(3.235.191.87) 您好!臺灣時間:2021/05/14 22:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃冠中
研究生(外文):Kuan-Chung Huang
論文名稱:在鎢金屬上製作之奈米碳管元件
論文名稱(外文):Electrical and Optical Properties of Carbon Nanotubes(CNTs) Devices on Tungsten Films
指導教授:魏拯華
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:68
中文關鍵詞:鎢金屬感測器奈米碳管
外文關鍵詞:TungstenSensorCNTs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是在鎢金屬基板上製作奈米碳管元件。本實驗室之前做過以Silicon和PET作為基板的奈米感測元件,由於Silicon是不可撓基板,在PET製作元件時製程溫度上有相當大的限制,因此,本論文中我們把 CNTs Sensor製作在導電基板鎢金屬上。元件製作流程中,首先在鎢金屬基板上蒸鍍一層鋁作為氧化層的催化劑。成長氧化層後,蒸鍍金屬作為Source / Drain,再進行熱退火處理動作,其降低漏電流產生,最後再旋塗上奈米碳管。在電性測試中,元件放入去離子水及氯化鈉離子溶液所量測的電流有明顯的不同。再仔細分析後,我們可以在鎢金屬導電基板上製作出高靈敏度的離子感測器。此外,為了分析元件對於照光前後之電性變化,所以將元件放入無光的環境中進行量測,再以開燈進行照光量測,分析元件對於照光前後之電性影響。

In this paper, a novel carbon nanotubes (CNTs) sensor with devices structure and passivation method is fabricated on flexible substrate by a low-cost, water-based process. Secondary, we fabricate the flexible CNTs network sensor directly on the surface of the metal sensing probe. To complete this ideal, the CNTs organic thin film transistors (OTFTs) are fabricated on the Tungsten (W) plate and needle. First, we use the W plate as the substrate and this W substrate is used as the gate electrode. For the plastic substrate case, an additional Au gate electrode was formed on the plastic substrate. Then a unique Liquid Phase Deposition (LPD) silicon oxide was deposited as the gate insulator. Next, a metal layer was deposited and patterned as the source and drain electrodes. In order to forming the conduction channel in the sensor, the CNTs were dispersed in dimethylformamide (DMF) and spread between source and drain electrode as the channel layer and the device is completed. Besides the metal layers, all of the above soluble processes were completed by the water-based solvent. Based on the results of our sensor, the low limit of the ion concentration in the solution is uM level. Besides the OTFTs, the quality of oxide on the W substrate is monitored by a simple MIS structure with LPD silicon oxide. In our study, the suitable post - annealing temperature of LPD oxide on W is 600~700C. Finally, we also monitor the optical responses of the CNTs OTFTs on the W and Si substrates.

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 奈米碳管介紹 3
1.3 奈米碳管製作方式 7
1.3.1 電弧放電法 7
1.3.2 雷射熱熔法 8
1.3.3 化學氣相沉積法 9
1.4 鎢金屬介紹 12
1.5 生物感測器之簡介 13
第二章 材料製備與製程步驟 15
2.1 前言 15
2.2 實驗儀器與設備 15
2.3 實驗藥品與材料 22
2.4 實驗流程 24
2.4.1 鎢金屬基板切割 24
2.4.2 鎢金屬基板清洗 24
2.4.3 液相沉積法成長絕緣氧化層 25
2.4.3.1 溶液調配 25
2.4.3.2 成長氧化層 26
2.4.4 熱退火處理 26
2.4.5 Source / Drain 製作 26
2.4.6 旋塗奈米碳管 27
2.4.6.1 奈米碳管分散溶劑配製 27
2.4.6.2 塗佈奈米碳管 29
2.4.7 元件量測 29
第三章 在鎢金屬上製備奈米碳管感測器之特性分析 30
3.1 前言 30
3.2 奈米碳管元件製程步驟 30
3.3 在鎢金屬上成長氧化層時間之探討 31
3.4 退火溫度對鎢片氧化層之影響探討 33
3.5 在鎢金屬上製作奈米碳管感測器之電性分析 34
3.6 離子濃度對奈米碳管感測器之影響探討 35
3.7 小結 38
第四章 奈米碳管濃度對感測器之影響分析 39
4.1 前言 39
4.2 奈米碳管基液和DI-water比例為1:10之特性分析 39
4.3 奈米碳管基液和DI-water比例為1:5之特性分析 42
4.4 1:5溶液下不同CNTs元件之特性分析 44
第五章 退火溫度對奈米碳管元件之光電特性分析 47
5.1 退火溫度對奈米碳管和DI-water濃度比例之特性分析 47
5.2 奈米碳管感測元件對於照光前後之電性分析 53
第六章 結論 65
參考文獻 66
簡歷 69


