on-a-chipMicrochannelBlocks type check valve microfluidic chipMagnetic actuator valve microfluidic chipMicrocoil
相關次數:
  • 被引用被引用:1
  • 點閱點閱:162
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
大多數實驗室晶片製程都在同樣的基材上完成,本文利用不同基材製作微流道晶片,並將兩者以毛細管接合,已突破以往實驗室晶片的型式,積木式微流道晶片使晶片設計更為靈活,不會受到單一基材的限制,並配合本研究室已開發之微線圈可達到幫浦的效果。本研究是在非無塵室的環境中製作積木式單向閥微流道晶片,大幅降低製作所需之成本,並且以可拋棄的型式為設計概念。此積木式單向閥微流道晶片可應用於生物醫學領域,並且可加入更多的微流體元件而達到更多功能的需求。本研究利用實驗室已開發之三種不同尺寸的微線圈,每個型式分別各以五片晶片實驗來取得平均值。單向閥微流道晶片的最大流率、背壓分別為:線圈12圈在驅動電流500 mA,驅動頻率5 Hz時,最大流量339μl/min、最大驅動背壓3.5 kPa;線圈10圈在驅動電流500 mA,驅動頻率5 Hz時,最大流量220μl/min、最大驅動背壓2.4 kPa;線圈8圈在驅動電流500 mA,驅動頻率5 Hz時,最大流量100μl/min、最大驅動背壓1.8 kPa。單向閥微流道晶片連接磁制動閥微流道晶片的最大流率為:線圈12圈在驅動電流500 mA,驅動頻率5 Hz時,最大流量266μl/min;線圈10圈在驅動電流500 mA,驅動頻率5 Hz時,最大流量169μl/min;線圈8圈在驅動電流500 mA,驅動頻率5 Hz時,最大流量49μl/min。單向閥微流道晶片與磁制動閥微流道晶片可承受之最大壓力分別為:42.5 kPa及21.4 kPa。

Most lab-on-a-chip manufacturing process completed on the same substrate, this substrate produced using different microchannel chips, and both the capillary bonding, has exceeded the previous type of lab-on-a-chip, blocks type microchannel chip to chip decline design more flexible, not limited by a single substrate, and with our laboratory has developed micropump coil can achieve the effect. This study was conducted in non-production clean room environment check valve modular microfluidic chip, significantly reducing the cost of production required and the type to be abandoned for the design concept. This check valve modular microfluidic chip can be applied to the biomedical field, and can add more microfluidic components to achieve more functions. In this study, the laboratory has developed three different sizes of micro-coil, respectively, each of the five types of experiments to get the chip average. Check valve microfluidic chip maximum flow rate, back pressure are as follows: For the coil 12 type, the maximum volumetric flowrate of the pump is 339μl/min, and maximum pump pressure is 3.5 kPa, at the excitation current of 500 mA, and the excitation frequency of 5 Hz; For the coil 10 type, the maximum volumetric flowrate of the pump is 220μl/min, and maximum pump pressure is 2.4 kPa, at the excitation current of 500 mA, and for the coil 8 type, the maximum volumetric flowrate of the pump is 100μl/min, and maximum pump pressure is 1.8 kPa. Check valve microfluidic chip connect with magnetic actuator valve microfluidic chip maximum flow rate are as follows: For the coil 12 type, the maximum volumetric flowrate of the pump is 266μl/min, at the excitation current of 500 mA, and the excitation frequency of 5 Hz; for the coil 10 type, the maximum volumetric flowrate of the pump is 169μl/min, at the excitation current of 500 mA, and the excitation frequency of 5 Hz; for the coil 8 type, the maximum volumetric flowrate of the pump is 49μl/min, at the excitation current of 500 mA, and the excitation frequency of 5 Hz. Check valve microfluidic chip and the magnetic actuator valve microfluidic chip can withstand the maximum pressure, respectively: 42.5 kPa and 21.4 kPa.

摘要 Ⅰ
Abstract Ⅲ
致謝 V
目錄 Ⅵ
圖目錄 IX
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 單向閥分類 2
1.2.1.1 瓣膜式單向閥 2
1.2.1.2 面積覆蓋式單向閥 9
1.2.1.3 柱狀結構單向閥 11
1.2.2 PDMS黏合方式 13
1.3 研究動機 16
1.4 論文架構 17
第二章 製程儀器及材料選用 18
2.1 光罩選擇 18
2.2 光阻選擇 18
2.3 PDMS特性 20
2.4 製程設備 20
第三章 積木式微流體晶片設計與製作 23
3.1單向閥式磁致動微幫浦設計與製作 23
3.1.1單向閥式磁致動微幫浦設計 24
3.1.2單向閥式電磁致動微幫浦製作 26
3.1.2.1微模仁製作 26
3.1.2.2 PDMS微流道製作 31
3.1.2.3 PDMS連接層設計 33
3.1.2.4 PDMS連接層製作 34
3.2磁控微閥設計與製作 36
3.2.1磁控微閥設計 36
3.2.2磁控微閥製作 37
3.3 接合 38
第四章 實驗量測結果與討論 41
4.1單向閥微幫浦背壓之量測 41
4.2單向閥微幫浦流率之量測 44
4.3單向閥微幫浦連接磁控微閥流率之量測 47
4.4單向閥微幫浦可承受壓力之量測 50
4.5磁控微閥可承受壓力之量測 52
第五章 結論與未來展望 53
5.1 結論 53
5.2 未來展望 54
參考文獻 55

