(3.238.250.105) 您好!臺灣時間:2021/04/20 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何麟
研究生(外文):Cedric Ho
論文名稱:空氣中奈米微粒多環芳香烴化合物分析研究
論文名稱(外文):Sampling and Analysis of Nano-Particle Polycyclic Aromatic Hydrocarbons in the Atmosphere
指導教授:楊錫賢楊錫賢引用關係
指導教授(外文):Hsi-Hsien Yang
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:107
中文關鍵詞:奈米微粒超細微粒多環芳香碳氫化合物環形擴散採樣管微孔均勻沈積衝擊器採樣誤差
外文關鍵詞:annular denuderMOUDIartifactultra-fine particlePAHsnano particle
相關次數:
  • 被引用被引用:1
  • 點閱點閱:426
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
奈米微粒,亦可稱之為超細微粒(Ultrafine Particles, UP < 100 nm)在相同質量下比大微粒具有更大的表面積,誘發之氧化壓力效應相對較大,有研究指出空氣中的半揮發有機物(Semi-Volatile Organic Compounds, SVOCs)易吸附於奈米微粒上,而SVOCs中的多環芳香碳氫化合物(Polycyclic Aromatic Hydrocarbons, PAHs)因具有突變性與致癌性,特別受到學者重視;人體受PAHs之危害決定於PAHs之氣相/粒狀物相分佈及粒狀物相PAHs之粒徑分佈,因此有必要瞭解PAHs之氣相/粒狀物相分佈與不同粒徑大小微粒之PAHs含量。
本研究開發一套可降低量測誤差之空氣奈米微粒中PAHs濃度之系統AD-MOUDI-PUF,此系統利用環形擴散採樣管(Annual denuder, AD)填充XAD-4吸附劑,裝設於微孔均勻沈積衝擊器(Micro-Orifice Uniform Deposit Impactor, MOUDI)前端,先吸附氣相PAHs,排除氣相PAHs對後端微孔均勻沈積衝擊器所採集微粒之採樣誤差,並於最後端裝設聚氨基甲酸酯泡棉(polyurethane foam, PUF)檢視微粒上PAHs之揮發採樣誤差。研究結果顯示,使用8個通道,長度為60 cm的環形擴散採樣管,以流量30 L/min可有效吸附(移除)氣相PAHs,而AD-MOUDI-PUF系統使用鐵氟龍濾紙與石英濾紙檢測之PM0.1 PAHs濃度分別為1.87 ± 0.03 ng/m3與2.01 ± 0.08 ng/m3;若使用環形擴散採樣管移除氣相PAHs時,會使得MOUDI的PM0.1濾紙上15種PAHs濃度採樣結果較為正確,但若未經環形擴散採樣管移除氣相PAHs時會使得氣相PAHs進入濾紙後端的PUF,造成採樣之負向偏差。將AD-MOUDI-PUF系統與傳統式MOUDI-PUF系統進行比較,傳統式MOUDI-PUF使用石英濾紙採集PAHs約有50% 的正向偏差,顯示過去學者研究明顯高估粒狀物相PAHs濃度。
Several studies have concluded that nano particulates or ultra-fine particulates (< 0.1 μm in diameter, UPs) disproportionately induce oxidative stress in cells and are more toxic than larger particles of similar composition. It is also found that semi-volatile organic compounds (SVOCs) tend to adsorb on UPs. Among the SVOCs, polycyclic aromatic hydrocarbons (PAHs) are of particular concern because several PAHs are potent mutagens and carcinogens. It is important to measure the real concentrations of atmospheric ultra-fine PAHs for the assessment of their health effects.
A PAH sampling system which composed of annual denuder (AD), micro-orifice uniform deposit impactor (MOUDI) and polyurethane foam (PUF) in series is developed in this study. The collection efficiency of gaseous PAHs, positive and negative artifacts and particle loss for the AD and the sampling performance of the AD-MOUDI-PUF were evaluated. The annular denuder is 60 cm in length with 8 annuli. The results show that the annular denuder coated with ground XAD-4 at the flow rate of 30 L/min can trap the gaseous PAHs effectively. The average PAH concentrations of PM0.1 were 1.87 ± 0.03 and 2.01 ± 0.08 ng/m3 for AD-MOUDI-PUF sampler using Teflon filter and quartz filter. AD can remove PAHs effectively. A large amount of gaseous PAHs will absorb by the PUF and further lead to the positive artifacts without the AD. For example, 50% positive artifacts will be caused while quartz fiber filter was used.
