跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 18:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王萬泉
研究生(外文):Wan-Chuan Wang
論文名稱:高通量顯微影像系統之開發
論文名稱(外文):Development of a High-throughput Microscopy Image System
指導教授:章明章明引用關係
指導教授(外文):Ming Chang
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:66
中文關鍵詞:高通量自動對焦三維形貌影像追蹤失焦重建
外文關鍵詞:Surface Profile ReconstructionImage TrackingHigh-throughputImage RegistrationAuto-focusing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究結合影像處理、機械視覺、自動化控制與平台設計等,來設計一套擁有高通量顯微鏡之初步功能的設備,對於需要以顯微鏡取得大量研究資料的實驗,不再受限於昂貴的設備。只需要將設備直接搭配在現有的顯微鏡設備上,配合自動對焦、目標跟蹤等演算法,使顯微鏡擁有可以大量,並且長時間的取得目標的影像資訊,並且利用失焦重建與三維輪廓的建立來幫助在目標的觀測。本研究經過實驗驗證,針對使用PCR-96孔培養皿的目標物進行觀察,最高可同時觀察72(9*8)個樣本,當針對單一目標進行影像追蹤時,可以長時間使目標維持在觀察視窗內。目前所設計的平台最大行程為105mm ,並擁有±1 µm/105mm的精度,已可滿足在一般顯微鏡上的使用需求。

The study is integration of image processing, machine Vision, automation control and platform design, The project deals with the building of a universal functioning piece of equipment with the application of high-throughput microscopy that is in comparison with the microscope we currently use now, For data acquisition needs a microscope to obtain a lot of image information, we do not need to purchase expensive equipments, which can make the microscope operate with high throughput and long operation time. In addition, the built-in functions in auto-focusing, image tracking, image registration, and three-dimensional surface profile reconstruction are extremely helpful to the observations of targets. Experiments were carried out with the observation of target cultured in a PCR-96-hole culture dish. The maximum observed targets are 72 samples simultaneously. When tracking a single target, the target can be maintained in the observation window as long as wish. The current maximum stroke of the platform is 105mm, and a precision of ± 1 μm/105mm can be reached. This fulfills the needs of a microscope for general applications.

摘要 I
目錄 V
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 3
1-2-1自動對焦相關研究 3
1-2-2 二維影像聚焦度相關研究 4
1-2-3 影像追蹤相關研究 5
1-3 研究目的 6
1-4 本文架構 6
第二章 實驗設備 8
2-1 量測系統 8
2-1-1 光學系統 8
2-2 CCD 攝影機 9
2-3馬達、磁性尺、運動控制卡與高精度移動平台 10
2-3-1 馬達 10
2-3-2 磁性尺 12
2-3-3 運動控制卡 12
2-4 XY高精度移動平台 13
第三章 光學成像與自動對焦 17
3-1光學成像與景深 17
3-1-1景深 17
3-2自動對焦介紹及原理 21
3-3對焦演算法 23
3-4對焦搜尋演算法 26
3-4-1全域搜尋法 27
3-4-2 二分搜尋法 27
3-4-3 百分比下降搜尋法 28
3-4-4 區域面積中心搜尋法 28
3-5自動對焦的流程與結果 28
第四章 全對焦影像與三維輪廓重建 33
4-1 Sum-Modified-Laplacian(SML)運算子 33
4-2全對焦影像 34
4-3三維輪廓 38
第五章 物件搜尋 41
5-1縮時攝影 44
第六章 目標追蹤 47
6-1動態目標追蹤 47
6-2 背景相減法 47
6-3連續影像相減法 48
6-4 粒子濾波原理 49
6-4-1最佳貝氏估計 49
6-4-2粒子濾波演算法 50
6-5粒子濾波流程與結果 52
6-6運動路徑 56
第七章 結論 59
參考文獻 60