圖目錄

圖1.1 記憶金屬閥作動方式 3
圖1.2 記憶金屬閥作動方式 3
圖1.3 壓電片微幫浦作動方式 4
圖1.4 單向閥之SEM照片 4
圖1.5 幫浦系統示意圖 5
圖1.6 微幫浦結構設計 6
圖1.7 模擬結果 6
圖1.8 微幫浦截面示意圖 7
圖1.9 SEM下的矽瓣膜式單向閥結構 7
圖1.10 心肌細胞微幫浦晶片示意圖及剖面圖 8
圖1.11 SU-8懸臂樑結構 9
圖1.12 面積覆蓋式單向閥作動示意圖 9
圖1.13 壓電微幫浦結構示意圖 10
圖1.14 聚對二甲苯環狀單向閥作動方式 10
圖1.15 水凝膠再不同pH值下的狀態 11
圖1.16 水凝膠單向閥作動方式 12
圖1.17 圓柱狀結構抵擋微球體 13
圖1.18 電暈黏合方式 14
圖1.19 多孔膜與PDMS基材黏合示意圖 15
圖1.20 平面流體互連概念和製作方式 16
圖2.1 旋轉塗佈機 20
圖2.2 曝光機 21
圖2.3 加熱板 22
圖2.4 烘箱 22
圖3.1 積木式單向閥微幫浦爆炸圖 25
圖3.2 大單向閥 25
圖3.3 小單向閥 25
圖3.4 單向閥微流道設計圖 25
圖3.5 微影製程流程圖 26
圖3.6 單向閥式電磁致動微幫浦微模仁 31
圖3.7 PDMS 微流道製作流程 32
圖3.8 PDMS 微流道 33
圖3.9 連接層電木模仁 34
圖3.10 PDMS 連接層製作流程 35
圖3.11 PDMS連接層 36
圖3.12 壓克力微流道 37
圖3.13 磁控微閥 37
圖3.13 單向閥式電磁致動微幫浦 39
圖3.14 積木式微流體晶片 40
圖4.1 單向閥微幫浦背壓量測之儀器架設 42
圖4.2 線圈8圈之背壓與頻率之關係 42
圖4.3 線圈10圈之背壓與頻率之關係 43
圖4.4 線圈12圈之背壓與頻率之關係 43
圖4.5 單向閥微幫浦量測之儀器架設 45
圖4.6 單向閥微幫浦之線圈8圈流率與頻率之關係 45
圖4.7 單向閥微幫浦之線圈10圈流率與頻率之關係 46
圖4.8 單向閥微幫浦之線圈12圈流率與頻率之關係 46
圖4.9 單向閥微幫浦連接磁致動微閥流率量測之儀器架設 48
圖4.10 單向閥微幫浦連接磁致動微閥之線圈8圈流率與頻率之關係 48
圖4.11 單向閥微幫浦連接磁致動微閥之線圈10圈流率與頻率之關係 49
圖4.12 單向閥微幫浦連接磁致動微閥之線圈12圈流率與頻率之關係 49
圖4.13 單向閥微幫浦可承受壓力量測之儀器架設 51
圖4.14 單向閥微幫浦可承受之壓力最大值 51
圖4.15 磁致動微閥可承受之壓力最大值 52

表目錄

表2.1 比較三種不同類型的光罩 18
表2.2 SU-8 2150相關特性 19
表3.1 SU-8 2150旋塗參數 28
表3.2 SU-8 2150 軟烤參數 29
表3.3 SU-8 2150 曝光參數 29
表3.4 SU-8 2150 曝後烤參數 30
表3.5 SU-8 2150 顯影參數 30

[1] Xuan-Qi Wang, and Yu-Chong Tai, “A normally closed in-channel check valve,” Proceeding of the IEEE Micro Electro Mechanical Systems, Apr, 2000, p68-73

[2] Jun Xie, Xing Yang, Xuan-Qi Wang, and Yu-Chong Tai, “Surface micromachined leakage proof parylene check valve,” Proceeding of the IEEE Micro Electro Mechanical Systems, Jan, 2001, p539-542