[1] 洪金賢,”軟性材料基板的介紹與應用”,工業材料雜誌,243期p159-168,2007
[2] 鄭培毓,”可撓式塑膠機板拓展新應用領域”,光連雙月刊,37期,2002
[3] 周曉滄,”聚萘二甲酸乙二醇酯的市場現狀及發展前景”,聚酯工業,18卷6期p1-4,2005
[4] 曾根弘昭、平木壽名、古月文志,”有效地利用特性的碳毫微筒的分散技術",日本北海道大學-大學院地球環境科學研究院
[5] Yi Cui, Charles M. Lieber and et al., “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species”, Science(293), p.1289~1292, 2001.
[6] S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, and P. L. McEuen, Nano Lett. 2, 869, 2002.
[7] M. P. Lu, C. Y. Hsiao, P. Y. Lo, J. H. Wei, Y. S. Yang, and M. J. Chen, Appl. Phys. Lett.88, 053114 (2006) ; Selected Articles in Virtual Journal o f Nanoscale Science &Technology, Vol. 13, Issue 62006; Selected Articles in Virtual Journal of Biological Physic Research, Vol. 11, Issue 4, 2006.
[8] Teri Wang Odom, Jin-Lin Huang, Philip Kim and Charles M. Liebe, “Atomic structure and electronic properties of single-walled carbon nanotubes”, Nature Vol.391, pp.62-64, 1998.
[9] T. W. Ebbesen, P. M. Ajayan, “Large-scale synthesis of carbon nanotube”, Nature Vol.358, pp.220-222, 1992.
[10] Teri Wang Odom, Jin-Lin Huang, Philip Kim and Charles M. Liebe, “Atomic structure and electronic properties of single-walled carbon nanotubes”, Nature Vol.391, pp.62-64, 1998.
[11] M. S. Dresselhaus, RA Jishi, G Dresselhaus, D. Inomata, K. Nakao and R. Saito, “Group theoretical concepts for carbon nanotubes, Molecular Materials”. Vol. 4, pp27-40, 1994.
[12] P. Delaney, H. Choi, J. Ihm S. Louie and M. Cohen, Physical Review, B, 12, pp. 7899, 7999.
[13] M. R. Falvo, G.J. Clary, R. M. Tayler II, V. Chi, F. P. Brooks Jr, S. Washburn and R. Superfine, “Bending and bucking of carbon nanotube under large strain”, Nature Vol.389, pp.582-584, 1997.
[14] E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam mechanic: elasticity, strength and toughness of nanorods and nanotubes”, Science, Vol.277, pp.1971-1975, 1997.
[15] Savas Berber, Young-Kyun Kwon, and David Tomanek, “Unusually High Thermal Conductivity of Carbon Nanotubes”, Phys. Rev. Lett, Vol.84, pp.4613, 2000.
[16] H.Dai, E. W. Wong, and C. M. Lieber, “Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes”, Science, Vol.272, pp.523-526, 1996.
[17] S. Frank, p. Poncharal, Z. L. Wang, and W. A. deHeer, “Carbon nanotube quantum resistors”, Science, Vol.280, pp1744-1746, 1998.
[18] T. W. Ebbesen, P. M. Ajayan, “Large-scale synthesis of carbon nanotubes”, Nature, Vol. 358, pp. 220-222, 1992.
[19] A. Thess, et al., “Crystalline Ropes of Metallic Carbon Nanotubes”, Science,Vol. 273, pp. 483-487, 1996.
[20] H. T. Soh, et al., “Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes”, Appl. Phys. Lett., Vol.75, pp. 627-629, 1999.
[21] G. Zhang, and H. Dai, “Carbon Nanotubes: From Growth, Placement and Assembly Control to 60 mV/decade and Sub-60 mV/decade Tunnel Transistors”, IEDM, 2006.
[22] H. T. Soh, et al., “Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes”, Appl. Phys. Lett., Vol.75, pp. 627-629, 1999.
[23] Y. Zhang, et al., “Electric-field-directed growth of aligned single-walled carbon nanotubes”, Appl. Phys. Lett., Vol. 79, 2001.

[24] A. Ural, Y. Li, and H. Dai, “Electric-field-aligned growth of single-walled carbon nanotubes on surfaces”, Appl. Phys. Lett., Vol. 81, 2002.
[25] S. Han, X. Liu, and C. Zhou, “Template-Free Directional Growth of Single-Walled Carbon Nanotubes on a- and r-Plane Sapphire”, J. Am. Chem. Soc., Vol. 127, 2005.
[26] Y. M. Li, et al., “Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes by a Plasma Enhanced CVD Method”, Nano Lett., Vol. 4, 2004.
[27] S. Huang, M. Woodson, R. Smalley, J. Liu, “Growth Mechanism of Oriented Long Single Walled Carbon Nanotubes Using "Fast-Heating" Chemical Vapor Deposition Process”, Nano Lett., Vol. 4, 2004.
[28] Wilson G. S.; Gifford, R. Biosens. Bioelectron. 2005, 20, 2388.
[29] Newman, J. D.; Turner, A. P. Biosens. Bioelectron. 2005, 20, 2435.
[30] Carrara , S . ; Ri l e y, D. J . ; Bavastrello, V.; Stura, E.; Nicolini, C. Sens. Actuators B 2005, 105, 542.
[31] Campas, M.; Katakis, I. Trends Anal. Chem. 2004, 23, 49.
[32] J. H. Wei and S.C.Lee, “The Retardation of Aluminum-Amorphous Silicon Interaction by Phosphine Plasma Treatment”, J. Vac. Sci. Technol. A16 (2), pp587-590, 1998.
[33] J.S Chou and S.C. Lee, ‘Effect of porosity on infrared-absorption spectra of silicon dioxide”, J. Appl. Phys. Vol. 77, No.4 15 February 1995.
[34] J. L. Yeh and S.C. Lee, “Amorphous-Silicon Thin-Film Transistor with Liquid Phase Deposition of Silicon Dioxide Gate Insulator,” IEEE Electron Device Lett., 20, No. 3, pp. 138-139, 1999.
[35] E. S. Snow, et al., “High-mobility carbon-nanotube thin-film transistors on a polymeric substrate”, Appl. Phys. Lett., 86, pp. 033105, 2005.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top