總目錄
摘要 I
Abstract III
誌謝 IV
總目錄 IV
表目錄 IX
圖目錄 X
第一章 前言 1
1-1 研究動機 1
1-2 研究目標 2
第二章 文獻回顧 3
2-1 大氣奈米微粒特徵 3
2-1-1 懸浮微粒之定義 3
2-1-2 大氣微粒生成機制 3
2-1-3 奈米微粒特性 6
2-1-4 懸浮微粒粒徑分佈 10
2-1-5 奈米微粒採樣技術 12
2-1-6 奈米微粒之毒性效應 13
2-1-7 環境奈米微粒研究 15
2-1-7-1 典型都會區排放 15
2-1-7-2 交通源排放 16
2-2 多環芳香碳氫化合物(Polycyclic aromatic hydrocarbons,PAHs)17
2-2-1 PAHs生成機制 17
2-2-2 PAHs排放來源特徵 19
2-2-3 PAHs理化特性 21
2-2-4 PAHs之毒性效應 22
2-2-5 大氣環境PAHs之研究 29
2-3 PAHs採樣技術 31
2-3-1 傳統PAHs採樣器及採樣誤差 31
2-3-2 環形擴散採樣器 32
2-3-3 環形擴散採樣管構造與原理 33
2-3-3-1 環形擴散採樣管對氣相PAHs之收集效率 33
2-3-3-2 環形擴散採樣管微粒損失 35
2-3-3-3 環形擴散採樣管應用於大氣PAHs量測相關研究 36
第三章 實驗設備與方法 38
3-1 實驗設計 38
3-2 實驗設備與採樣方法 39
3-2-1 環形擴散採樣管 39
3-2-1-1 Amberlite XAD Resin吸附劑 39
3-2-1-2 塗敷溶液 41
3-2-1-3 環形擴散採樣管採樣前處理流程 41
3-2-2 微孔均勻沈積衝擊器 43
3-2-2-1 濾紙調理 45
3-2-2-2 微粒稱重 45
3-2-2-3 流量校正 46
3-3 採樣規劃 46
3-4 PAHs分析設備與方法 47
3-5 環形擴散採樣管微粒損失 51
第四章 結果與討論 53
4-1 大氣微粒濃度與粒徑分佈 53
4-2 環形擴散採樣管對氣相PAHs之收集效率 56
4-3 大氣PAHs濃度 59
4-3-1 大氣氣相PAHs濃度 59
4-3-2 大氣粒狀物相PAHs濃度與粒徑分佈 60
4-3-3 MOUDI-PUF採樣系統PAHs環數分佈之情形 63
4-3-4 AD-MOUDI-PUF採樣系統PAHs環數分佈之情形 65
4-4 奈米微粒PAHs之採樣偏差 67
4-4-1 正向偏差 67
4-4-2 負向偏差 69
4-5 環形擴散採樣管微粒損失 71
第五章 結論與建議 74
5-1結論 74
5-2建議 76
參考文獻 77
附錄 PAHs分析之品質保證與品質控制 90


表目錄
表2-1奈米微粒來源 ........................................................................................................ 7
表2-1奈米微粒來源 (續) ................................................................................................ 8
表2-1奈米微粒來源 (續) ................................................................................................ 9
表2-2各式多階衝擊器及其截取直徑 ...................................................................... 13
表2-3 16種PAHs之分子量、結構式及物理特性 .............................................. 24
表2-4 16種PAHs之蒸氣壓於25度C水中之溶解度與親電性反應 ............... 25
表2-5 PAHs毒性當量係數 (Toxicology Equivalent Factor, TEF) .................... 26
表2-6 16種PAHs之致癌性 ........................................................................................ 28
表2-7環形擴散採樣管常用之吸收劑及其可吸收之氣體 ................................ 32
表3-1 XAD種類及其物理特性 .................................................................................. 40
表3-2 MOUDI各階段之截取粒徑 ............................................................................ 44
表4-1大氣各粒徑微粒質量濃度 ............................................................................... 54
表4-2大氣各粒徑粒狀物相PAHs質量濃度 ......................................................... 61
表4-3 PAHs於各採樣串連組件所佔比例 .............................................................. 70
表4-4環形擴散採樣管各種粒徑之微粒數與損失百分比 ................................ 73


圖目錄
圖2-1各粒徑微粒之定義 ............................................................................................... 4
圖2-2各粒徑微粒之基本特性 ...................................................................................... 5
圖2-3大氣微粒之形成機制、來源及去除機制 ..................................................... 5
圖2-4環境中奈米微粒來源 .......................................................................................... 6
圖2-5典型大氣懸浮微粒之粒徑分佈圖 ................................................................. 11
圖2-6典型大氣與交通相關微粒之粒徑分佈圖 ................................................... 11
圖2-7微粒進入人體呼吸系統沉積位置及機制示意圖 ..................................... 14
圖2-8自由基生成PAHs之反應機制 ....................................................................... 18
圖2-9 Bap代謝活化及DNA鍵結之過程............................................................... 27
圖2-10 PAHs傳統採樣之誤差 ................................................................................... 31
圖2-11擴散採樣管採樣原理剖面圖 ........................................................................ 33
圖2-12 Denuder-MOUDI與MOUDI兩種系統15種PAHs濃度之差異 .... 36
圖3-1奈米微粒PAHs採樣系統配置圖 .................................................................. 38
圖3-2擴散管內磨砂玻璃管壁 .................................................................................... 41
圖3-3樹脂塗敷於磨砂玻璃管壁內 .......................................................................... 41
圖3-4微孔均勻沈積衝擊器 ........................................................................................ 44
圖3-5階段式衝擊器 ...................................................................................................... 44