[3] Zunqiang Fan, Jianfang Liu, Jingshi Dong, and Jianqiao Li and Yu-Chong Tai, “Study on the large flow rate piezoelectric mini-pump with metal check valve,” Proceeding of the IEEE Micro Electro Mechanical Systems, Sep, 2009, p4294-4298

[4] Jacob J. Loverich, Isaku Kanno, and Hidetoshi Kotera, “Concepts for a new class of all-polymer micropumps,” Lab on a Chip, Jun, 2006, p1147-1154

[5] JeongYun Kim, JuYeoul Baek, KiHwa Lee, YongDoo Park, Kyung Sun, TaeSoo Lee, and SangHoon Lee, “Photopolymerized check valve and its integration into a pneumatic pumping system for biocompatible sample delivery,” Lab on a Chip, Jun, 2006, p1091-1094

[6] Junhui Ni, Bin Wang, Beizhi Li, and Qiao Lin, “A planar PDMS micropump based on in-contact low- leakage check valves,” Proceeding of the IEEE Conference on Nano/Micro Engineered and Molecular Systems, Mar, 2010, p608-611

[7] Fengliang Huang, Junhui Ni, Bin Wang, and Qiao Lin, “Simulation of a planar PDMS micropump using in-contact, low-leakage check valves,” Proceeding of the IEEE Conference on Nano/Micro Engineered and Molecular Systems, Mar, 2010, p1069-1073

[8] Jianke Kang, and Gregory W. Auner, “Simulation and verification of a piezoelectrically actuated diaphragm for check valve micropump design,” Sensors and Actuators A: Physical, v167, Jan, 2011, p512-516

[9] Cs. Dücső , I. Rajta , and P. Fü rjes, E. Baradács, “Concept for processing of silicon check valves by proton beam micromachining,” Nuclear Instruments and Methods in Physics Research B, v260, Feb, 2007, p409-413

[10] Yo Tanaka, Keisuke Morishima, Tatsuya Shimizu, Akihiko Kikuchi, Masayuki Yamato, Teruo Okano, and Takehiko Kitamori, “An actuated pump on-chip powered by cultured cardiomyocytes,” Lab on a Chip, Jun, 2006, p362-368

[11] Aitor Ezkerra, Luis José Fernández, Kepa Mayora, and Jesús Miguel Ruano-López, “SU8 diaphragm micropump with monolithically integrated cantilever check valves,” Lab on a Chip, Nov, 2011, p3320-3325

[12] Xuan-Oi Wang, Qiao Lin, and Yu-Chong Tai, “A parylene micro check valve,” Proceeding of the IEEE Micro Electro Mechanical Systems, Jan, 1999, p177-182

[13] Bo Li, Quanfang Chena, Dong-Gun Lee, Jason Woolman, and Greg P. Carman, “Development of large flow rate, robust, passive micro check valves for compact piezoelectrically actuated pumps,” Sensors and Actuators A: Physical, v117, Aug, 2004, p325-330
[14] Po-Jui Chen, and Yu-Chong Tai, “Floating-disk parylene micro check valve,” Proceeding of the IEEE Micro Electro Mechanical Systems, Sep, 2007, p453-456

[15] Qing Yu, Joseph M. Bauer, Jeffrey S. Moore, and David J. Beebe, “Fabrication and characterization of a biomimetic hydrogel check valve,” Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, Oct, 2000, p336-339

[16] Liang Dong, and Hongrui Jiang, “Autonomous microfluidics with stimuli-responsive hydrogels,” Proceeding of the IEEE Micro Electro Mechanical Systems, Mar, 2007, p1223-1230

[17] K. Ou, and M. Chiao, “A passive check valve using microspheres for low pressure and low flow rate applications,” Proceeding of the IEEE Micro Electro Mechanical Systems, Jun, 2011, p1785-1788

[18] Chenying Yang, Wei Wang, and Zhihong Li, “Optimization of corona-triggered PDMS-PDMS bonding method,” Proceeding of the IEEE Conference on Nano/Micro Engineered and Molecular Systems, Aug, 2009, p319-322

[19] Kiana Aran, Lawrence A. Sasso, Neal Kamdar, and Jeffrey D. Zahn, “Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices,” Lab on a Chip, Oct, 2010, p548-552

[20] Vijaya Sunkara, Dong-Kyu Park, Hyundoo Hwang, Rattikan Chantiwas, Steven A. Soperac, and Yoon-Kyoung Cho, “Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane),” Lab on a Chip, Nov, 2010

[21] D. G. Johnson, and M. J. Waldron, “Implantable micropump technologies for murine intracochlear infusions,” Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, Feb, 2010, p6441-6444
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