(3.238.96.184) 您好!臺灣時間:2021/05/12 15:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉開捷
研究生(外文):Kai-Jie Liu
論文名稱:低壓直流電力系統研製及效率改善
論文名稱(外文):Design, Implementation and Efficiency Improvement of a Low Voltage DC Power System
指導教授:王金標王金標引用關係
指導教授(外文):Jin-Biau Wang
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:83
中文關鍵詞:垂下均流控制直流轉換器
外文關鍵詞:droop current sharing controlDC/DC converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:553
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
通信系統常使用直流48V電源,但對其控制電腦則以直流12V電源較為普遍,所以需要直流轉換器以將48V轉換成12V電源。因此,本論文研製一由三組48V/12V/20A降壓式直流轉換器組成之低壓直流電力系統,並使用垂下均流控制以使三組降壓式直流轉換器輸出電流均流。更進一步設計配電背板,以使三組降壓式直流轉換器經由ORing二極體並聯再供應嚴荷負載,並可防止逆流。但因ORing二極體的壓降大,造成甚大功率耗損,所以設計ORing MOSFET取代ORing二極體以提升效率。論文中將會用電壓迴路極點安置法設計降壓式直流轉換器之電壓控制器,並運用運算放大器整合電壓控制器及垂下均流控制器。最後,由電路模擬及實驗結果,驗證所提低壓直流電力系統之有效性。

Telecommunication system often adapts DC 48V input power supply; however, the main computer control system normally requires DC 12V power supply. As a result, it requires a DC power converter to convert 48V into 12V power system. This thesis designs a low voltage DC power system which consists of three 48V/12V/20A DC/DC buck converters with droop current sharing control to achieve equal sharing current control. Furthermore, the output currents of the DC/DC converters pass through ORing diodes at power distribution backplane to provide power to critical load. Since the voltage drop of the ORing diode results in great deal of power loss, so using ORing MOSFET to replace ORing diode can improve efficiency significantly. The pole placement method will use to design the voltage controller which integrates droop current sharing controller in single operational amplifier. Finally, some circuit simulations and experimental results are provided to verify the effectiveness of the proposed low voltage DC power system.

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 目前研究成果 3
1.3 研究方法 9
1.4 論文架構 9
第二章 具垂下均流控制之降壓式直流轉換器 11
2.1 簡介 11
2.2 降壓式直流轉換器之基本原理 11
2.2.1 降壓式直流轉換器連續電流導通模式之穩態分析 13
2.2.2 降壓式直流轉換器CCM/DCM之邊界條件 18
2.2.3 降壓式直流轉換器不連續電流導通模式之穩態分析 18
2.2.4 脈波寬度調變控制 20
2.3 輸出電感與電容之設計 23
2.4 並聯直流轉換器系統 26
2.4.1 穩態垂下電壓特性設計 28
2.4.2 垂下電壓控制穩態特性分析設計 28
第三章 具垂下均流控制之降壓式直流轉換器控制系統分析及設計 31
3.1 簡介 31
3.2 降壓式直流轉換器的小信號模式 31
3.3 電壓控制器設計 35
3.4 迴授分壓網路與補償網路之設計 36
3.5 垂下均流控制器設計 38
第四章 模擬與實驗結果 42
4.1 簡介 42
4.2 具垂下均流控制之降壓式直流轉換器的元件選擇與參數設計 42
4.3 模擬與實作 46
4.3.1 電路模擬 46
4.3.2 電路實作 57
4.4 配電背板之效率改善 67
第五章 結論與未來研究方向 75
5.1 結論 75
5.2 未來研究方向 75
參考文獻 77
附錄 82
簡歷 84