圖3-6 MOUDI採樣器流量校正圖 ............................................................................ 47
圖3-7 PAHs分析流程圖 ............................................................................................... 50
圖3-8環形擴散採樣管微粒損失實驗系統圖 ........................................................ 52
圖4-1大氣微粒各粒徑範圍與PM10之比值 .......................................................... 55
圖4-2各種氣相PAHs以環形擴散採樣管採樣之實測吸附率 ........................ 58
圖4-3環形擴散採樣管於大氣採集之PAHs濃度 ............................................... 60
圖4-4大氣PAHs各粒徑範圍與PM10之比值 ...................................................... 62
圖4-5 MOUDI-PUF (Teflon) 系統各粒徑上低、中、高分子量PAHs之平均質量濃度 ............................................................................................................................. 64
圖4-6 MOUDI-PUF (Quartz) 系統各粒徑上低、中、高分子量PAHs之平均質量濃度 ............................................................................................................................. 64
圖4-7 AD-MOUDI-PUF (Teflon) 系統各粒徑上低、中、高分子量PAHs之平均質量濃度.................................................................................................................... 66
圖4-8 AD-MOUDI-PUF (Quartz) 系統各粒徑上低、中、高分子量PAHs之平均質量濃度.................................................................................................................... 66
圖4-9 MOUDI-PUF與AD-MOUDI-PUF使用鐵氟龍濾紙採集大氣15種PAHs PM0.1平均濃度 ...................................................................................................... 67
圖4-10 MOUDI-PUF、AD-MOUDI-PUF (Teflon、Quartz) 系統大氣PAHs PM0.1實測濃度 .................................................................................................................. 68
圖4-11 MOUDI-PUF與AD-MOUDI-PUF使用石英濾紙採集大氣15種
PAHs PM0.1平均濃度 ...................................................................................................... 69
圖4-12環形擴散採樣管各種粒徑之微粒數與損失變化圖 .............................. 71
Aceves, M. and Grimalt, J.O. (1993). Seasonally Dependent Size Distributions of Aliphatic and Polycyclic Aromatic Hydrocarbons in Urban Aerosols from Densely Populated Areas. Environ. Sci. Technol. 27: 2896-2908.
Akio, K. and Youki, O. (1987). Mutagenic Activity and PAH Analysis in Municipal Incinerator. Sci. Total Environ. 61: 37-49.
Anderson, P.J., Wilson, J.D. and Hiller, F.C. (1990). Respiratory Tract Deposition of Ultrafine Particles in Subjects with Obstructive or Restrictive lung Disease. Chest. 97: 1115-1120.
Barfknecht, T.R. (1983). Toxicology of Soot. Prog. Energy Combust. Sci. 9: 199-237.
Biswas, P. and Wu, C.Y. (2005). Nanoparticles and the Environment. JAWMA 55: 708-746.
Bittner, J.D. and Howard, J.B (1981). In Particle Carbon: Formation During Combustion, Plenum Press, New York.
Bjorseth A. and Becher G. (1986). PAH in Work Atmospheres: Occurrence and Determination, CRC Press, Inc. Boca Raton. ISBN 0-8493-6064-1.
Bjorseth, A. and Ramahl, T. (1985). Source and Emission of PAH, Handbook of Polycyclic Aromatic Hydrocarbons, Vol. 1, Marcel Dekker, Inc., New York and Basel.
Blevins. R.D. (1984). Applied Fluid Dynamics Handbook. Van Nostrand Reinhold Co., Inc., New York.
Cass, G.R., Hughes, L.A., Bhave, P., Kleeman, M.J., Allen, J.O. and Salmon, L.G. (2000). The Chemical Composition of Atmospheric Ultrafine Particles. Phil. Trans. R. Soc., Lond. A 358: 2581-2592.
Chang, C.C., Chiu, H.F., Wu, Y.S., Li, Y.C., Tsai, M.L., Shen, C.K., et al. (2005). The Induction of Vascular Endothelial Growth Factor by Ultrafine Carbon Black Contributes to the Increase of Alveolar-Capillary Permeability. Environ. Health Perspect. 113: 454–460.
Chen, S.C., Tsai, C.J., Chou, C.C., Roam, G.D., Chen, S.S. and Wang, Y.N. (2010b). Ultrafine Particles at Three Different Sampling Locations in Taiwan. Atmos. Environ. 44: 533-540.
Chen, S.C., Tsai, C.J., Huang, C.Y., Chen, H.D., Chen, S.J., Lin, C.C., Chou, Charles, C.K, Lung, S.C., Roam, G.D., Wu, W.Y., Smolik, J. and Dzumbova, L. (2010a). Chemical Mass Closure and Chemical Characteristics of Ambient PM0.1, PM2.5 and PM10 in a Highway Tunnel and at a Roadside. Aerosol Sci. Technol. 44: 713-723.