圖目錄

圖(2.1) PCR 96培養皿與顯微鏡平台 7
圖(2.2) GX-XDS-2倒立式顯微鏡 8
圖(2.3) AVT GC1290C 彩色CCD攝影機 8
圖(2.4) Orientalmotor CRK 五相步進馬達 10
圖(2.5)CRK524HPMBPB轉速-轉矩特性圖 10
圖(2.6) ARCUS磁性尺 11
圖(2.7) ADLink PCI-8164 運動控制卡 12
圖(2.8)移動平台誤差累積圖 13
圖(2.9)高精度移動平台 13
圖(2.10)交叉滾子導軌 14
圖(2.11)NV型滑軌基本資料 14
圖(2.12) LX20標準型規格 15
圖(3.1)凸透鏡的成像示意圖 16
圖(3.2)景深產生之光路 17
圖(3.3)對焦景深深度是意圖 18
圖(3.4)顯微物鏡NA值說明 18
圖(3.5)主動式對焦示意圖 21
圖(3.6)被動式對焦流程方塊圖 21
圖(3.7)清晰影像與模糊影像的差異 22
圖(3.8)二維基頻影像能量分布圖 24
圖(3.9) Sobel的對焦曲線 28
圖(3.10)全域對焦曲線與區域&;百分比下降法對焦曲線 29
圖(3.11)對焦趨勢的尋找 30
圖(4.1)失焦重建流程圖 33
圖(4.2) C.C.Labeling 範例圖 34
圖(4.3)斑馬幼魚螢光影像 35
圖(4.4)金屬薄片於正立式顯微鏡下影像 36
圖(4.5)使用二維影像建立三為輪廓流程圖 37
圖(4.6)氧化鋅金屬薄片於顯微鏡下之影像 38
圖(4.7)氧化鋅金屬薄片三維高度圖 38
圖(5.1)斑馬魚胚胎於倒立式顯微鏡下之影像 39
圖(5.2)物件搜尋流程圖 40
圖(5.3) PCR-96培養皿 40
圖(5.4)物件搜尋時馬達移動流程圖 41
圖(5.5)物件搜尋實際執行的結果. 41
圖(5.6) 9個斑馬魚胚胎使用物件搜尋後的結果 42
圖(5.7)斑馬魚胚胎成長過程 43
圖(6.1)時序相減法示意圖 46
圖(6.2)重要函數和權重樣本集合關係 49
圖(6.3)粒子濾波流程圖 51
圖(6.4)粒子濾波追蹤流程圖 51
圖(6.5)粒子濾波追蹤示意圖 52
圖(6.6)粒子濾波追蹤 53
圖(6.7)攝影機取樣示意 54
圖(6.8) 斑馬魚位移重心圖 55
圖(6.9)成魚的移動路徑與總移動量 55


表目錄

表(3-1)顯微物鏡放大率、NA值與景深關係 20
表(3-2)全域搜尋法與區域&;百分比法比較 28
參考文獻
[1]Jonsson, P.F. and Bates, P.A., “Global topological features of cancer proteins in the human interactome”, Bioinformatics Vol.22, pp. 2291-2297, 2006

[2]Sundberg, S.A., “High throughput and ultra high throughput screening:solution and cell based approaches” Curr Opin Biotechnol, Vol 11(1) , pp.47-53, 2000

[3] Gonzalez, C . and Woods, E. “Digital image processing, 2nd”, MA:Addison Wesley, 2003

[4] Hill, AJ., Teraoka H., Heideman W. &; Peterson RE. “Zebrafish as a Model Vertebrate for Investigating Chemical Toxicity”. Toxicological Sciences Vol.86 , pp. 6–19, 2005

[5] S.-W. Tsai, Y.-Y. Chen, J.-W. Liaw, “Compound cellular imaging of laser scanning confocal microscopy by using gold nanoparticles and dyes”, Sensors 8, pp.2306-2316, 2008

[6]Zaim, M., Subbarao , S.K., Manouchehri , A.V. , Cochrane , A.H. “Role of Anopheles culicifacies s.l. and An. pulcherrimus in malaria transmission in Ghassreghand (Baluchistan)”, Iran, J Am Mosq Control Assoc. , Vol.9.no.1, pp. 23-6, 1993

[7]Baina, J. and Dublet, J., “Automatic Focus and Iris Control for Video Cameras” , Fifth International Conference on Image Processing and its Applications, pp.232-235, 1995.

[8] Widjaja, J. and Jutamulia, S. , “Wavelet transform-based autofocus camera systems ” ,in Pr oc. of the IEEE Asia-Pacific Conf. on Circuits and Systems, Chiangmai, Vol.24-27, pp.49-51, 1998, .

[9]Subbarao, M. and J. K. Tyan, “Selecting the optimal focus measure for utofocusing and depth-from-focus ” , in Proc. IEEE Trans. On Pattern Analysis and Machine Intelligence, Vol. 20, pp864-870, 1998.

[10] Kesseler, W. and Jan, F., “Analytical model of autofocus system with CCD camera”, in Proc. Int. Conf. on Sensor Camera System for Scientific, Industrial and Digital Photography Application, Vol.3965, pp396-380, 2000.