[1]王金標,劉開捷,彭鈞瑋及李宏導†,「使用初級垂下均流控制之並聯直流轉換器系統」,第九屆電力電子研討會,940-944頁,嘉義縣民雄鄉,台灣,中華民國九十九年九月三日。
[2]王金標,劉開捷,「低壓直流電力系統研製」,2011綠色能源研討會,55-60頁,桃園縣中壢市,台灣,中華民國一百年十月十四日。
[3]江炫樟,電力電子學,三版六刷,全華科技圖書股份有限公司,台北市,中華民國九十七年十一月。
[4]梁適安,交換式電源供給器之理論與實務設計,二版,全華科技圖書股份有限公司,台北縣土城市,中華民國九十七年九月。
[5]A. A. Bento, E. R. da Silva and C. B. Jacobina, “Improved power factor interleaved boost converters operating in discontinuous–inductor–current mode,” IEEE PESC, pp. 2642-2647,2005.
[6]A. Lahyani, P. Venet, G. Grellet and P.-J. Viverge, “Failure prediction of electrolytic capacitors during operation of a switchmode power supply,” IEEE Transactions on Power Electronics, vol. 13, no. 6, pp. 1199-1207, 1998.
[7]A. M. R. Amaral and A. J. Marques Cardoso, “Use of ESR to predict failure of output filtering capacitors in boost converters,” IEEE ISIE 2004, vol. 2, pp. 1309-1314, 2004.
[8] A. M. R. Amaral and A. J. Marques Cardoso, “An experimental technique for estimating the ESR and reactance intrinsic values of aluminum electrolytic capacitors,” IEEE IMTC 2006, pp. 1820-1825, 2006.
[9]B. T. Irving and M. M. Jovanovic, “Analysis, design, and performance evaluation of droop current-sharing method,” APEC 2000 Conference Proceedings of Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 235 - 241, 2000.
[10]D. S. Garabandic and T. B. Petrovic, “Modeling parallel operating PWM DC/DC power supplies,” IEEE Transactions on Industrial Electronics, vol. 42, Issue 5, pp. 545-551, 1995.
[11]Hong Mao, Liangbin Yao, Caisheng Wang and I. Batarseh, “Analysis of Inductor Current Sharing in Nonisolated and Isolated Multiphase dc–dc Converters,” IEEE Transactions on Industrial Electronics, vol. 54, Issue 6, pp. 3379-3388, 2007.
[12]I. Batarseh, K. Siri and H. Lee, “Investigation of the output droop characteristics of parallel-connected DC-DC converters,” PESC 1994 Record of the 25th Annual IEEE Power Electronics Specialists Conference, vol. 2, pp. 1342-1351, 1994.
[13]J. A. A. Qahouq, Lilly Huang, Lilly and D. Huard, “Sensorless Current Sharing Analysis and Scheme for Multiphase Converters,” PESC 2007 IEEE Power Electronics Specialists Conference, pp. 2029-2036, 2007.
[14]J. B. Wang, “Evaluation and analysis of the isolated interleaved buck derived converters by considered magnetic saturation characteristics in high power density application,” Journal of The Chinese Institute of Electrical Engineering, vol. 15, no. 3, pp. 211-224, 2008.
[15]J. B. Wang, R. Lo and J. H. Chang, “Paralleled DC/DC converter via primary current droop current sharing control,” The 8th International Power Electronics and Drive Systems PEDS 2009, pp. 1119-1124, 2009.
[16]J. B. Wang, “Design a parallel buck derived converter system using the primary current droop sharing control,” IET Proceeding of Power Electronics, pp. 1-12, 2011.
[17]J. Perkinson, “Current sharing of redundant DC-DC converters in high availability systems-a simple approach,” APEC 1995 Conference Proceedings of Tenth Annual IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 952 -956, 1995.
[18]J. Rajagopalan, K. Xing, Y. Guo, F. C. Lee and B. Manners, “Modeling and dynamic analysis of paralleled DC/DC converters with master-slave current sharing control,” APEC ''96 Conference Proceedings of Eleventh Annual IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 678-684, 1996.
[19] Jung-Won Kim, Hang-Seok Choi and Bo Hyung Cho, “A novel droop method for converter parallel operation,” IEEE Transactions on Power Electronics, vol. 17,Issue 1, pp. 25-32, 2002.
[20]K. Harada, A. Katsuki and M. Fujiwara, “Use of ESR for deterioration diagnosis of electrolytic capacitor,” IEEE Transactions on Power Electronics, vol. 8, no. 4, pp. 355-361, 1993.
[21]Marty Brown, Power supply cookbook, USA, Butterworth Heinemann, 1994.
[22]P. Venet, A. Lahyani, G. Grellet and A. Ah-Jaco, “Influence of aging on electrolytic capacitors function in static converters: fault prediction method,” European Physical Journal Applied Physics, vol. 5, no. 1, pp. 71-83, 1999.
[23]P. Xu, J. Wei, Kaiwei Yao, Y. Meng and F. C. Lee, “Investigation of candidate topologies for 12V VRM,” IEEE APEC, vol. 2, pp. 686-692, 2002.
[24]R. Orsaqh, D. Brown, M. Roemer, T. Dabnev and A. Hess, “Prognostic health management for avionics system power supplies,” IEEE Aerospace Conference, pp. 3585-3591, 2005.
[25] R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, 2nd Ed, Kluwer Academic Publishers, 2001.
[26]Shiguo Luo, Zhihong Ye, Ray-Lee Lin and F. C. Lee, “A classification and evaluation of paralleling methods for power supply modules,” PESC 1999 Record of 30th Annual IEEE Power Electronics Specialists Conference, vol. 2, pp. 901 – 908, 1999.
[27]T. Sato, T. Nabeshima, K. Nishijima, T. Nakano and M. Sekine, “DC-DC converters with ripple cancel circuit,” IEEE INTELEC 2005, pp. 527-532, 2005.
[28]V. J. Thottuvelil and G. C. Verghese, “Analysis and control design of paralleled DC/DC converters with current sharing,” IEEE Transactions on Power Electronics, vol. 13, no. 4, pp. 635 – 644, 1998.
[29]Wen Jun, T. Jin and K. Smedley, “A new interleaved isolated boost converter for high power applications,” IEEE APEC, pp. 79-84, 2006.
[30]Y. Huang, and C. K. Tse, “Circuit Theoretic Classification of Parallel Connected DC–DC Converters,” IEEE Transactions on Circuits and Systems, volume 54, Issue 5, pp. 1099 – 1108, 2007.
[31]Y. Panov, J. Rajagopalan and F. C. Lee, “Analysis and design of N paralleled DC-DC converters with master-slave current-sharing control,” APEC 1997 Conference Proceedings of Twelfth Annual IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 436-442, 1997.
[32]Y. Panov and M. M. Jovanovic, “Loop gain measurement of paralleled dc-dc converters with average-current-sharing control,” APEC 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, pp. 1048 – 1053, 2008.
[33]Zhou Xunwei, Xu Peng and F. C. Lee, “A novel current-sharing control technique for low-voltage high-current voltage regulator module applications,” IEEE Transactions on Power Electronics, vol. 12, pp. 1153-1162, 2000.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