Chen, S.J., Liao, S.H., Jian, W.J. and Lin, C.C. (1997). Partical Size Distribution of Aerosol Carbons in Ambient Air. Environ. Int. 23: 475-488.
Chow, J.C. and Watson, J.G. (2007). Survey of Measurement and Composition of Ultrafine Particles. Aerosol Air Qual. Res. 7: 121-173.
Chow, J.C., Watson, J.G., Lu, Z., Lowenthal, D.H., Frazier, C.A., Solomon, P.A., Thuillier, R.H. and Magliano, K. (1996). Descriptive Analysis of PM2.5 and PM10 at Regionally Representative Locations during SJVAQS/AUSPEX. Atmos. Environ. 30: 2079-2112.
Daniel, G., (1983). PAHs in Los Angeles Air from Samples Collected on Teflon, Glasses and Quartz Filters. Environmental Science & Technology.
Donaldson, K., Li, X. and MacNee, W. (1998). Ultrafine (Nanometer) Particle Mediated Lung Injury. J Aerosol Sci. 29: 553-560.
Eiguren-Fernandez, A., Miguel, A.H., Jaques, P.A. and Sioutas, C. (2003). Evaluation of a Denuder-MOUDI-PUF Sampling System to Measure the Size Distribution of Semi-volatile Polycyclic Aromatic Hydrocarbons in the Atmosphere. Aerosol Sci. Technol. 37: 201-209.
Fan, Z.H., Jung, K.H. and Lioy, P.J. (2006). Development of a Passive Sampler to Measure Personal Exposure to Gaseous PAHs in Community Settings. Environ. Sci. Technol. 40: 6051-6057.
Fang, C.C., Chen, I.S. and Hung, I.F. (1996). Analysis of Polycyclic Aromatic Hydrocarbons in the Exhaust of Motorcycles, The 1996 International Conference on Aerosol Science and Technology. Chungli. p. 777-788.
Ferin, J., Oberdorster, G. and Penney, D.P. (1992). Pulmonary Retention of Ultrafine and Fine Particles in Rats. Am. J. Respir. Cell Mol. Biol. 6: 535-542.
Fleming, J.S., Halson, P., Conway, J., Moore, E., Nassim, M.A. and Hashish, A.H. (1996). Three-Dimensional Description of Pulmonary Deposition of Inhaled Aerosol Using Data from Multimodality Imaging. J. Nucl. Med. 37: 873-877.
Frenklach, M. and Warnatz, J. (1987). Detailed Modeling of PAH Profiles in a Sooting Low-pressure Acetylene Flame. Combust. Sci. Technol. 51: 265-283.
Goriaux, M., Jourdain, B., Temime, B., Besombes, J.L., Marchand, N., Albinet, A., Leoz-Garziandia, E. and Wortham, H. (2006). Field Comparison of Particulate PAH Measurements Using a Low-Flow Denuder Device and Conventional Sampling Systems. Environ. Sci. Technol. 40: 6398-6404.
Grimmer, G., Naujack, K.W. and Schreider, D. (1983). Changes in PAH Profiles in Different Areas of a City during the Year. In Polynuclear Aromatic Hydrocarbons; Chemistry and Biological Effects, Battelle Press, Columbus, p. 107-125.
Gundel, L.A. and Lan,e D.A. (1998). Sorbent-Coated Diffusion Deunders for Direct Measurement of Gas/Particle Parittioning by Semi-Volatile Organic Compounds, Environmental Energy Technology Division, USA.
Gundel, L.A., Lee, V.C., Mahanama, K.R.R., Stevens, R.K. and Daisey, J.M. (1995). Direct Determination of the Phase Distributions of Semi-Volatile Polycyclic Aromatic Hydrocarbons Using Annular Denuders. Atmos. Environ. 29: 1719-1733.
Harrison, R.M., Smith, D.J.T. and Luhana, L. (1996). Apportionment of Atmospheric Polynuclear Aromatic Hydrocarbons Collected from an Urban Location in Birmingham, U.K.. Environ. Sci. Technol. 30: 825-832.
Hays, M.D. and Lavrich, R.J. (2007). Developments in Direct Thermal Extraction-GC/MS of Fine Aerosols. Trends Anal. Chem. 26: 88-102.
Hering, S.V. (1989). Air Sampling Instruments for Evaluation of Atmospheric Contaminants, ACGIH. Inc. Cincinnati OH.OSA, 7th ed.
Hildemann, L.H., Markowshi, G.R. and Cass, G.R. (1991). Chemical Composition of Emissions from Urban Sources of Fine Organic Aerosol. Environ. Sci. Technol. 25: 744-759.
Hinds, W.C. (1982). Aerosol Technology-Properties, Behavior, and Measurement of Airborne Particles, John Wiley and Sons, New York. p. 164-178.
Hinds, W.C. (1999). Aerosol Technology, 2nd Edition. Wiley, New York.