[11]Ng Kuang Chern N., and Ang, M.H., etc. “Practical Issues in Pixel-Based Autofocusing for Machine Vision”, Proceedings of the IEEE International Conference on Robotics and Automation, Vol.3, pp.2791-2796, 2001.

[12]. Horn, B. K. P., “Focusing” , Technical Report AIM-160, Massachusetts Institute of Technology, 1968.

[13]. Davies, E. R., “Machine Vision: Theory, Algorithms, Practicalities ”, Academic Press Limited, 1990.

[14].Schlag, J. F., Sanderson, A. C., Neumann, C. P., and Wimberly, F. C., “Implementation of Automatic Focusing Algorithms for a Computer Vision System with Camera Control”, Technical Report CMU-RI-TR-83-14, Carnegie Mellon University, 1983.

[15]. Tenenbaum, J. M., “Accomodation in Computer Vision ”, Ph.D. Dissertation, Stanford University, 1970.

[16]. Krotkov, E. P., “Active Computer Vision by Cooperative Focus and Stereo” , New York: Springer-Verlag, 1989.

[17]. Piepe, R. J. r and Korpel, A., “Image processing for extended depth of field”,Vol. 22, pp.1449-145, 1983

[18]. P.Gossmann. “Depth form Focus”, Pattern Recognition Letters, Vol.5, pp.63-69, 1987

[19]. Shree K. Nayar and Yasuo Nakagawa, “Shape from focus: An effective approach for rough surfaces, ” International Conference on Robotics and Automation, pp. 218-225, 1990

[20]. Subbarao M., T.S. Choi, and A. Nikzad, “Focusing techniques”, Journalof Optical Engineering, Vol.32. no.11, pp.2824-2836, 1993

[21]. 胡金星, 白光三維輪廓量測系統, 私立中原大學機械工程
研究所碩士論文, 2000

[22]. 吳良杰, 視覺感測器自動追蹤地面移動目標, 碩士論文, 元智大學機械系, 1996

[23]. 鍾維哲, 基於光流計算之即時影像追蹤系統, 碩士論文, 成功大學點機工程學系, 2000

[24]. Numiaro, K., Koller-Meier,E., and Van Gool, L. , “An Adaptive Color-Based Particle Filter” Image and Vision Computing, Vol.21, no.1 , pp. 99.100, 2003

[25]. Caifenng Shan; YuchengWei, Tieniu Tan, 0jardias, F. “Readl time hand tracking by combining particle filtering and mean shift” . Auto Face and Gesture Recognition, pp.669-674, 2004

[26]. Song, Yu, and Mantian, L., “Research on SUSAN based auto-focusing algorithm for optical microscope application”, in Proc. IEEE Int. Conf.on Mechatronics and Automation, Luoyang, China, pp1237-1241, 2006

[27]. Tympel, V. “Three dimensional animation with a conventional ligh t microscopy”, SP IE, Vol. 2984, pp.190-198, 1997

[28] 趙仁孝, 建立全對焦影像與各景深場景還原技術, 國立交通大學, 2003.

[29] Castorina, A., Capra, A., Curti, S.,etc., “Extension of the depth of field using multi-focus input images”, IEEE International Symposium, Vol.1-3, pp.146-150, 2004.

[30]. Ababneh, J. I., Batained.,M. H. , “Linear phase FIR filter design using particle swarm optimization and genetic algorithms”, Digi- tal Signal Processing, Vol.18.no.4, pp .657-668. 2008,

[31]. R. E. Kalman and R. S. Bucy, “New Results in Linear Filtering and Prediction Theory”, Transactions of the ASME – Journal of Basic Engineering, Vol. 83, pp. 95-107, 1961.

[32]. H. Y. Cheng and J. N. Hwang, “ Multiple-Target Tracking for Crossroad Traffic Utilizing Modified Probabilistic Data Association”, IEEE Computer Society Conference on Acoustics, Speech and Signal Processing, Vol.1, pp. 921-924, 2007

[33]. N. Gordon and D. Salmond, ” Bayesian State Estimation for Tracking and Guidance Using the Bootstrap Filter, ” Journal of Guidance, Control and Dynamics, Vol.18, pp. 1434-1443, 1995.

[34]. G. Kitagawa, “ Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models”, Journal of Computational and Graphical Statistics, Vol.5, pp. 1-25, 1996.

[35] Shin J. T., Fishman M. C., “From zebrafish to human: modular medical models, ” Annu. Rev. Genomics Hum. Genet, Vol.3.no.1, pp.311–340 , 2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top