Josephson, J. (1984). Polynuclear Aromatic Hydrocarbon. Environ. Sci. Technol. 18: 93-95.
Junge, C.E. (1980). Polycyclic Aromatic Hydrocarbons. Environ. Sci. Technol. 14: 7-8.
Kang, S., Mauter, M. S. and Elimelech, M. (2009). Microbial Cytotoxicity of Carbon-based Nanomaterials: Implications for River Water and Wastewater Effluent. Environ Sci Technol. 43: 2648-2653.
Karcher, W. (1983). Reference Materials for the Analysis of Polycyclic Aromatic Compounds Handbook of Polycyclic Aromatic Hydrocarbons, Marcel Dekker, Inc.
Kelly, J.T. and Asgharian, B. (2003). Nasal Molds as Predictors of Fine and Coarse Particle Deposition in Rat Nasal Airways. Inhal. Toxicol. 15: 859-875.
Kittelson, D.B. (1998). Engines and Nanoparticles: A Review. J. Aerosol. Sci. 29: 575-588.
Kittelson, D.B., Watts, W.F. and Johnson, J.P. (2004). Nanoparticle Emissions on Minnesota Highways. Atmos. Environ. 38: 9-19.
Kleeman, M.J., and Cass, G.R. (1998). Source Contributions to the Size and Composition Distribution of Urban Particulate Air Pollution. Atmos. Environ. 32: 2803-2816.
Kudo, S., Sekiguchi, K., Kim, K.H. and Sakamoto, K. (2011). Spatial Distributions of Ultrafine Particles and their Behavior and Chemical Composition in Relation to Roadside Sources. Atmos. Environ. 45: 6403-6413.
Kulmala, M.H., Vehkamakia, T., Petaja, M., Dalmaso, A., Lauri, V.M., Kerminen, W.B. and McMurry, P.H. (2004). Formation and Growth Rates of Ultrafine Atmospheric Particles: A Review of Observations. Aerosol Sci. 35: 143-176.
Landis-Piwowar, K.R., Chen, D., Cui, Q.C., Minic, V., Becker, F.F., Banik, B.K. and Dou, Q.P. (2006). Apoptotic-inducing Activity of Novel Polycyclic Aromatic Compounds in Human Leukemic Cells. Int. J. Mol. Med. 17: 931-935.
Li, C.T., Lee, W.J., Mi, H.H. and Su, C.C. (1995b). PAH Emission from the Incineration of Waste Oily Sludge and PE Plastic Mixtures. Sci. Total Environ. 170: 171-183.
Li, C.T., Lee, W.J., Wu, C.H. and Wang, Y.T. (1995a). PAH Emission from Waste Ion-exchange Resin Incineration. Sci. Total Environ. 155: 253-266.
Li, Z., Porter, E.N., Sjodin, A., Needham, L.L., Lee, S., Russell, A.G. and Mulholland, J.A., (2009). Characterization of PM2.5-Bound Polycyclic Aromatic Hydrocarbons in Atlanta-Seasonal Variations at Urban, Suburban, and Rural Ambient Air Monitoring sites. Atmos. Environ. 43: 4187-4193.
Lim, L.H., Harrison, R.M. and Harrad, S. (1999). The Contribution of Traffic to Atmospheric Concentrations of Polycyclic Aromatic Hydrocarbons. Environ. Sci. Technol. 33: 3538-3542.
Lin, P., Chen, J.W., Chang, L.W., Wu, J.P., Redding, L., Chang, H., Yeh, T.K., Yang, C.S., Tsai, M.H., Wang, H.J., Kuo, Y.C. and Yang, R.S.H. (2008). Computational and Ultrastructural Toxicology of a Nanoparticle, Quantum Dot 705, in Mice. ES&T. 42: 6264-6270.
Lioy, P.J. and Daisey, J.M. (1987). Toxic Air Pollution: A Comprehensive Study of Non-criteria Air Pollutants, Lewis Publishers Inc. Chelsea MI.
Maciejczyk, P.B., Offenberg, J.H., Clemente, J., Blaustein, M., Thurston, G.D. and Chen, L.C. (2004). Ambient Pollutant Concentrations Measured by a Mobile Laboratory in South Bronx. Atmos. Environ. 38: 5283-5294.
Mamakos, A., Ntziachristos, L. and Samaras, Z. (2006). Evaluation of the Dekati Mass Monitor for the Measurement of Exhaust Particle Mass Emissions. Environ. Sci. Technol. 40: 4739-4745.
Masclet, P., Mouvier, G. and Nikolaou, K. (1986). Relative decay index and sources of polycyclic aromatic hydrocarbons. Atmos. Environ. 20: 439-446.
McDow, S.R. and Huntzicker, J.J. (1990). Vapor Adsorption Artifact in the Sampling of Organic Aerosol-Face Velocity Effects. Atmos. Environ. 24: 2563–2571.
Menichini, E. (1992). Opinion adopted by the Italian National Advisory Toxicological Committee on polycyclic aromatic hydrocarbons, Rome.
Menzie, C.A., Potocki, B.B. and Santodonato, J. (1992). Exposure to Carcinogenic PAHs in the Environment. Environ. Sci. Technol. 26: 1278-1284.
Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., Quigg, A., Santschi, P. H. and Sigg, L. (2008). Environmental Behavior and Ecotoxicity of Engineered Nanoparticles to Algae, Plants, and Fungi. Ecotoxicology .17: 372-386.
Nel, A., Xia, T., Madler, L. and Li, N. (2006). Toxic Potential of Materials at the Nanolevel. Science 311: 622-627.
Nisbet, C. and LaGoy, P. (1984). Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs). Regul. Toxicol. Pharm. 16: 290-300.
Oberdorster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D. and Yang, H. (2005a). Principles for Characterizing the Potential Human Health Effects from Exposure to Nanomaterials: Elements of a Screening Strategy. Part. Fibre Toxicol. 2: 1-35.
Oberdorster, G., Oberdorster, E., and Oberdorster, J. (2005). Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect. 113: 823–839.
Offenberg, J.H. and Baker, J.E. (1999) Influence of Baltimore’s Urban Atmosphere on Organic Contaminants over the Northern Chesapeake Bay. J. Air Waste Manage. 49: 959-965.
Ollivon, D., Blanchoud, H. Massei, A. M. and Garban, B. (2002). Atmospheric Deposition of PAHs to an Urban Site, Paris, France. Atmos. Environ. 36: 2891-2900.
Otani, Y., Eryu, K., Furuuchi, M., Tajima, N. and Tekasakul, P. (2007). Inertial Classification of Nanoparticles with Fibrous Filters. Aerosol Air Qual. Res. 7: 343-352.
Park, S.S., Kim, Y. J. and Kang, C.H. (2002). Atmospheric Polycyclic Aromatic Hydrocarbons in Seoul, Korea. Atmos. Environ. 36: 2917-2924.
Peters, A.J., Lane, D.A., Gundel, L.A., Northcott, G.L. and Jones, K.C.A. (2000). Comparison of High Volume and Diffusion Denuder Samplers for Measuring Semivolatile Organic Compounds in the Atmosphere. Environ. Sci. Technol. 34: 5001-5006.
Pierce, R.C. and Katz, M. (1975). Dependency of Polynuclear Aromatic Hydrocarbon Content on Size Distribution of Atmospheric Aerosols. Environ. Sci. Technol. 9: 347-353.
Possanzini M., Palo V.D., Gigliucci P., Sciano M.C.T. and Cecinato A. (2004). Determination of Phase-Distributed PAH in Rome Ambient Air Denuder/GC-MS Method. Atmos. Environ. 38: 1727-1734.
Possanzini, M., Febo, A. and Liberti, A. (1983). New Design of a High-Performance Denuder For the Sampling of Atmospheric Pollutants. Atmos. Environ. 17: 2605-2610.
Rathore, H.S. (1991). Handbook of Chromatography - Liquid Chromatography of Polycyclic Aromatic Hydrocarbons, CRC Press, Section 1. p. 1-19.
Renwick, L.C., Brown, D., Clouter, A. and Donaldson, K. (2004). Increased Inflammation and Altered Macrophage Chemotactic Responses Caused by Two Ultrafine Particle Types. Occup. Environ. Med. 61: 442-447.
Research Triangle Institute (2008). Standard Operating Procedure for Coating Annular Denuders with XAD-4 Resin, Division, E.a.I.S. (Ed.), 2 ed, Research Triangle Institute.
Reynolds O. (1883). An Experimental Investigation of the Circumstances Which Determine whether the Motion of Water in Parallel Channels Shall be Direct or Sinuous and of the Law of Resistance in Parallel Channels. Philos. Trans. R. Soc. 174: 935–82.
Sardar, S.B., Fine, P.M., Mayo, P.R. and Sioutas, C. (2005). Size-Fractionated Measurements of Ambient Ultrafine Particle Formation during Diesel Exhaust Dilution, Environ. Sci. Technol. 39: 932-944.
Sayes, C.M., Reed, K.L. and Warheit, D.B. (2007). Assessing Toxicity of FIne and Nanoparticles: Comparing in Vitro Measurements to in Vivo Pulmonary Toxicity Profiles. Toxicol. Sci. 97: 163-180.
Seaton, A., MacNee, W., Donaldson, K. and Godden, D. (1995) Particulate Air Pollution and Acute Health Effects. Lancet 345: 176-178.
Seinfeld, J.H. (1986). Atmospheric Chemistry and Physics of Air Pollution, John Wiley and Sons. p. 22-24.
Sekiguchi, K., Kim, K.H., Kudo, S., Sakamoto, K., Otani, Y., Seto, T., Furuuchi, M.Y.F., Ehara, K., Hirasawa, M., Tajima, N. and Kato, T., (2009). Evaluation of Multichannel Annular Denuders for a Newly Developed Ultrafine Particle Sampling System. Aerosol Air Qual. Res. 9: 50-64.
Sheu, H.L., Lee, W.J., Tsai, J.H., Fan, Y.C., Su, C.C. and Chao, H.R. (1996). Particle Size Distribution of Polycyclic Aromatic Hydrocarbons in the Ambient Air of a Traffic Intersection. J. Environ. Sci. Health. p. 1293-1316.
Shimizu, Y., Nakatsuru, Y., Ichinose, M., Takahashi, Y., Kume, H., Mimura, J., Fujii-Kuriyama, Y. and Ishikawa, T. (2000). Benzo(a)pyrene Carsinogenicity is Lost in Mice Lacking the Aryl Hydrocarbon Receptor. Proc. Nat. Acad. Sci. U.S.A. p. 779-782.
Sisovic, A. and Fugas, M. (1997). Smoke Concentration an Indicator of Polycyclic Aromatic Hydrocarbon Levels in the Air. Environ. Monit. Assess. 45: 201-27.
Song, Y., Li, X. and Du, X. (2009). Exposure to Nanoparticles is Related to Pleural Effusion, Pulmonary Fibrosis and Granuloma. Eur. Respir. J. 34: 559-567.
Spotswood, T.M. and Badger, K. (1960). Thin-layer Chromatography Using Partially Acetylated Cellulose as Adsorbent. J. Chem. Soc. 4420, 1960.
Stanier, C.O., Khlystov, A., Chan, W.R., Mulia, M., and Pandis, S.N. (2004). A Method for the in Situ Measurement of Fine Aerosol Water Content of Ambient Aerosol: The Dry-ambient Aerosol Size Spectrometer (DAASS). Aerosol Sci. Technol. 38: 215-228.
Stone, V., Kinloch, I.A., Clift, M., Fernandes, T.F., Ford, A.T., Christofi, N. et al. (2007). Nanoparticle Toxicology and Ecotoxicology-Interactions of Nanomaterials with Biological Systems, American Scientific Publishers.
Temime-Roussel, B., Monod, A., Massiani, C. and Wortham, H. (2004a). Evaluation of an Annular Denuder for Atmospheric PAH Partitioning Studies-2: Evaluation of Mass and Number Particle Losses. Atmos. Environ. 38: 1925-1932.
Temime-Roussel, B., Monod, A., Massiani, C. and Wortham, H. (2004b). Evaluation of an Annular Denuder Tubes for Atmospheric PAH Partitioning Studies-1: Evaluation of the Trapping Efficiency of Gaseous PAHS. Atmos. Environ. 38: 1913-1924.
Tremblay, R.T., Riemer, D.D. and Zika, R.G., (2007). Organic Composition of PM2.5 and Size-Segregated Aerosols and their Sources During the 2002 Bay Regional Atmospheric Chemistry Experiment (BRACE), Florida, USA. Atmos. Environ. 41, 4323-4335.
Trenholm, A.R. and Beck, L.L. (1978). Assessment of Hazardous Organic Emission from Slot-type Coke Oven Batterie, Internal EPA Report, Durham, N.C..
Trouiller, B., Reliene, R., Westbrook, A., Solaimani, P. and Schiestl, R.H. (2009) Titanium Dioxide Nanoparticles Induce DNA Damage and Genetic Instability in Vivo in Mice. Cancer Res. 69: 8784-8789.
Tuominen, J., Salomss, S., Pyysalo, H., Skytta, E., Tikkanen, L., Nurmela, T., Sorsa, M., Pohjola, V., Sauri, M. and Himberg, K. (1988). Polynuclear Aromatic Hydrocarbons and Genotoxicity in Particulate and Vapor Phases of Ambient Air: Effect of Traffic Season, and Meteorological Conditions. Environ. Sci. Technol. 22: 1228-1234.
Turpin, B.J., Huntzicker, J.J. and Hering, S.V. (1994). Investigation of Organic Aerosol Sampling Artifacts in the Los Angeles Basin. Atmos. Environ. 28: 3061-3071.
USEPA (1987). Locating and Estimating Air Emission from Sources of Polycyclic Organic Matter (POM), EPA-45014-84-007.
Vaeck, L.V., Broddin, G. and Cauwenberghe, K.V. (1979). Differences in Particle Size Distribution of Major Organ Pollutants in Ambient Aerosols in Urban, Rural and Seashore Areas. Environ. Sci. Technol. 13: 1494-1502.
Vaeck, V.L., Cauwenberghe, V.K. and Janssens, J., (1984). The Phase- ParticleDistribution of Organic Aerosol Constitutes: Measurement of the Volatilization artifact in Hi-Vol Cascade Impactor Sampling. Atmos. Environ.18: 417-430.
Venkataraman, C. and Friedlander, S.K. (1994). Size Distribution of PolycyclicAromatic Hydrocarbons and Elemental Carbon Ambient Measurement and Effects of Atmospheric Process. Environ. Sci. Technol. 28: 563-572.
Warheit, D.B., Laurence, B.R., Reed, K.L., Roach, D.H., Reynolds, G.A. and Webb, T.R. (2004) Comparative Pulmonary Toxicity Assessment of Single-Wall Carbon Nanotubes in Rats. Toxicol. 77: 117-125.
Wey, M.Y. and Shi, J.L. (1997). Effect of Pressure Fluctuations on PAHs Emission and Combustion Efficiency during Incineration. Toxicol. Environ. Chem. 61: 83-98.
Whitby, K.T. and Cantrell, B. (1976) Fine Particles, In International Conference on Environmental Sensing and Assessments, Institute of Electric and Electronic Engineers.
Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., Sioutas, C., Yeh, J.I., Wiesner, M.R. and Nel, A.E. (2006). Comparison of the Abilities of Ambient and Manufactured Nanoparticles to Induce Cellular Toxicity According to an Oxidative Stress Paradigm. Nano Lett. 6: 1794-1807.
Ye, Y., Tsai, C.J., Pui, D.Y.H. and Lewis, C.W. (1991). Particle Transmission Characteristics of an Annular Denuder Ambient Sampling System. Aerosol Sci. Technol. 14: 102-111.
Yi, H.H., Hao, J.M., Duan, L., Li, X.H. and Guo, X.M. (2006). Characteristics of Inhalable Particulate Matter Concentration and Size Distribution From Power Plants in China. J. Air Waste Manage. Assoc. 56: 1243-1251.
Zandere, M. (1985). Physical and Chemical Properties of Polycyclic Aromatic Hydrocarbons, Marcel Dekker, Inc..
Zhang, Q., Kusaka, Y., Zhu, X., Sato, K., Mo, Y., Kluz, T. and Donaldson, K. (2003). Comparative Toxicity of Standard Nickel and Ultrafine Nickel in Lung after Intratracheal Instillation. J. Occup. Health. 45: 23-30.
王雅玢 (1994),交通污染源大氣中多環芳香烴化合物特徵之探討。國立成功大學環境工程學系碩士論文。
林志忠 (2007),交通源大氣奈米、超細、細及粗微粒組成特性之研究。國立屏東科技大學環境工程與科學系所博士論文。
康曉偉、張逸、張曉山、李玉平 (2007),環形擴散採樣管採集環境空氣中氣態多環芳香烴的方法。環境化學,26:236-240。
莊茂隆 (1995),石化工業區及交通污染源區之多環芳香烴化合物的濃度特徵與粒徑分佈。國立成功大學環境工程學系碩士論文。
許蕙琳 (1996),大氣中多環芳香烴化合物之粒徑分佈及乾沉降研究。國立成功大學環境工程學博士論文。
陳邦瑋 (2006),從台北都會區細氣膠特性評估PM1及PM2.5對環境影響的顯著性。國立中央大學環境工程研究所碩士論文。
陳佳玫 (2003),大氣中多環芳香烴化合物特性與來源分析。朝陽科技大學環境工程與管理所碩士論文。
陳峰毅 (2003),不同油品對機車引擎排放多環芳香烴特徵之影響。南台科技大學化學工程研究所碩士論文。
陳瑞仁 (2006),大氣奈米微粒上多環芳香烴化合物粒徑分佈特性之探討,成果報告,NSC 94-2211-E-020-001-。
黃元勳 (2006),屏東郊區大氣微粒化學組成特性探討。國立屏東科技大學環境工程與科學系碩士論文。
楊錫賢 (1998),大氣環境中多環芳香烴化合物與金屬元素之特徵。國立成功大學環境工程學博士論文。
廖永生 (2000),人類肺癌組織及細胞株中多環芳香烴受器Aryl Hydrocarbon Receptor, Ah-Receptor Nuclear Translocator和Cytochrome P4501A1之表現情形。中山醫學院毒理學研究所碩士論文。
劉希平 (2003),大氣中 PAHs 於粒狀物上分布之監測調查,期末報告,EPA-92-L105-02-215。
劉志浩 (2005),微粒粒徑對大氣多環芳香烴化合物氣固相分佈係數影響之研究。國立高雄第一科技大學環境與安全衛生工程研究所碩士論文。
潘盈潔 (2005),比較三種XAD微孔介質大氣PAHs田野採樣吸附效能之研究。雲林科技大學環境與安全衛生工程學系碩士論文。
蔡春進 (2008),97年度環境中奈米物質量測及特性分析技術,期末報告,EPA-97-U1U1-02-106。
蔡春進 (2009),98年度環境中奈米物質量測及特性分析技術開發,期末報告,EPA-98-U1U1-02-103。
蔡春進 (2010),99年度環境中奈米物質量測、特性分析及及時毒性測試平台技術開發,期末報告,EPA-99-U1U1-02-103。
蔡春進 (2011),100年度環境中奈米物質量測、特性分析及及時毒性測試平台技術開發,期末報告,EPA-100-1602-02-01。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